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Jaap de Ruyter van Steveninck2, Sandra Bedrossian4,
Joost Heutink1,5, Gera A. de Haan1,5, Frans W. Cornelissen3 and
Marcel van Gerven2

1Department of Research and Improvement of Care, Royal Dutch Visio, Huizen, Netherlands,
2Department of Machine Learning and Neural Computing, Donders Institute for Brain, Cognition and
Behaviour, Radboud University, Nijmegen, Netherlands, 3Laboratory for Experimental Ophthalmology,
University Medical Center Groningen, University of Groningen, Groningen, Netherlands, 4Faculty of
Science and Engineering, University of Groningen, Groningen, Netherlands, 5Department of Clinical
and Developmental Neuropsychology, University of Groningen, Groningen, Netherlands

Prosthetic vision systems aim to restore functional sight for visually impaired
individuals by replicating visual perception by inducing phosphenes through
electrical stimulation in the visual cortex, yet there remain challenges in
visual representation strategies such as including gaze information and task-
dependent optimization. In this paper, we introduce Point-SPV, an end-to-
end deep learning model designed to enhance object recognition in simulated
prosthetic vision. Point-SPV takes an initial step toward gaze-based optimization
by simulating viewing points, representing potential gaze locations, and training
the model on patches surrounding these points. Our approach prioritizes task-
oriented representation, aligning visual outputs with object recognition needs. A
behavioral gaze-contingent object discrimination experiment demonstrated that
Point-SPV outperformed a conventional edge detection method, by facilitating
observers to gain a higher recognition accuracy, faster reaction times, and amore
e�cient visual exploration. Our work highlights how task-specific optimization
may enhance representations in prosthetic vision, o�ering a foundation for future
exploration and application.
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1 Introduction

Prosthetic vision holds great promise for restoring functional sight to individuals

with visual impairments. Early research, such as the work by Brindley and Lewin

(1968), demonstrated the potential for visual perception through electrical stimulation

of the visual cortex, introducing the concept of “phosphenes” as the basic visual percept

elicited by such stimulation. Since then, advancements in visual prosthetics have explored

numerous avenues to enhance both the quality of perception and the functionality of

devices. Researchers have worked on improving the perceived visual inputs, optimizing the
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representation, and addressing the challenge of providing

naturalistic vision (Fernandez, 2018). One key area of focus is

the incorporation of gaze information, which is crucial for a

more intuitive and dynamic visual experience. Gaze integration

is essential and gaze position significantly influences spatial

localization (Paraskevoudi and Pezaris, 2019; Sabbah et al., 2014).

Even after loss of vision, people who had vision early in

life still rely on the direction they move their eyes and head to

update where they think things are in space (Reuschel et al., 2012).

Consequently, any misalignment between the camera’s orientation

and the direction of the eyes causes the visual input to be perceived

at an incorrect location. Traditional visual prosthetics often rely

on head-steering mechanisms, which can result in disjointed or

misaligned perceptions that hinder users in performing tasks such

as object recognition, reading, or hand-eye coordination (Dagnelie

et al., 2006; Titchener et al., 2018). This misalignment is caused by

the lack of gaze compensation, as demonstrated in studies where

prosthetic implant users experienced impaired spatial localization

without integration of eye movements (Caspi et al., 2018; Sabbah

et al., 2014).

Moreover, it has been shown that prosthetic vision without gaze

compensation may lead to poorer performance in tasks requiring

visual stability, such as object detection and reading (Paraskevoudi

and Pezaris, 2021). This makes the inclusion of gaze information

a crucial factor in enhancing object recognition and perceptual

accuracy. De Ruyter van Steveninck et al. (2024) conducted a

behavioral experiment with a virtual reality headset that showed

that gaze-contingent representation in prosthetics led to improved

speed and perceived quality of vision in tasks such as daily mobility,

scene recognition, and visual search.

Research has shown that the human visual system exhibits

task-dependent characteristics, processing visual information in a

way that aligns with the specific objective or task at hand (Orban

et al., 1996; Ballard and Hayhoe, 2009). Similarly, in simulated

prosthetic vision (SPV), a representation method, the technique

by which visual input from the camera is converted into a visual

pattern or signal presented to the user, could benefit from a task-

dependent approach. Such an approach would require designing

and optimizing to address specific tasks, such as navigation or

object recognition, thereby enabling an enhanced performance in

targeted applications.

Vergnieux et al. (2017) demonstrated that simplifying visual

renderings in simulated prosthetic vision could significantly

improve navigation tasks, indicating the value of minimal yet

informative visual cues. De Ruyter van Steveninck et al. (2022)

utilized neural networks to optimize phosphene representations,

focusing on a general-purpose visual enhancement. In contrast,

Küçükoǧlu et al. (2022) took a task-dependent approach,

using reinforcement learning to produce visual representations

specifically for goal-directed mobility tasks. However, while these

works provide frameworks for improving artificial vision, none of

these takes gaze information into account.

