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Deep learning-based
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alternating current stimulation
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We investigated whether the phase-lag types of cross-frequency coupled

alternating current stimulation (CFC-tACS), a non-invasive technique aimed

at enhancing cognitive functions, could be decoded using task-based

electroencephalographic (EEG) signals. EEG recordings were obtained from

21 healthy individuals engaged in a modified Sternberg task. CFC-tACS was

administered online for 6 s during the middle of the retention period with

either a 45◦ or 180◦ phase lag between the central executive network and

the default mode network. To decode di�erent phase-lag tACS conditions, we

trained a modified EEGNet using task-based EEG signals before and after the

online tACS application. When utilizing parietal EEG signals, the model achieved

a decoding accuracy of 81.73%. Feature maps predominantly displayed EEG

beta activity in the parietal region, suggesting that the model heavily weighted

the beta band, indicative of top-down cognitive control influenced by tACS

phase-lag type. Thus, EEG signals can decode online stimulation types, and

task-related EEG spectral characteristics may indicate neuromodulatory activity

during brain stimulation. This study could advance communicative strategies in

brain–machine interfacing (BMI)-neuromodulation within a closed-loop system.

KEYWORDS

brain stimulation, cognitive system, deep-learning, electroencephalography, top-down
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1 Introduction

Memory is a crucial aspect of human cognition, and numerous researchers have

explored its neurophysiological bases from various perspectives. In particular, working

memory is integral to a myriad of everyday cognitive tasks and is essential for activities

such as problem-solving, learning, and communication. It involves the temporary storage

and manipulation of information (Cowan, 2014). Essentially, two key mechanisms are

associated with working memory: one for retaining information and the other for

voluntary or executive control (Miller et al., 2018). Working memory processing is not

confined to single brain structures; rather, it involves large, distributed networks that

span different cortical areas within the cortex (Christophel et al., 2017) and extend

between cortical and subcortical areas (Spellman et al., 2015). For instance, the dorsolateral

prefrontal cortex (DLPFC), which involves the functional antagonism of the default

mode network (DMN) (Menon, 2011; Murphy et al., 2020; Sridharan et al., 2008) and

corresponds to the central executive network (CEN), plays a role in monitoring and

manipulating information (Barbey et al., 2013). Neurophysiological evidence indicates that
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working memory is also associated with specific neuronal

oscillations (Roux and Uhlhaas, 2014; Sauseng et al., 2010; Wilsch

and Obleser, 2016). Additionally, previous studies have noted that

the retention period of working memory is characterized by cross-

frequency coupling, where the frequencies or powers of different

frequencies interact (Abubaker et al., 2021; Axmacher et al., 2010).

Considerable research has focused on directly modulating

neurophysiological phenomena in the brain to enhance cognitive

functions or treat cognitive disorders (Liu et al., 2022). Brain

stimulation techniques are categorized into invasive and non-

invasive methods. Invasive stimulation, involving the implantation

of a device in a targeted brain area, provides a direct and

rapid neuromodulatory effect. However, the costs and surgical

requirements of invasive neuromodulation limit its use among

healthy individuals. Conversely, non-invasive neuromodulation

involves stimulation applied through the scalp without the need

for surgery (Bikson et al., 2019). Among non-invasive methods,

transcranial current stimulation (tCS) has gained popularity due to

its adaptability, portability, and relatively lower cost. In particular,

transcranial alternating current stimulation (tACS) has proven

effective in neurophysiologically modulating human cognitive

functions by synchronizing brain waves through the application

of electrical stimulation analogous to endogenous brain waves

(Herrmann et al., 2013). It also modulates brain rhythms, enhances

activity in specific frequency bands, and can be applied locally.

