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Brain signal decoders are increasingly being used in early clinical trials for

rehabilitation and assistive applications such as motor control and speech

decoding. As many Brain-Computer Interfaces (BCIs) need to be deployed in

battery-powered or implantable devices, signal decoding must be performed

using low-power circuits. This paper reviews existing hardware systems for BCIs,

with a focus on motor decoding, to better understand the factors influencing

the power and algorithmic performance of such systems. We propose metrics

to compare the energy e�ciency of a broad range of on-chip decoding

systems covering Electroencephalography (EEG), Electrocorticography (ECoG),

and Microelectrode Array (MEA) signals. Our analysis shows that achieving a

given classification rate requires an Input Data Rate (IDR) that can be empirically

estimated, a finding that is helpful for sizing newBCI systems. Counter-intuitively,

our findings show a negative correlation between the power consumption

per channel (PpC) and the Information Transfer Rate (ITR). This suggests that

increasing the number of channels can simultaneously reduce the PpC through

hardware sharing and increase the ITR by providing new input data. In fact,

for EEG and ECoG decoding circuits, the power consumption is dominated

by the complexity of signal processing. To better understand how to minimize

this power consumption, we review the optimizations used in state-of-the-art

decoding circuits.

KEYWORDS

brain-computer interfaces (BCIs), motor decoding, electroencephalography,

electrocorticography, microelectrode array, feature extraction, low-power circuits,

system-on-chip (SoC)

1 Introduction

Advances in decoding algorithms have now made it possible to extract information

from brain signals. Relevant information such as motor intentions (Chen et al., 2022;

Benabid et al., 2019; Chamanzar et al., 2017; Hammer et al., 2013; Spüler et al., 2014),

speech (Shaeri et al., 2024;Metzger et al., 2022; Herff et al., 2019), epileptic seizures (Guirgis

et al., 2013; Yoo et al., 2013) and Parkinson tremor state (Shin et al., 2022) can be detected.

The information can be used in closed-loop systems such as deep brain stimulation

applications for epileptic seizures (Fleming et al., 2023; Kavoosi et al., 2022; Shin et al., 2022;

Stanslaski et al., 2012; Sridhara et al., 2011; Chen et al., 2010), and essential tremor (Fraczek

et al., 2021; Opri et al., 2020). Some early medical products already exist for these

applications (Thenaisie et al., 2021; Jarosiewicz and Morrell, 2021).
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In addition, the extracted information can be used in

experimental brain-computer interface (BCI) applications such as

controlling an exoskeleton (Benabid et al., 2019) or generating

stimulation patterns for impaired patients after spinal cord

injury (Lorach et al., 2023; Younessi Heravi et al., 2023; Greiner

et al., 2021). The focus of this work is hardware systems for BCI

applications, as these have been less explored although they have

significant potential for addressing motor rehabilitation.

Methods for brain signal recording can range from fully-

invasive to non-invasive. microelectrode arrays (MEAs), implanted

directly into the brain tissue, offer a high spatial resolution as they

are able to capture single-neuron signals (Musk and Neuralink,

2019; Maynard et al., 1997) while electrocorticography (ECoG)

arrays, placed on the surface of the brain, measure signals averaged

over thousands of neurons with limited invasiveness (Matsushita

et al., 2018; Mestais et al., 2015). Non-invasive techniques can also

be used for brain signal acquisition. electroencephalography (EEG)

signals detect electric signals averaged over a larger number of

neurons than ECoG (Shokoueinejad et al., 2019) and can be used

for brain signal decoding (Wu et al., 2024; Chamanzar et al., 2017;

Wang et al., 2016; Sridhara et al., 2011).

Other non-invasive methods include magnetoencephalography

(MEG) and functional near-infrared spectroscopy (fNIRS). MEG

measures magnetic activity in neurons, using machines that

are physically large, hence not portable. The fNIRS method

is based on detecting changes in hemodynamic activity by

measuring variations in oxyhemoglobin and deoxyhemoglobin

concentrations. Although fNIRS devices have become more

portable, they do not meet the needs for real-time motor assistive

applications, as they have a response-time of a few seconds (Ortega-

Martinez et al., 2022), much slower than methods based on

electrical signals.

General purpose microprocessors have a power consumption

that is too high for battery-powered miniaturized medical

applications. There is thus a growing need for custom hardware

solutions that can decode brain signals using minimal power, while

also meeting other well-known metrics such as accuracy and low-

latency. The focus of this work is to analyze the state-of-the-art

dedicated hardware platforms for BCI and to compare them using

a set of metrics that we propose. The remainder of this paper

is organized as follows. In Section 2, we present the articles that

were included in this analysis. In Section 3, we propose metrics to

analyze the performance of decoding circuits, then we compare the

identified systems using thesemetrics. In Section 4, we highlight the

most innovative power optimization techniques used in the selected

circuits. In Section 5, we discuss the findings of our analysis and

conclude with Section 6.

2 Literature review of BCI decoding
circuits

2.1 Search methodology

We performed a review of the literature on hardware systems

for brain signal decoding and identified papers presenting hardware

systems that could be used for BCI motor decoding. The search

was performed using PubMed, Scopus, Web of Science, IEEE

Xplore and Google Scholar, and covered published work between

2010 and 2025, a period that witnessed a significant progress

in chip development for BCI applications. Search queries were

based on boolean combinations of BCI relevant keywords and

expressions such as “Brain-computer interface,” “Motor decoding,”

“Electroencephalography,"“Electrocorticography,” “Microelectrode

Array” with others related to hardware such as “Hardware,”

“Circuit,” “Chip,” “Low-power.” The queries were progressively

refined to focus the results, and the search constraints were

occasionally relaxed to explore a larger scope.

We mainly focused on circuits for BCI motor decoding,

excluding systems that are meant to be used exclusively for

neuromodulation or detection of epilepsy (Fleming et al., 2023; Tsai

et al., 2023; Chua et al., 2022; O’Leary et al., 2018; Bin Altaf et al.,

2015; Stanslaski et al., 2012) and tremor (Fraczek et al., 2021; Opri

et al., 2020). We also did not include systems that only perform

data acquisition (Lee et al., 2023; Reich et al., 2021; Lim et al., 2020;

Matsushita et al., 2018; Mestais et al., 2015) or compression (Jang

et al., 2023). In addition, although software approaches (Lorach

et al., 2023; Chen et al., 2022; Yao et al., 2022; Volkova et al.,

2019; Behrenbeck et al., 2019) are interesting for motor decoding,

they have been excluded from the study as our aim is to compare

BCI hardware systems. In general, circuits designed for steady-state

visually evoked potentials (SSVEP) decoding, such as Kartsch et al.