In this study, we employed theta/alpha-gamma phase-

amplitude coupled tACS, drawing on evidence linking the

theta-gamma ratio with short-term memory capacity and

theta/alpha-gamma phase-amplitude coupling with working

memory (Abubaker et al., 2021; Kim et al., 2022). Phase differences

in stimulation have been shown to affect performance (Polanía

et al., 2015). For instance, in-phase stimuli (e.g., a relative phase

difference of 0◦) enhance functional coupling between distant

regions, while out-of-phase stimuli (a relative phase difference of

180◦) reduce phase matching and impair performance on cognitive

tasks (Polanía et al., 2012; Violante et al., 2017). Accordingly,

we administered two different stimulus phase-lag conditions

while participants engaged in a modified Sternberg task, a well-

established working memory task (Sternberg, 1966). Stimuli were

presented as a partially in-phase tACS condition when the relative

phase difference was 45◦, and as an out-of-phase tACS condition

when the relative phase difference was 180◦ across CEN and DMN.

Moreover, this study explored whether brain-

stimulation parameters could be decoded using task-based

electroencephalographic (EEG) signals. EEG-based brain-machine

(or brain-computer) interfacing (BMI or BCI) studies have

historically been prominent in the field of neurotechnology,

primarily focusing on using brain signals. Recently, brain-

stimulation-mediated neuromodulation, which involves applying

electric or magnetic energy to brain regions for intentional

non-invasive neuromodulation, has garnered increasing attention.

Interactive studies between BMI/BCI and neuromodulation are

crucial to bridge these two uni-directional approaches, aiming to

establish a communicatory method between brain-stimulation-

mediated neuromodulatory techniques and EEG-based BMI/BCI

technology. Specifically, if a brain-stimulation parameter can be

decoded using EEG signals, this technique could facilitate the

online updating of brain-stimulation parameters based on real-

time EEG features, particularly within a BMI-neuromodulation

closed-loop feedback system.

For this purpose, deep learning models for classification were

employed. Notably, convolutional neural networks (CNNs) are

popular in the classification of EEG data (Craik et al., 2019; Kim

et al., 2021; Roy et al., 2019), attributed to their efficacy in various

applications such as image classification (He et al., 2016) and speech

recognition (Gulati et al., 2020). Owing to their superior feature

extraction performance, CNNs excel in EEG data classification

(Lawhern et al., 2018; Schirrmeister et al., 2017). In this study,

we used EEGNet (Hong et al., 2023; Lawhern et al., 2018), a

simplified CNN-based model designed for learning parameters

from a small dataset while maintaining robust performance across

diverse paradigms. EEGNet models are particularly advantageous

for extracting interpretable neurophysiological features relevant to

the task paradigm, rendering them ideal for training deep learning

models using electrophysiological data from cognitive processes.

Specifically, the operation of EEGNet’s first layer resembles a

wavelet transform to identify the focus frequency bands of the

trained layer, which acts as a filter bank (Lawhern et al., 2018).

Therefore, by examining the frequency bands of the trained

layer, we can determine the weight of the model for a particular

frequency range.

Although numerous studies have decoded EEG, few have

concentrated on decoding EEG signals acquired during the

tACS stimulation paradigm. By analyzing online stimulation EEG

data, the effectiveness of current stimulation techniques and

their neurophysiological correlates can be assessed. Therefore,

we examined whether task-based EEG signals could decode the

phase-lag type of cross-frequency coupling-based non-invasive

alternating current stimulation (CFC-tACS) applied, specifically

distinguishing between 45◦ and 180◦ phase-lag stimulation across

CEN and DMN.

2 Materials and methods

2.1 Participants

Twenty-one healthy individuals (six female, mean age 24.0

± 3.1) participated in this study. All participants had normal

or corrected-to-normal vision and no history of psychiatric or

neurological disorders. Each participant provided written informed

consent. The study was conducted in accordance with the ethical

guidelines of the Institutional Review Board of Korea University

(KUIRB-2021-0209-08) and the Declaration of Helsinki (World

Medical Association, 2013).

2.2 Materials and procedures

The participants were instructed to perform a modified version

of the Sternberg task (Sternberg, 1966), as illustrated in Figure 1.

In this task, seven stimuli consisting of combined letters and

numbers were presented sequentially during the encoding period.