(2019) have not been considered in the scope of the current study.

Although we focused on motor decoding, some systems with

non-motor applications have been included. In fact, some emerging

circuit techniques have potential to be used for future BCI motor

applications. These exceptions are summarized as follows.

• The circuits presented in Sridhara et al. (2011) and Chen et al.

(2010) have only been tested for epileptic seizure detection

although they had been initially designed for general medical

applications that require on-chip signal processing.

• The system in Shaeri et al. (2024) decodes text characters

and is tested on auditory stimuli in mice. It was however

included as we believe the innovative approach consisting of

using an linear discriminant analysis (LDA) classifier with

the distinctive neural code (DNC) features could be used for

motor decoding.

• In Zhong et al. (2024), the authors describe a circuit that

uses SSVEP to control a drone. Although we did not include

circuits that exclusively decoded SSVEP, we consider this one

an exception, as the decoding was used for a 4-degree of

freedom (DoF) control and the chip is one of a few systems

that can perform online updates of the decoding model. Such

method could be generalized for BCI motor applications.

• The circuit in Malekzadeh-Arasteh et al. (2020) describes

an analog approach for feature extraction. Although it does

not actually perform decoding, we have included it due

its innovative approach. However, we only include it to

discuss the power consumption and the optimizations that

were applied. Similarly, the Neuralink circuit in Musk and

Neuralink (2019) was also included in the power comparison.

The systems in Liu et al. (2017) and Zhang et al. (2011)

also extract analog features and Liu et al. (2017) implements
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FIGURE 1

Reference model for a BCI Decoder showing a two-step decoding

using feature extraction.

a closed-loop neurostimulation. The main contributions of

these two papers will be highlighted in Section 4.3.1 discussing

emerging analog approaches.

2.2 State-of-the-art summary

The block diagram in Figure 1 shows the main steps that a

decoding system implements between the recorded brain signals

and the outputs sent to the effector. The decoder takes in N

channels, sampled at a given sampling rate (SR) with a resolution

of n bits and it outputs a classification as one of M classes

with a decision rate (DR). For some decoders, an intermediate

feature extraction step is applied before generating the outputs.

In such cases, the decoder model can be split into two sub-

modules: the feature extractor and the feature decoder. We

assume that the features F are extracted at the same rate as the

outputs (DR).

The reviewed works are listed in Table 1 where we show the

type of signal that is decoded, the number of channels N, the input

sampling rate (SR), the bit resolution n of the Analog to Digital

Converter (ADC), the type of features, the extraction method, the

number of features F, the type of task, the type of decoder, the

number of output classes M, the decision rate (DR), the accuracy,

the power consumption and the hardware implementation. When

input (channel or feature) selection is applied, we report the

number of selected inputs followed by the total number.

For the included circuits, the reported power consumption is

that of the whole system, which may perform feature extraction,

decoding or both. For the Neuralink circuit (Musk and Neuralink,

2019), we report the acquisition power consumption as it

dominates the overall power consumption. Note that, although

most of the papers describe systems that are implemented

on application-specific integrated circuits (ASICs) or field

programmable gate arrays (FPGAs), some are based on

microcontroller units (MCUs) and digital signal processors (DSPs).

For instance the approach described in Wang et al. (2019) uses a

general purposeMCU to run the decoding algorithm. Furthermore,

the system in Wang et al. (2016) is based on a DSP. For ASICs,

the choice of process technology node (in nm) will have a major

influence on the overall power consumption and fabrication

cost, which is why it was included in the table. Although the

implementation heterogeneity makes it difficult to establish a

completely fair comparison, our objective is to discern broad

power and performance trade-offs. To our knowledge, this is the

first literature analysis that introduces a set of quantitative metrics

to compare a broad range of hardware decoders for motor BCIs.

The system in Shin et al. (2022) has two use cases, one

where EEG signals are decoded for seizure and Parkinson disease

tremor detection and one where ECoG signals are decoded for

finger movement classification. Similarly, two configurations are

described in Musk and Neuralink (2019), with different numbers

of channels (1,536 and 3,072, respectively). The circuit in An et al.

(2022) will also appear twice in the next section’s graphs as in was

tested for two decoding tasks (1-D and 2-D movement). Although

the decoding system in Zhong et al. (2024) is tested for different

applications, we only focus on its use in motor imagery.

MEA systems sample at a higher rate in order to detect

spikes and they generally do not extract intermediate features,

but instead, typically decode temporal characteristics (e.g. firing

rate) of the spike train (Shaeri et al., 2024; Tanzarella et al., 2023).

However, the MEA decoder in An et al. (2022) extracts Spiking

band power (SBP) features, the average of a signal filtered in

the 300–1,000 Hz band. For ECoG and EEG, the most common

extracted features are energy bands (EBs) that measure the signal

energy at specific frequency ranges. Common frequency bands

for these signals include δ(0–4 Hz), θ(4–8 Hz), α(8–13 Hz),

β(13–30 Hz), and γ (30–100 Hz) bands (Tam et al., 2019). ECoG

signals can also have a high-γ (75–200 Hz) modulation during

movement and speech. One approach to extract time-frequency

components is to use a wavelet transform (Grossmann and Morlet,

1984). Another system (Agrawal et al., 2016) directly performs

a principal component analysis (PCA) on the raw signals, and

uses the obtained components as features for decoding. The

number and type of features plays a key role in determining

the decoding performance and energy consumption of the

overall system.

Many of the existing hardware decoders (mainly for EEG and

ECoG signals) presented in Table 1 are limited to two output

classes and the decision rate (the number of classifications per

second) is often below 5 Hz. Emerging motor control applications

require more classes to control a higher number of DoF, for

multi-dimensional movements.

Most of the systems use linear decoders, with many using

Bayesian models. The system in Wu et al. (2024) performs a

task-related component analysis (TRCA), which is an end-to-end

decoding method where the signals are matched with templates

tailored to the output classes. The circuit in An et al. (2022) uses

a Steady-State Kalman filter (SSKF) to decode a 1-D or 2-D motor

task. Decision trees are another approach for classification, which

was used by Shin et al. (2022). Some of the systems use neural

network approaches: Zhong et al. (2024), Ma et al. (2019), Boi et al.

(2016) and Chen et al. (2015) directly decode the raw input signals,

whereas, Agrawal et al. (2016) uses a multilayer perceptron (MLP)

to decode PCA-based extracted from ECoG signals.

It is important to note that all the systems, in Table 1,

that perform decoding, use a model that has been trained

offline. Two circuits (Wu et al., 2024; Boi et al., 2016)

are however able to update the model coefficients based on

error feedback.
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TABLE 1 Summary of state-of-the-art brain signal decoding hardware implementations.

Article Inputs Features Task Performance/hardware

# References Year Signal Ch. SR (Hz) Bits Type Method Nb. Type Decoder Classes DR (Hz) Accuracy Power
(mW)

Implementation

1 Zhong et al., 2024 2024 EEG 8/16 128 8 – – – Mixa CNN 2 0.5 Task relateda 0.0905 ASIC (65 nm)

2 Wu et al., 2024 2024 EEG 8 250 10 – – – Drone TRCA 12 2.5 85.17% 2.46 ASIC (130 nm)

3 Ma et al., 2019 2019 EEG 10/59 100 16 EB Filter 3 Motor CNN 3 1 80.5% 25 FPGA

4 Chamanzar et al.,

2017

2017 EEG 1/14 128 21 TFC CWT 1 Motor Bayesian 2 1 80.5%/68.0%b 47.3 FPGAb

5 Wang et al., 2016 2016 EEG 4 250 10 EB FFT 1/16 Eye state Bayesian 2 0.5 100% 34 DSP

6 Sridhara et al., 2011 2011 EEG 4 256 12 EB FFT 1 Seizure Threshold 2 2 – 0.00099 ASIC (130 nm)

7 Shin et al., 2022 2022 Mixc 64/256 2,000 10 Mixd Custom 64 Mixe DT 2/6 0.5–4 Task relatede 0.453 ASIC (65 nm)

8 Malekzadeh-Arasteh

et al., 2020

2020 ECoG 32 260 4 EB Analog 32 – – – – – 0.0346 ASIC (180 nm)

9 Wang et al., 2019 2019 ECoG 7/32 500 16 EB Filter 1/14 Motor Bayesian 2 1.33 87% 150 MCU

10 Agrawal et al., 2016 2016 ECoG 62 1,000 12 PC PCA 3 Motor MLP 6 2 82.4% 152 FPGA

11 Won et al., 2014 2014 ECoG 7/32 1,200 8 EB DCT 42 Motor Linear 2 3.33 82.9% 0.72 FPGA

12 Chen et al., 2010 2010 ECoG 16 256 9 Mixf Custom – Seizure KNN 2 10 98.2%/97.8%g 0.23 ASIC (90 nm)

13 Shaeri et al., 2024 2024 MEA 192/512 20,000 10 DNC Filter 128 Text LDA 31 1 91.3% 0.88 ASIC (65 nm)

14 An et al., 2022 2022 MEA 93 10,000 16 SBP Custom 93 Motor SSKF 2/4 20 100% 0.581 ASIC (180 nm)

15 Yoon et al., 2021h 2021 MEA 1,024 20,000 10 – – – Motor Threshold 7h 4.33h 85%h 24.7 ASIC (65 nm)

16 Musk and Neuralink,

2019i
2019 MEA 3,072 19,300 10 – – – – - – – – 750 ASIC

17 Boi et al., 2016 2016 MEA 15 25,000 16 – – – Motor SNN 4 4 70% 4j ASIC (180 nm)

18 Chen et al., 2015 2015 MEA 40/128 10,000 6 – – – Motor ANN 12 50 99.3% N/Ak ASIC (350 nm)

19 Rapoport et al., 2012 2012 MEA 32 31,250 8 – – – Motor Threshold 32 11.1 94% 0.537 FPGA

aThe circuit is tested for different applications including SSVEP, affect monitoring, and mental and motor imagery.
bSensitivity (true positive) vs. Selectivity (true negative). The design is extrapolated to 180 nm ASIC for power estimation.
cTested on EEG and iEEG epilepsy datasets for seizure detection, a µECoG array in vivo, and an ECoG finger movement dataset.
dThe circuit can extract energy band features, phase values and Hjorth parameters.
eEpilepsy seizure (95.6% sensitivity-96.8% selectivity), Parkinson tremor (82.6% sensitivity-78.4% selectivity) and finger movement (73.3% accuracy).
fTemporal-domain characteristics, Spatial cross-channel correlations, Frequency-domain spectrum features, Nonlinear chaotic values.
gSensitivity (true positive) vs. Specificity (true negative).
hNo number of decoded classes is reported, neither a decision rate. We assume 7 classes (five for a 2D movement and two for button clicks), which gives a decision rate of 4.3 Hz to explain the reported information transfer rate [480 bits/min Neuralink (2024)] if we

assume an accuracy of 85%.
iTwo configurations with 1,536 (resp. 3,072) electrodes sampled at 19,300 (resp. 18,600) Hz with a 550 (resp. 750) mW power consumption.
jThe reported power only takes into account the decoding step.
kThe authors report a power consumption of 0.4µW for the implemented layer, they do not include the acquisition nor the output combination cost.
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From Table 1, it can be seen that the algorithmic approaches

for brain signal decoding are highly heterogeneous, suggesting

there is not yet a consensus on the best approach. All systems

report accuracies that are typically over 80%, although the decoding

difficulty varies with the different tasks. The reader will note that

there is a huge variance in the reported power consumption, and

exploring the trends that impact power consumption is the focus of

the following sections.

3 Comparison metrics for BCI system
design and evaluation

In the literature on algorithms for brain signal decoding, the

primary metric of interest is usually the classification or decoding

accuracy. For real-time motor applications, it is also important that

the systems achieve a sufficiently high decision rate to meet the

latency requirements of the target application. In order to compare

different decoding systems, we consider the simplified reference

“decoder” model (Figure 1). We define the input data rate (IDR)

as the total input bits per second in Equation 1.