Each stimulus appeared for 700ms, with an inter-stimulus interval
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FIGURE 1

Time flow of Sternberg task and tACS treatment.

of 150ms. This was followed by a 9 s retention period of working

memory, during which CFC-tACS was applied to the participants

for 6 s (from 1.5 to 7.5 s within the retention period). Subsequently,

during a 2 s retrieval period, participants responded to indicate

whether the item presented during the retrieval was among those

shown during the encoding period. At the end of the response

period, three types of feedback were provided based on the

participant’s response: correct, incorrect, or no response.

Seven sessions were conducted, each consisting of 30 responses.

The first session involved performing the Sternberg task without

tACS treatment. The second and third sessions included one phase-

lag tACS treatment (either 45◦ or 180◦). The fourth session involved

performing the Sternberg task without tACS treatment. In the fifth

and sixth sessions, the tACS stimulus was applied in the alternate

phase-lag condition (180◦ or 45◦) during the Sternberg task. The

seventh session involved performing the Sternberg task without

tACS treatment again. This study was conducted in a double-

blind manner, and the order of 45◦ and 180◦ phase-lag CFC-tACS

sessions was counterbalanced across participants. The task was

administered using E-prime software (E-prime 3.0 Professional,

Psychology Software Tools, USA). This study evaluated the EEG

data from the tACS sessions 2, 3, 5, and 6.

2.3 EEG recordings and tACS

The 64 Ag/AgCl EEG electrodes (Brain Products GmbH,

Germany) were positioned on the scalp using an EEG cap

(actiCAP, Brain Products GmbH, Germany) in accordance with

the international 10-10 system. EEG signals were recorded at a

sampling frequency of 500Hz using a BrainAmp DC amplifier

(Brain Products GmbH, Germany). The reference electrode was

placed at the tip of the nose, while the ground electrode was

located in the AFz channel. EEG data were offline filtered using

a band-pass infinite impulse response filter from 4 to 50Hz. To

extract peri-tACS EEG data, 500-ms segments were epoched from

1 s before (i.e., 0–0.5 s during the retention period) and 1 s after

(i.e., 8.5–9 s during the retention period) the tACS treatment to

avoid potential artifacts induced by tACS during EEG recording

(Figure 1). A detrending procedure was applied to each epoch to

eliminate DC offsets. For artifact rejection, epochs were removed if

the peak amplitude exceeded ±100 µV or if the slope exceeded 50

µV/ms. In addition, EEG epochs contaminated by eye movement

were rejected by manual inspection.

High-density transcranial alternating current stimulation (HD-

tACS) was administered using a Soterix MxN-65 (Soterix

Medical Inc., USA), with the frequency and intensity of

stimulation tailored for each participant. Given the correlation

between CFC of neuronal oscillations and working memory

performance (Abubaker et al., 2021), and our hypothesis that

the neuromodulatory effect would be maximized when the

stimulus waveform closely resembles the target human brain wave,

the stimulus waveform in this study was designed in a CFC

manner. The amplitude and phase frequencies of the stimuli were

individually calculated as follows (Kim et al., 2022).

Stimulus signal =
AfA

2
( sin(2π fpt)+ 1) sin

(

2π fAt
)

+ Afp sin
(

2π fPt
)

(1)

Return signal = −
1

N

(

Stimulus signal
)

(2)

fA and fP represent the amplitude and phase frequencies,

respectively, and AfA and Afp are constants that determine the

maximum intensity of the stimulus set to 2:8, where N denotes the

number of return channels.
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FIGURE 2

tACS channel montage and tACS simulation with a phase lag. (A) The stimulation input electrode for each region of interest (orange for CEN; green

for DMN) is marked in red, and its surrounding return electrodes are marked in blue. Cross-frequency coupled tACS was applied with multi-electrode

setups designed to modulate DMN (mPFC and PCC, time course in green) with a phase lag of 45◦ or 180◦ preceding that of CEN (DLPFC and PPC,

time course in orange). (B) Simulation of the tACS-induced electric field in the target regions. Cortical maps (lateral and medial views) show the

simulated neuromodulation of the tACS target areas. The unit normE denotes the normalized strength of the induced electric field (V/m), with high

intensities indicated in red and low intensities represented in blue.