IDR[bits/s] = N × n[bits]× SR[Hz] (1)

Note, for circuits that perform channel selection, N is the

number of selected channels.

3.1 Analysis based on output classes per
second

Controlling a system with a large number of DoF requires a

decoder with more output classes, and of course, achieving high

accuracy with a large number of output classes is more difficult.

To capture both the task difficulty and the latency requirement,

we propose a metric called classes per second (CpS), defined in

Equation 2.

CpS[classes/s] = M[classes]× DR[Hz] (2)

In Figure 2, we present a scatter plot of the systems (log-log

scale), where the horizontal axis corresponds to the IDR and the

vertical axis corresponds to the output CpS. The shapes correspond

to the tested application, the numbers in the shapes refer to the

paper references in Table 1, and the colors correspond to the type

of signal being decoded.

Despite the systems being highly heterogeneous, we note an

increasing tendency for the decoded CpS as function of the IDR.

A least-squares fit trendline has been plotted. The regression yields

a strong positive correlation (R-value = 0.849 for a Spearman’s test

with a p-value of 0.000002). The equation for the trendline is given

in Equation 3. This trend may be useful to designers of BCI motor

systems to estimate the required IDR for decoding a given number

of CpS.

CpS = 0.097× IDR0.38 (3)

FIGURE 2

Output classes per second as a function of the input data rate

(bits/s). The numbers represent the references numbers in Table 1.

The circuits presented in Chen et al. (2015) and Rapoport et al.

(2012) are outliers, achieving a high CpS value as they are able to

decode a high number of classes (12 and 32) at a high DR (11.1 and

50 Hz) using highly parallel compute operations.

3.2 Information transfer rate to measure a
decoding performance

The information transfer rate (ITR), described in Pierce (1980),

is a metric frequently used in BCI systems to describe the amount

of information being extracted, taking into account the number of

classesM, the interval between decisions 1/DR (the maximum time

to produce one new classification for real-time applications), and

the achieved accuracy P. The formula for computing ITR is shown

in Equation 4.

ITR[bits/min]

= 60× DR×

(

log2 M + P log2 P + (1− P) log2

(

1− P

M − 1

))

(4)

Our hypothesis is that systems are not significantly

differentiated by accuracy, but that accuracy is mainly a

requirement for the system usability. This suggests that, once

the accuracy requirement is met for a given task, a high ITR

reflects a high DR and number of classes M, thus a high CpS.

In Figure 3, we present a scatter plot of ITR vs. CpS. It clearly

shows that the two metrics are highly correlated (R-value = 0.97

for a Spearman’s test with a p-value of 10−11), showing that

accuracy has a marginal influence on the ITR of the systems

included in this study. In the remainder of this paper, we will

consider the ITR as a metric that reflects the CpS value to compare

performance, while validating a sufficient level of accuracy that

makes a system usable.

3.3 Analysis of circuit power consumption

The CpS and the ITR metrics depend on the rate at which

information is output, but they do not provide insight into
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FIGURE 3

Scatter plot of the ITR (bits/min) as a function of the CpS (classes/s).

FIGURE 4

Power consumption (mW) as a function of the IDR (bits/s).

Non-motor decoding circuits are grouped together (gray), and

motor decoding circuits are grouped according to the signal type:

green for EEG, red for ECoG, and blue for MEA.

the computational complexity required to perform the decoding.

Given the diversity of decoding approaches, both in terms of the

algorithms and the numeric formats, it is difficult to analytically

determine the computational cost of an algorithm, for example

by counting the number of arithmetic operations. The power

consumption of a decoding circuit thus provides an indirect

measurement of the computational cost of the decoding technique.

3.3.1 Power vs. IDR
A scatter plot of the power consumption (inmW) of the circuits

vs. the IDR is shown in Figure 4. The plot shows that non-motor

applications (epileptic seizure and Parkinson disease (PD) tremor)

using EEG and ECoG signals (gray box) consume less power than

those decoding motor intentions. This may be due to the smaller

number of features, which require fewer compute operations. For

example, only the β-band is extracted in Sridhara et al. (2011) and

only the high-γ band in Malekzadeh-Arasteh et al. (2020).

For motor decoding, the circuits can be separated into three

groups according to the type of signal. For EEG (green box) and

ECoG (red box), the power consumption does not show a strong

correlation with the IDR. It implies that the power consumption is

determined by the type of processing, including feature extraction,

rather than the amount of input data. It is interesting to note

that the reported power consumption of the EEG and ECoG

decoding circuits is quite similar, while the ECoG circuits decode

a much higher IDR. This might be explained by the fact that EEG

signals are averaged over a larger number of neurons than ECoG

signals (Shokoueinejad et al., 2019), thus requiringmore processing

to extract relevant information.

In MEA systems, the IDR is significantly higher due to a

higher sampling rate (SR). The plot also shows that the power

consumption scales with the IDR for these systems. As MEA

systems are often based on spike detection and sorting (Zhang and

Constandinou, 2023; Yoon et al., 2021; Toosi et al., 2021; Rapoport

et al., 2012), the main variable is the number of inputs or the

sampling rate, which determines the IDR. This power dependency

could also be due to the MEA signals requiring less computation

than ECoG and EEG, which means that the majority of the power

is used for data acquisition or transmission, parameters that directly

scale with the IDR. As the field evolves, and new circuits appear, it

will be seen if this trend continues.

3.3.2 Power per channel vs. ITR
The ITR characterizes the amount of useful information output

by the system, considering the DR, number of output classes M,

and the decoding accuracy P. As discussed in Section 3.2, the

ITR primarily reflects the classification rate, as the accuracy of

the studied circuits does not vary significantly. The computational

cost of an algorithm can be indirectly measured by the overall

power consumption. However, the power also depends on the

number of channels, especially for systems using MEAs. To better

understand the scaling of the power consumption, we consider

a normalized metric, the power per channel (PpC), to take into

account this effect. For embedded applications, the aim is to

minimize the circuit power consumption, hence the PpC, given a

fixed number of electrodes required to extract the necessary spatial

information.

Figure 5 shows a scatter plot of the PpC vs. the ITR. The best

performing circuits are toward the bottom right side of the plot,

meaning they provide the most information while using the least

power per electrode. In this plot, we note that the circuits in the

bottom right region use MEAs. There is no clear difference in

the performance between ECoG and EEG systems and the PpC

is comparable for both types of signals. In fact, for such systems,

the performance depends more on the decoding approach than the

signal type. For instance, the circuits that exclusively extract energy

band (EB) features (Wang et al., 2019; Ma et al., 2019; Chamanzar

et al., 2017; Wang et al., 2016) have a lower performance than those

extracting a wider range of features (Shin et al., 2022; Chen et al.,

2010), or directly decoding raw signals (Zhong et al., 2024; Wu

et al., 2024).

We plot the trendline obtained using a least-squares fit on these

circuit metrics. A Spearman’s test shows a negative correlation (R-

value = –0.602 with a p-value of 0.008) between the ITR and the

PpC metric. A way to look at this, is by considering a system that

doubles the number of electrodes to increase its ITR. If the power

consumption also doubles, the system will only move horizontally

on this plot. Whereas, we see that in actual systems, when the

ITR doubles, the PpC tends to decrease. One explanation for this

trend is that there is always some fixed system energy cost that
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FIGURE 5

PpC (mW) as a function of the ITR (bits/min).

does not scale with the number of electrodes and hence, as the

number of channels increases, this fixed cost is amortized, resulting

in a lower PpC. This suggests that systems with a large number

of channels can simultaneously benefit from hardware sharing

and a large amount of input data, which can enable decoding

more classes or potentially improving accuracy. Furthermore, for a

fixed number of input electrodes, the best performance is achieved

by circuits that extract the most useful information (ITR) with

minimal computational cost (PpC). The system (Zhong et al., 2024)

is an outlier as the authors’ main objective is to reduce the power

consumption without necessarily improving the ITR. This plot

provides a high-level method to compare BCI decoding circuits,

where the best performance is in the lower, right region.

4 Power optimizations for BCI circuits

In this section, we present key power optimizations that have

been used in the state-of-the-art brain decoding circuits. These

can be grouped into three main categories: (i) input selection and

reduction, (ii) compute, and (iii) circuit-level optimizations. We

focus on optimizations that reduce the number of operations or

their power consumption.

4.1 Input selection and reduction

Many hardware decoders rely on offline calculations and

optimizations to simplify the compute required for online

decoding. This offline processing is often used to reduce the amount

of data that must be processed for inference. The simplifications are

applied to either the raw signals or the extracted features.

4.1.1 Electrode selection
A highly effective technique to reduce power consumption is to

only collect data from electrodes that provide useful information

for the current decoding task. The circuit in Shin et al. (2022), uses

a 256-electrode grid to decode stimulation patterns. In the training

mode, four modules are used to convert the signals to a digital

format so they can all be used by an offline training algorithm.

This algorithm determines the probabilistic weights of a decision

FIGURE 6

Block diagram of a switch matrix for channel selection.

tree (DT) decoder, and a subset with the 64 best electrodes (selected

using a 16 × 16 switch matrix) to be used when performing each

step of the online classification. With this approach, the circuit

benefits from the potential information from a large number of

electrodes, while limiting the power required for signal acquisition

and decoding, as three of the four modules are powered-off.

Similarly, the MiBMI circuit (Shaeri et al., 2024) and the Neuralink

chip (Yoon et al., 2021) both include a switchmatrix to dynamically

select input channels for decoding. The diagram in Figure 6 shows

an acquisition system for which a selection algorithm dynamically

selects a subset of electrodes for inference.

Electrode selection has also been studied for online training

of BCI algorithms. A penalized method is introduced in Moly

et al. (2023) to obtain sparse decoding models when using a

Recursive Exponentially Weighted N-way Partial Least Squares

algorithm for training. The algorithm is based on a PARAFAC

tensor decomposition (Harshman and Lundy, 1994) where the

objective function to minimize is the quadratic error between the

labels and predictions. With this penalized method, an additional

cost term, proportional to the number of electrodes, is added to

the objective function. By applying this penalization, a model with

75% sparsity was obtained, meaning that only one out of every

four electrodes was required. The sparse model achieved a cosine

similarity close to that of the original model, thus reducing compute

time andmemory consumption with no significant loss in accuracy.

Other techniques can be used for electrode selection. The

authors in Wang et al. (2019) select a subset of the available

electrodes that maximizes the contrast between the classified states.

By applying this technique, they were able to empirically select the

seven best channels out of the 32 available to be used for decoding.

Other criteria can be used for channel selection. For instance, the

Fisher criterion was used in Won et al. (2014) to determine the

top seven channels to be used for decoding. The authors in Zhong

et al. (2024) and Chamanzar et al. (2017) select the best channels

as the ones achieving the highest decoding accuracy for a specific

task. Finally, the selection can also be based on previous works that

have determined spatial localization of task-related brain signals,

such as was done in Ma et al. (2019). More precisely, in Zhong et al.

(2024), only eight electrodes are selected to be placed at specific

positions on a head-strap to support a variety of mental tasks. Then,
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FIGURE 7

Block diagram of a feature extraction block supporting selection

and reduction.

a subset of these electrodes is used for each task, which minimizes

the amount of input data to process, hence the power consumption.

Although less common, it is possible to combine inputs from

different electrodes such as the approach in Boi et al. (2016) where

data from 15 different channels is merged to create a combined

spike train. This optimization makes it possible to use a reduced

number of synapses per neuron in the downstream spiking neural

network (SNN) decoder.

4.1.2 Feature reduction and selection
Input selection is not limited to the raw input signals, but can

also be applied for the extracted features. When we refer to feature

selection, it means that certain features that were initially identified,

are completely eliminated. When feature selection is applied, there

is a double benefit: the eliminated features no longer need to be

computed, which reduces energy, and the size of the downstream

decoder is reduced. Feature reduction consists of combining the

computed features into a reduced intermediate representation that

is used by the decoder. However, the energy savings are limited

to the decoder level as all the features are computed and then

combined. Both techniques are common in the BCI literature, and

they can be combined with electrode selection techniques. Figure 7

shows a diagram of a general circuit that uses a feature selection

module to extract features adapted to a given task. The dynamically

chosen features are then combined (projected in a latent space)

using a feature reduction block.