Previous studies have demonstrated that applying a stimulus

with the same frequency and phase difference to two different areas

can either promote or disrupt the synchronization of functional

networks (Helfrich et al., 2014; Polanía et al., 2015; Violante et al.,

2017). In this study, the stimulation targets were the CEN and

the DMN, which functionally antagonize each other. The CEN

is activated during cognitive tasks, while the DMN is deactivated

when cognitive engagement is required. Stimulation was applied to

the CEN and DMN with a phase lag of 45◦, partially in-phase, and

180◦, out-of-phase (Seo et al., 2025). The stimulus was delivered

to these two target regions through six cortical regions: the left

and right dorsolateral prefrontal cortex (DLPFC) and posterior

parietal cortex (PPC) for the CEN, and the medial prefrontal

cortex (mPFC) and posterior cingulate cortex (PCC) for the DMN

(Figure 2). To examine whether the target regions were optimally

stimulated and the stimulation signals matched the intended phase

lag, simulation was performed using SimNIBS (ver. 3.2.6, DRCMR

& DTU, Denmark) (Thielscher et al., 2015) and tES LAB (ver. 3.0,

Neurophet, Seoul, Korea) software. We individually adjusted the

stimulation intensity for each participant in a stepwise manner to

ensure that it remained below the individual sensation threshold

and that the total stimulation intensity did not exceed 1.5 mA.
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FIGURE 3

Visualization of the modified EEGNet architecture.

2.4 Data analysis

Preprocessing of the EEG data was performed using the Brain

Vision Analyzer (Brain Products GmbH, Germany), MNE Python

(Gramfort et al., 2014) and Scipy (Virtanen et al., 2020) libraries.

To analyze the effect of online stimulation, we compared tACS-

mediated changes in the 500ms EEG spectral power 1 s before

(i.e., 0–0.5 s in the retention period) and 1 s after (8.5–9 s in the

retention period) the tACS treatment (Figure 1). Consistent with

previous studies on working memory that have identified task-

relevant activation in the frontal midline (Gevins et al., 1997; Jensen

and Tesche, 2002; Onton et al., 2005) and parietal-occipital regions

(Jensen et al., 2002; Sauseng et al., 2005) during working memory

tasks, we used EEG signals from the frontal (Fz, F1, and F2), parietal

(Pz, P1, and P2), and occipital (Oz, O1, and O2) regions to decode

the tACS phase-lag types in this study.

2.5 EEG decoding

To elucidate the changes in EEG features between different

phase-lag tACS conditions, we employed the EEGNet model,

frequently used in deep-learning-based EEG studies (Hong et al.,

2023; Kim et al., 2021; Zhu et al., 2021).We adapted the architecture

of this model (hereafter referred to as modified EEGNet; Figure 3)

to assess changes in the feature vectors of raw EEG data from the

pre- to post-tACS periods (Figure 4). In addition, we evaluated

decoding performance using feature vectors trained exclusively on

data from either the pre- or post-tACS period.

The EEGNet model utilized in this study comprises three

convolutional layers: a standard 2D convolution layer, a depth-

wise convolution layer, and a separable convolution layer. The first

convolution layer functions as a band-pass filter, the depth-wise

convolution layer serves as a frequency-specific spatial filter, and

the separable convolution layer aggregates temporal features. A

softmax layer is subsequently used for classification.

FIGURE 4

Flowchart of analysis procedures. After preprocessing the raw EEG

data, a 5-fold cross-validation was conducted. Decoding accuracies

were subsequently computed and compared across various

classification models. Finally, power spectral density (PSD) was

calculated to derive the model’s feature map.