The authors in Wang et al. (2019) perform feature reduction

using a class-wise PCA (retaining 92% of variance per class) to

extract linear combinations of two selected EBs (one is in the α and

β bands, the other in the high-γ band). These linear combinations

are then reduced to a single value using linear discriminant analysis

(LDA), and this value is fed to a Bayesian decoder for ECoG motor

(grasp) decoding. In earlier work, the same authors (Wang et al.,

2016) also implemented a similar approach on a DSP, however, the

PCA was done across all the data, using a higher threshold (99.7%)

for the retained variance.

The epileptic seizure detection system-on-chip (SoC) in Chen

et al. (2010) has a hardware module to extract multiple types of

features, followed by a dimension reduction unit that combines

the extracted features for inference. The reduction unit is

programmable and could implement a PCA that has been

computed offline. The feature reduction step contributes to the

low-power implementation, and enables the classification using a

micro-processor.

In Chamanzar et al. (2017), a different approach is used based

on an adaptive wavelet transform (WT). The key idea is to generate,

during the training phase, a special template that identifies the onset

of movement intent. For each of the two classes, the fast Fourier

transform (FFT) of the input signal is calculated. Using the Fisher

Discriminant Ratio, they identify a small set of frequency bands

that best discriminate between the classes. The inverse fast Fourier

transform (iFFT) of these selected frequency bands is computed,

thus providing a template which is used for detection. Using this

approach for designing a custom filter, requires less power than

extracting each of the required frequency components, which is

an interesting approach for feature selection. The Fisher criterion is

also used in Won et al. (2014) to select the six best frequency bands

for a decoder using a discrete cosine transform (DCT) to extract EB

features.

Another adaptive method is applied in Malekzadeh-Arasteh

et al. (2020) where the circuit extracts power envelopes in the

gamma band using band-pass filters. Since the specific frequency

range varies between individuals, a dual-mode architecture is

proposed with two operating regimes: full-band (FB) and base-

band (BB) modes. In the FB mode, the circuit captures the raw

brain signals in the analog front-end layer with high resolution (8–

10 bits sampled at 13 KHz), and the digital back-end uses these

signals to compute patient specific weights, for filters in the neural

pre-processing unit. For inference, the system operates in the BB

mode with lower ADC resolution (3–4 bits sampled at 260 Hz). In

this mode, power-band features are extracted using the previously

calibrated filters.

In addition to reducing the number of features, off-chip

processing can help in selecting the set of extracted features

when the circuit offers a configurable feature extraction engine.

As the circuit in Shin et al. (2022) is meant to be used for

different applications, a set of varied features is extracted from

the selected electrodes. These consist of: line length (LL), local

motor potential (LMP), high-frequency oscillations (HFO), Hjorth

parameters [activity (ACT), mobility (MOB) and complexity

(COM)], phase amplitude coupling (PAC), phase locking value

(PLV) and energy band (EB) extracted using band-pass filters. The

authors reduce power using an energy-aware objective function

for training that minimizes cross-entropy while also penalizing the

use of features requiring a high power consumption. This method

reduces power by 64% while resulting in less than a 2% loss in

decoding accuracy.

The circuit in Shaeri et al. (2024) extracts distinctive neural code

(DNC) features to decode handwritten characters. These features

correspond to spike rates at different time windows measured

from different electrodes. An offline algorithm selects the 64 DNCs

that best distinguish a given class, and these are fed into a LDA

decoder for classification. Feature selection reduces the number of

operations by a factor of 320× and the memory size by 7.8×.

All the feature selection and reduction methods aim to take

into account an optimized set of features (often determined offline)
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that reduces the required compute power for inference. The

optimizations can be combined with other methods to further

reduce the power consumption of BCI systems.

4.2 Compute optimization

As seen above, reducing the number of electrodes and the

number of features directly reduces the number of compute

operations, thus overall power. However, the power also depends

on the way these operations are implemented in hardware.

We review some techniques that have been used to efficiently

implement specific compute operations.

4.2.1 Approximate compute operations
Another approach to reduce power consumption is to

reduce the precision of the decoding computations, often using

approximate computing techniques. For example, to implement

the feature extraction methods efficiently in hardware, the authors

in Shin et al. (2022) approximate the theoretical definitions for

the features, with simplified equations. For example, the L2-norm

is replaced by L1 when computing the Hjorth parameters (HPs),

and the phase is computed using a linear arctangent approximation

with a lookup table (LUT) error correction. These simplifications

yield features similar to the theoretical ones computed in Matlab

(with a median correlation above 0.9) but at a lower compute

cost. Similarly, the authors in Rapoport et al. (2012) use a low-

power spike pattern matching based on a logical AND comparison

between the spike counts instead of a costly multiplication.

The circuit in Agrawal et al. (2016) implements a simplified

PCA algorithm, described in Chen et al. (2008), which uses

only adders and multipliers. The norm and division operators

are simplified to additions and multiplications using fixed-point

arithmetic. In addition, a log-sigmoid activation function is

implemented using a LUT, taking input values between –5 and 5

expressed as 9-bit values.

Moving from floating-point to fixed-point arithmetic is

common in low-power decoding circuits (Shin et al., 2022; An et al.,

2022; Ma et al., 2019; Sridhara et al., 2011). The circuit in Won

et al. (2014) achieves a 82.9% (resp. 75.7%) accuracy when using

fixed-point (resp. floating point) operations. The authors suggest

that, in some cases, the quantization for fixed-point arithmetic

can remove random ECoG noise, thus yielding a better decoding

accuracy. In addition to using fixed-point arithmetic, the chip

in Yoon et al. (2021) supports custom precision to save power. They

report a “99.7% match” compared to the original approach with

floating-point arithmetic.

More system-level approximations can be applied to further

reduce the power consumption. For example, the circuit in Zhong

et al. (2024) implements a teacher-student convolutional neural

network (CNN) approach for decoding. It consists of two CNNs

with different architectures: the teacher, a large model with high

power consumption and high decoding accuracy, and the student,

a smaller model that consumes 70% less energy, but achieves a

14% lower accuracy. During the decoding process, only the student

model is turned on when the same state is decoded. The system

switches between both models only when a state transition is

detected with a low confidence level. This level is defined according

to a confusion matrix between the decoders’ outputs. The hybrid

architecture reduces the overall energy consumption by 55%. The

system also takes advantage of the EEG signal sparsity for further

power reduction.

4.2.2 Merging operations
Another technique to reduce the number of compute

operations is to merge multiple operations in the decoding

equations. In other words, certain steps can be reordered or

combined before being implemented in hardware.

An interesting combination method is described in Wu et al.

(2024) where steady-state visually evoked potentials (SSVEP)

are decoded using a task-related component analysis (TRCA)

algorithm. The processing combines three main steps: pre-

processing using a temporal filter, feature extraction with spatial

filtering, and pattern recognition with a SSVEP template signal. The

steps are mapped into a single matrix for fast computation. In this

paper, the decoder’s updates are directly applied to the combined

matrix, based on a feedback signal.

In Won et al. (2014) a DCT is applied to extract the signal

energy at given frequencies. The DCT of a signal {xn, n ∈ J0,N −

1K} is defined by Equation 5.

Xm =

N−1
∑

n=0

xn cos

[

mπ

N

(

n+
1

2

)]

(5)

Where m is a scaling parameter fixing a frequency and N the

length of the input signal. To reduce the number of multiplications,

the authors propose a reduced-resolution quantization of the cosine

function in Equation 5. In fact, by using 11 levels of quantization

(≤4 bits), the system only requires 11 multiplications to compute

the DCT, regardless of the size of the input signal. More precisely,

the input signal samples are divided (using a LUT based on

their indexes) into 11 sets and the elements of each set are

summed before multiplying with the corresponding quantized

cosine coefficient. This technique can be more generally applied

to any large sum of products, assuming one of the factors can be

coarsely quantized.

4.3 Circuit-level optimizations

In addition to input and compute optimizations, some circuits

propose circuit-level improvements. These can include analog

implementations of the compute operations or other custom low-

power circuit techniques.

4.3.1 Analog approaches
In BCI systems, input signals are analog. While digital circuits

offer greater flexibility and ease of design than their analog

counterparts, they require multi-channel, low noise ADCs at a

sampling rate ranging from a few hundreds to a few thousands
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of Hz to provide the digitized input data. This section examines

power-saving optimizations enabled by analog integrated circuits,

focusing on two types: analog feature extraction and analog-based

accelerators for brain signal decoding.

A typical processing task is energy extraction over one or

several frequency bands. Performing this function in the analog

domain reduces the amount of information that is sent to

the decoding stage, and hence reduces the power consumption.

For instance, in Malekzadeh-Arasteh et al. (2020), the authors

propose a low-power Base Band mode, which consists of a single

tunable analog band-pass Gm-C filter followed by a multiplier

and a low-pass filter to capture, for each channel, gamma-band

power envelopes which are then digitized. This low-power mode

only consumes 1.05 µW/ch including 0.205 µW/ch for feature

extraction. Another example is a bidirectional BCI (Liu et al.,

2017) that features an analog per-band energy estimator and a

programmable Proportional—Integral—Derivative (PID) control

block providing feedback through a stimulator. The features are

extracted by a programmable band-pass Gm-C filter bank, and

then digitized at a low sampling rate. With this analog approach,

the feature extraction only consumes 56 µW/ch. In Zhang et al.

(2011), the authors use four 4th order switched capacitor filters,

multipliers and integrators to extract the signal energy over four

frequency bands. This energy extraction consumes 3.1 µW/ch,

and 10.8 µW/ch when accounting for bias, clocks and amplifiers.

In Lim et al. (2020), Spiking band power (SBP) is extracted

from a neural signal sensed by an intracortical microelectrode

and rectified in the analog domain. The signal goes through

an integrate-and-fire circuit that controls a near infrared LED,

thus transmitting the energy information as a blinking rate. This

purely analog approach only consumes 0.74 µW/ch for SBP

detection and enables downstream accurate finger position and

velocity decoding.

Analog approaches can also be used in accelerators for brain

signal decoding to achieve higher computing power efficiency.

In Chen et al. (2015), the authors propose an analog decoder that

consists of a dense neural network with a single hidden layer.

Neurons in this layer are implemented using current-controlled

oscillators. Operating in the sub-threshold region, the oscillator

matrix consumes 0.4 µW.

Looking forward, neuromorphic architectures aim to replicate

the behavior of biological synapses and neurons on silicon,

achieving power-efficient sparse computations. This approach is

particularly well suited for BCI applications, where the goal

is to process and adapt to actual brain signals. In Wu et al.

(2024), an analog decoding accelerator is implemented using a

memristor array to perform the matrix-vector multiplications

of the TRCA algorithm. The circuit is used to perform a 12-

class decoding task while consuming 2.46 mW. The system can

be incrementally updated by integrating feedback responses in

a closed-loop system to maintain performance over time. The

authors in Boi et al. (2016) propose an end-to-end neuromorphic

decoder that takes spikes as input and decodes four classes. It

can be trained online using spike-timing-dependent plasticity and

the local Hebbian update rule, consuming about 4 mW in their

experiments. The last two circuits serve as proof of concept for

neuromorphic architectures, paving the way for future adaptive

low-power BCIs.

4.3.2 Other power optimizations
Circuit optimizations can also involve custom blocks with

specific properties. For example, a custom static random access

memory (SRAM) in Sridhara et al. (2011) using a sub-threshold

6T design is used with the decoder. It provides an ultra-low power

retention mode during which it has a leakage power of only

28 fW/bit. This circuit also focuses on improving the efficiency

of the power delivery system (DC/DC converter). The MiBMI

circuit’s (Shaeri et al., 2024) power consumption is reduced by

an additional factor of 12.9× through memory sharing by using

variable size memory blocks across inputs and classes. Clearly,

such methods can be combined with the compute and algorithmic

techniques from the previous sections.

4.4 Optimization summary

We have analyzed all of the studied circuits to identify which

of the different power optimization techniques were employed and

the result is summarized in Table 2, where for each of the circuits

used for brain signal decoding, we list the applied optimizations.

The summary shows that the most common optimization

techniques used in BCI circuits are those based on input selection,

feature selection and reduction, and compute approximation. The

input selection and reduction methods often consist of using an

offline algorithm to only select inputs that are relevant. Compute

approximations, such as quantization of the numeric values and the

use of simplified functions, are also widely used. Fewer works have

employed circuit optimization techniques as these require access to

a custom silicon design flow.