The parameters of the EEGNet architecture (Figure 3) were set

as follows: C = 9 (number of channels); T = 64 (number of time

points for the pre-tACS period), T = 64 (number of time points

for the post-tACS period), or T = 128 (number of time points for

the entire epoch period); F1 = 8 (number of filters in the Conv2D

layer); D = 2 (number of spatial filters in DepthwiseConv2D); F2

= 16 (number of filters in the SeparableConv2D); N = 2 (number

of classes). For training the EEGNet model, we employed He

initialization to set the model’s weights and the Adam optimizer (α

= 0.001, decay parameters β1 = 0.9 and β2 = 0.999) to minimize

the binary cross-entropy loss function. The batch size and training

iterations (epochs) were set at 16 and 300, respectively.
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The EEG dataset was partitioned into training and test datasets

at a 4:1 ratio. The models underwent training over 300 epochs, with

parameter tuning conducted using a validation dataset through a 5-

fold cross-validation (Lemm et al., 2011) to obtain the performance

of out-of-sample classification; the model that performed best in

validation was subsequently chosen for final classification accuracy

verification on the test dataset. Decoding was conducted for each

cluster to identify the features that significantly influenced model

performance. Since the average computation time for EEGNet-

based decoding over 500 iterations was ∼0.67ms (SD: 0.12ms),

it appears feasible for implementation in a BMI-neuromodulation

closed-loop feedback system.

To ascertain which frequency-band and brain-region features

were most crucial for differentiating phase-lag stimulation

conditions, the model was trained on each individual feature.

The EEG data were decomposed into different frequency bands,

and their decoding performances were evaluated. Decoding was

executed after applying bandpass filtering for the theta (4–8Hz),

alpha (8–13Hz), beta (13–30Hz), and gamma (30–50Hz) bands

to assess changes in decoding performance relative to using

broadband (4–50Hz) signals. Given that tACS-mediated beta

activity exhibited a biphasic response, the beta band was further

segmented into lower (13–20Hz) and upper (20–30Hz) beta bands.

Due to the short epoch length (500ms), the delta band (below 4Hz)

was omitted from the analysis.

Decoding accuracies based on regions of interest were

further analyzed to determine which brain region contributed

most significantly to decoding performance. For this purpose,

decoding was conducted using bandpass-filtered (4–50Hz) EEG

data corresponding to each specified brain region: electrodes Fz,

F1, and F2 for the frontal region; electrodes Pz, P1, and P2

for the parietal region; and electrodes Oz, O1, and O2 for the

occipital region. Throughout this study, all channels refer to these

nine electrodes.

The first layer of the EEGNet trains the target frequency band

through convolution in the time domain. To identify the frequency

bands that most accurately represent the changes in EEG spectral

features between pre- and post-tACS periods, the EEG datasets

from these periods were convolved using a shared weight. The

power spectral density (PSD) was calculated to determine which

frequency band was predominantly activated in the trained layer.

To examine the model’s feature map, a feature map was generated

using the parietal EEG signals, which demonstrated the highest

feature importance in this study. This feature map was created

by calculating the PSD after the EEG signal passed through the

learned filter weights of the first convolutional layer. The PSD

of the filter was normalized to the maximum power value for

each participant, and the feature map was normalized to the

maximum power of a single trial after computing the PSD and

then averaged across trials. All analyses were conducted using

Python (Python Software Foundation, https://www.python.org)

with the scikit-learn (Pedregosa et al., 2011) and Pytorch (Paszke

et al., 2019) libraries. Decoding was performed individually for

each participant.

To evaluate the decoding performance of the proposed EEGNet

model against other classifiers, classification was conducted using

linear discriminant analysis (LDA), support vectormachine (SVM),

and random forest (RF) classifiers. Each model underwent training

with 5-fold cross-validation, and the best-performing model was

assessed using the test dataset. Each model’s training involved the

use of Welch’s power spectral density (Welch, 1967) to quantify the

change in PSD between the pre- and post-tACS periods.