5 Discussion

This study presents insights into the performance of BCI

decoding circuits. The introduced metrics give empirical rules

for circuit design for brain signal decoders. In addition to this,

different optimization techniques can be combined to reduce

power consumption while maximizing the extraction of useful

information for decoding.

The CpS metric was shown to be correlated to the IDR, and

we provided the coefficients of a trendline (Equation 3). For a

given application, the required DR and the number of classes are

known, thus the CpS can be easily calculated. The required IDR

can be estimated using our trendline, and can be used to ensure the

number of electrodes, the SR and ADC accuracy of the acquisition

system are sufficient. Of course, there are limitations for each

parameter that must be respected: for example there is no value

in increasing the SR beyond the intrinsic frequency of the input

signals.

In addition, we showed that the overall power consumption

does not appear to scale with the IDR for EEG and ECoG

systems. This suggests there is a potential for system power

reduction, through the optimization of the compute operations

for the decoding algorithms. For MEA systems, as the main

power consumption is associated with the signal acquisition, this

is where optimizations are most effective. Furthermore, for all

systems, techniques such as quantization, grouping of operations
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TABLE 2 Summary of BCI circuit state-of-the-art summarizing the applied optimizations.

Article Input selection/reduction Compute optimization Circuit-level

References Year Signal Channel Feature Approximation Merging Analog Custom

Zhong et al., 2024 2024 EEG X X

Wu et al., 2024 2024 EEG X X

Ma et al., 2019 2019 EEG X X

Chamanzar et al., 2017 2017 EEG X X

Wang et al., 2016 2016 EEG X

Sridhara et al., 2011 2011 EEG X X

Shin et al., 2022 2022 Mix X X X

Malekzadeh-Arasteh et al., 2020 2020 ECoG X X

Wang et al., 2019 2019 ECoG X X

Agrawal et al., 2016 2016 ECoG X

Won et al., 2014 2014 ECoG X X X X

Chen et al., 2010 2010 ECoG X

Shaeri et al., 2024 2024 MEA X X X

An et al., 2022 2022 MEA X

Yoon et al., 2021 2021 MEA X X

Boi et al., 2016 2016 MEA X X

Chen et al., 2015 2015 MEA X

Rapoport et al., 2012 2012 MEA X

and analog computing have been shown to be useful in reducing

power consumption.

The study summarized input selection methods that can save

power by either processing less data or by extracting fewer features.

The selection process can be done offline using objective functions

that penalize costly features (Shin et al., 2022) or the number of

electrodes during model training (Moly et al., 2023). Combining a

channel-penalizing algorithmwith hardware that can power-off the

circuitry associated with unused electrodes (Shin et al., 2022; Yoon

et al., 2021) is an effective power-saving technique.

State-of-the-art brain signal decoders often focus primarily on

improving the decoding performance. The ITR, which depends

on the accuracy, the number of classes (task difficulty) and the

DR, is also a widely adopted performance metric for real-time

applications. Our work shows that the ITR is mainly dominated by

the DR and the number of classes, which define the CpS metric,

and that the accuracy is rather a requirement than a differentiating

metric when comparing BCI decoders. We also demonstrate that it

is possible to improve the ITR while reducing the PpC.

This is possible through hardware sharing (e.g. using a switch

matrix) when using more channels, and through improving

the efficiency of the decoder using techniques such as those

discussed in Section 4. Furthermore, using feature selection and

feature reduction, the computation load can be reduced while also

improving accuracy, as the representation in the latent space can

be easier to classify. By plotting different BCI circuits in this two-

dimensional space (Figure 5), it is possible to compare both their

power efficiency and decoding capability.

Our analysis of existing circuits suggests that circuits that

extract a wider range of features (Shin et al., 2022; Chen et al.,

2010) perform better (higher ITR and lower PpC) than circuits

exclusively relying on EB features such as Ma et al. (2019), Wang

et al. (2016); Sridhara et al. (2011), Wang et al. (2019), and Won

et al. (2014). In fact, there is a limit to the amount of information

available in EB features. Extracting a wider range of features can

require higher power consumption if no optimizations are applied.

It is hence important to select the relevant subset of features by

either using offline selection methods or by dynamically adapting

the extracted feature set to the decoding task. Furthermore, using

compute approximations when extracting features (Shin et al.,

2022; Agrawal et al., 2016; An et al., 2022; Ma et al., 2019; Sridhara

et al., 2011; Won et al., 2014) can also reduce the processing power

consumption by reducing the power cost per extracted feature.

6 Conclusion

In this paper, we have reviewed a broad range of recent

BCI circuits and compared them using quantitative metrics.

This analysis can help identify which type of brain signals are

appropriate for an application, as well as establishing an estimate

of the IDR, for a given CpS. Our graphs show that MEA systems

achieve higher CpS than either ECoG or EEG. Our findings also

suggest that reducing the power consumption does not necessarily

mean decreasing the BCI decoding performance, measured with

metrics such as the ITR. In fact, we observed that in existing
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circuits, there is a negative correlation between the PpC and the

ITR. This suggests that there remain significant opportunities to

simultaneously optimize both performance metrics.

Based on our review, we have identified and summarized

the techniques that BCI decoders employ to reduce power

consumption. The key to reduced power consumption is to process

the minimum amount of data, which requires input selection and

reduction, quantization of data and low-cost arithmetic operations.

In addition to reducing power consumption, careful feature

selection, both by type of feature and the use of lower dimensional

representations, can also reduce power while preserving a high

decoding performance. It is interesting to note that no single system

employs all the known power reduction techniques, which also

suggests there remain opportunities for further improvements.

Although our study is limited to BCI circuits that were

designed for motor decoding, or which have the potential to

be used for such applications, the methodology and metrics

could be extended to brain signal decoders for other applications

(e.g. seizure detection, speech). The framework of metrics that

we have presented facilitates performance comparisons, and

we expect that future systems will exceed the performance

of the current ones that were studied, allowing portable

BCIs to be used in rehabilitation and assistive applications.

It is our hope that this broad review and analysis of the

techniques used in BCI decoding circuits will help designers of

future systems.
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