2.6 Statistical analysis

Although the absence of a sham condition may raise concerns

about potential tACS vs. no-tACS confounds, both the 45◦

and 180◦ conditions involved active stimulation; thus, decoding

was performed strictly between two phase-lagged tACS states,

eliminating the possibility that results reflect general stimulation

effects. False discovery rate (FDR)-corrected paired-sample t-tests

were conducted to compare measures between the two phase-lag

tACS conditions, and one-sample t-tests were used to determine if

the decoding performance of the models significantly differed from

chance level. To statistically evaluate the variables that significantly

influenced decoding performance of the model, decoding was

conducted for each frequency band and brain region. The results

of each decoding process were compared with those of the model

decoded using all channels and broadband signals to ascertain any

statistical difference in performance. All analyses and statistical

procedures were executed using Python (Seabold and Perktold,

2010).

3 Results

3.1 Decoding performance across models

As shown in Figure 5, the modified EEGNet exhibited

significantly higher performance (80.55%) compared with other

machine learning methods. Specifically, EEGNet outperformed

random forest, which exhibited a decoding accuracy of 63.43%

FIGURE 5

Comparison of decoding accuracies across di�erent classifiers. The

error bars represent the standard errors of the mean. RF, random

forest; LDA, linear discriminant analysis; SVM, support vector

machine. Asterisks indicate statistical significance (***p < 0.001,

FDR-corrected).
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[t(20) = 4.42, p < 0.001, FDR-corrected], LDA with 59.44% [t(20) =

6.09, p < 0.001, FDR-corrected], and SVM which achieved 54.01%

[t(20) = 5.76, p < 0.001, FDR-corrected].

3.2 Decoding performance using pre- and
post-tACS EEG signals

The decoding accuracies using both pre- and post-tACS EEG

signals (80.55%) were significantly higher compared with using

only pre-tACS [53.48%; t(20) = 10.57, p < 0.001, FDR-corrected]

or only post-tACS EEG signals [51.91%; t(20) = 8.25, p < 0.001,

FDR-corrected; Figure 6]. However, the decoding accuracies using

only the pre-tACS EEG signals [t(20) = 1.70, n.s.] and the post-tACS

EEG signals [t(20) = 1.67, n.s.] were not significantly different from

chance level.

FIGURE 6

Modified EEGNet-based decoding accuracies using pre- and

post-tACS periods. The error bars represent the standard errors of

the mean. Asterisks indicate statistical significance (***p < 0.001,

FDR-corrected).

Consistently, as illustrated in Figure 7, the modified EEGNet

achieved significantly higher AUC scores (0.87) in the receiver

operating characteristic (ROC) curves compared with other

machine learning methods. Specifically, EEGNet outperformed RF

with an AUC of 0.68 [t(20) = 4.60, p < 0.001, FDR-corrected], LDA

with an AUC of 0.64 [t(20) = 5.29, p < 0.001, FDR-corrected], and

SVMwith an AUC of 0.58 [t(20) = 5.46, p < 0.001, FDR-corrected].

3.3 Decoding performance based on EEG
frequency bands

As shown in Figure 8, the decoding accuracy of the beta band

was the highest at 81.12%, which was not significantly different

from that of the broadband EEG signals at 80.55% [t(20) = −0.24,

n.s.]. In contrast, the accuracies of the theta [70.82%; t(20) =

FIGURE 8

Decoding accuracies based on EEG frequency bands. The error bars

represent standard errors of the mean. Asterisks indicate statistical

significance (*p < 0.05, **p < 0.01, ***p < 0.001, FDR-corrected).

FIGURE 7

Classification performance of the EEGNet model using both pre- and post-tACS EEG signals. (A) The area under the curve (AUC) scores in the

receiver operating characteristic (ROC) curves were obtained through 5-fold cross-validation using both pre- and post-tACS periods. Each curve

represents the ROC curve for each test dataset, with the corresponding AUC scores (mean ± standard errors of the mean) noted within the legend

[modified EEGNet in blue; random forest (RF) in green; LDA in pink; SVM in yellow]. The gray dotted line indicates the chance level. Error bands

indicate standard errors of the mean. (B) Confusion matrix of the EEGNet model classification results.
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FIGURE 9

Decoding accuracies based on brain regions. The error bars

represent standard errors of the mean. Asterisks indicate statistical

significance (**p < 0.01, ***p < 0.001, FDR-corrected).

3.71, p < 0.01, FDR-corrected], alpha [65.01%; t(20) = 5.66, p

< 0.001, FDR-corrected], and gamma [67.37%; t(20) = 3.41, p

< 0.01, FDR-corrected] bands were significantly lower compared

with the broadband. When comparing decoding accuracies across

individual frequency bands, the beta band demonstrated superior

decoding performance relative to the theta [t(20) = 2.73, p < 0.05,

FDR-corrected], alpha [t(20) = 5.54, p< 0.001, FDR-corrected], and

gamma bands [t(20) = 4.64, p < 0.001, FDR-corrected].

3.4 Decoding performance based on
regions of interest

The decoding accuracy based on the parietal channels was the

highest at 81.73%, which was not significantly different from that

of all channels at 80.55% [t(20) = 0.60, n.s.; Figure 9]. However, the

decoding accuracies of the frontal [71.16%, t(20) = 3.08, p < 0.01,

FDR-corrected] and occipital [65.62%, t(20) = 5.27, p< 0.001, FDR-

corrected] regions were significantly lower than those of the parietal

region. Similarly, the decoding accuracies of the frontal [t(20) =

3.70, p< 0.01, FDR-corrected] and occipital [t(20) = 5.77, p< 0.001,

FDR-corrected] regions were significantly lower than those using

all channels.

In particular, the trained filter exhibited a peak in the lower beta

band (Figure 10). In the feature map (Figure 11), the difference in

normalized PSD of the parietal region between the pre- and post-

tACS periods was consistently dominant in the lower beta band

[t(20) =−2.18, p < 0.05].

4 Discussion

In the present study, we performed decoding of task-based EEG

signals to determine whether two phase-lags of CFC-tACS could be

differentiated at the single-trial EEG level. Further analysis revealed

that the dominant features for decoding were associated with EEG

beta activity and parietal regional activation (Figures 8, 9). To assess

FIGURE 10

Grand average of normalized power spectral density (PSD) of filter

weight. The learned filter weights of the first convolutional layer of

the EEGNet model trained on broadband data were projected to the

frequency domain via fast Fourier transform. Note that the decisive

spectral features in the decoding model are detected in the lower

beta band. Error bands indicate standard errors of the mean.

the decoding performance of the modified EEGNet compared

with other classification models, we utilized conventional machine

learning techniques such as SVM or LDA. The modified EEGNet

demonstrated superior performance, particularly in decoding the

differences in spectral and spatial features between the pre- and

post-tACS EEG signals compared with using either pre- or post-

tACS EEG signals alone. Given that previous studies have indicated

that tACS during a working memory task influences not only EEG

power but also functional connectivity (Abellaneda-Pérez et al.,

2020; Kim et al., 2022), incorporating functional connectivity as

an additional tACS-mediated feature may enhance the decoding

performance of stimulation parameters in future studies.

Importantly, the study of the convolutional layer filter weights

in the EEGNet model revealed interpretable neurophysiological

correlates of phase-dependent tACS treatment, with EEG beta band

activity in the parietal region being the most discriminative feature

critically contributing to classification performance. The first layer

of EEGNet is a convolutional layer that trains a temporal filter

to identify which frequency bands exhibit differences (Lawhern

et al., 2018). To identify a common pattern in the trained

models, we calculated the PSD of the convolutional layer for each

participant and found that the dominant filter was formed in the

EEG beta band (Figure 10). Consistently, the feature map showed

pronounced differences between pre- and post-tACS in the lower

beta band (Figure 11F).

Several studies have highlighted two main roles of beta activity

in working memory function (Miller et al., 2018). One role involves

the inhibition and removal of information held in workingmemory

(Lundqvist et al., 2018; Schmidt et al., 2019), and the other pertains

to the maintenance of working memory (Gelastopoulos et al., 2019;

Kopell et al., 2011; Salazar et al., 2012). In cognitive tasks, the beta

band is instrumental in top-down processing (Richter et al., 2017),

including selective attention (Lee et al., 2013; Palacios-García et al.,
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FIGURE 11

Grand average of normalized power spectral density (PSD) of the feature map. The PSD of input raw EEG signals (A–C) and corresponding feature

maps (D–F) of the EEGNet model trained on broadband data were projected to the frequency domain via fast Fourier transform (at the parietal

region averaged across electrodes Pz, P1, and P2). The blue curves indicate the 45 phase-lag tACS, whereas the red ones indicate the 180 phase-lag

tACS. The notion “pre” indicates the pre-tACS period (A, D), and “post” indicates the post-tACS period (B, E). The notion “post–pre” indicates

post-tACS minus pre-tACS PSD of raw EEG or feature data (C, F). Error bands indicate standard errors of the mean. An asterisk indicates statistical

significance (*p < 0.05).

2021; Richter et al., 2017). In the context of working memory, top-

down modulation and selective attention are crucial mechanisms

for the encoding, maintenance, and retrieval of working memory

(Gazzaley and Nobre, 2012). Furthermore, beta oscillations in

working memory have been linked to the maintenance of the

current brain state and the (re)activation of currently task-relevant

contents (Engel and Fries, 2010; Spitzer and Haegens, 2017).

Collectively, these findings highlight the significant association of

beta activity with working memory function.

Moreover, EEG signals from the parietal region significantly

contributed to the decoding performance (Figure 9). Specifically,

parietal beta activity is known to be crucial for the maintenance

of working memory, while prefrontal beta activity is associated

with the inhibition of working memory (Deiber et al., 2007;

Gelastopoulos et al., 2019; Kopell et al., 2011; Lundqvist et al.,

2018; Miller et al., 2018; Salazar et al., 2012; Schmidt et al., 2019).

Given that our EEG data were collected during the maintenance

period of the working memory task, and the inhibition process in

the prefrontal region primarily occurs after retrieval, our findings

concerning parietal beta activity align with previous research.

Additionally, parietal lower beta activity, which demonstrated

significant differences in normalized PSD between the two phase-

lag stimulation conditions in the feature map, has been noted for

its potential role as a dynamic buffer in working memory that can

be modulated by top-down processing (Gelastopoulos et al., 2019).

This suggests that the modulation of top-down regulation, such

as selective attention or working memory, might be feasible by

manipulating the tACS phase difference across the CEN and DMN.

The present study demonstrated that EEGNet can

automatically identify robust task-relevant EEG features,

facilitating practical and ubiquitous EEG-based applications

for decoding types of neuromodulatory stimuli on state-of-the-art

platforms. As larger datasets are progressively accumulated

for observations dependent on neuromodulatory parameters,

our deep-learning approach could further uncover more

stable and generalizable features corresponding to various

neuromodulatory spectrums. This advancement could enable

the accurate classification and stratification of neuromodulatory

stimulation types, enhancing the precision and effectiveness of

neurostimulation therapies. Nonetheless, the current decoding

approach holds potential for further improvement in future

studies. A key limitation lies in the relatively small sample size,

which may have constrained the statistical power of our results.

Therefore, this limitation should be considered when interpreting

the findings. To address the challenge of limited EEG data, several

data augmentation strategies—such as generative adversarial

networks (Haradal et al., 2018; Ramponi et al., 2018) or random

transformations (e.g., rotation, jittering, scaling, and frequency

warping) (Freer and Yang, 2020)—may help generate sufficient data

volumes, facilitating the application of deep learning techniques.

In summary, the present study demonstrated the feasibility of

decoding a stimulation parameter using task-based EEG signals,
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indicating that task-relevant EEG signals can reflect the neural

signatures of specific brain stimulation types. Notably, this study

decoded the phase-lag type of stimulation, which is a more complex

parameter compared to stimulation intensity or frequency. In

future research, this approach could contribute to the development

of a dynamic closed-loop EEG-tACS system. For instance, based

on the decoding results of ongoing EEG signals, brain-stimulation

parameters could be updated in real-time to enhance human

cognitive functions. In this regard, the present study could pave

the way for innovative communication methods in an interactive

BMI/BCI-neuromodulation closed-loop platform.
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