To address the challenges of task-specific and gaze-informed

optimization in prosthetic visual representations, we developed

Point-SPV, an end-to-end deep learningmodel designed to enhance

object representation in simulated prosthetic vision. This approach

takes an initial step toward gaze-informed optimization by training

the model on image patches extracted from around simulated

viewing points. The viewing points can be considered to represent

potential gaze locations, thereby improving the model’s ability to

adapt to gaze-specific visual information.

To test our approach, we conducted a screen-based gaze-

contingent behavioral experiment comparing Point-SPV to a

conventional edge-detection method, Canny edge detector (Canny,

1986). Edge detection has often been used as a standard in

prosthetic vision simulations (De Ruyter van Steveninck et al., 2022;

Vergnieux et al., 2017; Zhao et al., 2010), providing a baseline

for visual information processing. In this experiment, participants

were asked to discriminate between stimuli featuring cats and

dogs. The performance of the participants was assessed in terms of

discrimination accuracy, visual exploration, and reaction time. This

approach allows us to investigate the task-specific representation

efficiency of a model trained on simulated viewing points.

In summary, we propose the Point-SPV framework, which

addresses task-specific representations in simulated prosthetic

vision by utilizing simulated viewing points, serving as an

initial step toward the incorporation of actual gaze information.

In a behavioral experiment, we evaluate how our optimized

model enhances object discrimination, exploring its potential to

provide more effective object representations for individuals with

visual impairments.

2 Point-SPV model

This section outlines our end-to-end Point-SPV model, which

consists of four primary components: an encoder, a simulator,

a “blind” unit, and a “sighted” unit. Figure 1 provides an

overview of the model pipeline, illustrating the flow of data and

optimization process.

The training workflow begins with the extraction of a viewing

patch from an input image using a point sampling strategy

(Section 2.1). This patch is processed by the encoder (Section 2.2),

which produces an activation map corresponding to electrode

activations. The simulator (Section 2.3) converts this activation

map into a simulated phosphene representation. The blind

unit (Section 2.4) uses the phosphene representation for object

recognition, while the sighted unit (Section 2.5) offers perceptual

guidance through feature comparisons. Optimization of the model

is driven by a combination of perceptual loss and cross-entropy

loss, as described in Section 2.6.

2.1 Point sampling

To train our model, we adopted a point sampling strategy to

simulate a user’s field of vision. We used the COCO dataset (Lin

et al., 2014), which provides segmentation masks for target objects.

The sampling process starts by identifying an object of interest

within an image and applying its segmentation mask to isolate

the object’s boundaries. A random point within the masked area

is selected as the possible viewing location, and a patch centered

on this point is extracted. This patch represents the region the user

would focus on during object recognition (Figure 2).

By adopting this approach, demonstrated in the Segment

Anything method (Kirillov et al., 2023), we can strategically
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FIGURE 1

The pipeline begins with an input image, from which a viewing patch is extracted using a point sampling strategy (Section 2.1). A random viewing
location is selected, and a patch around this point is cropped and fed into the encoder (Section 2.2). The encoder generates an activation map, which
the simulator (Section 2.3) transforms into a simulated phosphene representation. This representation is passed to the blind unit (Section 2.4) for
object recognition. Perceptual loss, calculated using feature representations from the sighted unit (Section 2.5), and cross-entropy loss for
ground-truth categories are used to optimize trainable components, as indicated by the dashed lines.

generate an abundance of training data by selecting multiple

points on each object. Random point sampling has already

proved to be advantageous, particularly when contrasted with

utilizing segmentation from real human viewing recordings, as

it circumvents the limitations and biases existing in human-

centric data, such as annotation inconsistencies and selection

bias. The deliberate randomness in our point sampling process

contributes to a more robust and versatile model, capable of

handling diverse scenarios.

2.2 Encoder

In this subsection, we discuss the architecture of our encoder

which is responsible for transforming an input image of size 100×

100 pixels into an activation map. The activation map represents

the electrode activations on the implant array, corresponding

to the input representation. Consistent with prior research

(De Ruyter van Steveninck et al., 2022), we adopted a 32× 32 array

for the activation map.

The encoder is a fully convolutional deep neural network

(DNN) architecture. Leaky rectified linear units are employed

as the activation function in all layers except for the output

layer, while batch normalization is integrated to ensure stable and

efficient training. The detailed specification of the architecture

is provided in Table 1. Contemporary cortical visual prostheses

lack systematic control over phosphene brightness (Foroushani

et al., 2018). Considering this limitation, and in line with the

approach proposed by De Ruyter van Steveninck et al. (2022), we

adopt a binary assumption for electrode activation in this study,

eschewing graded activation. The output layer utilizes theHeaviside

step function as its activation mechanism to produce binary

stimulation values.

FIGURE 2

Random simulated viewing locations extracted from a target object
based on the provided segmentation. The extracted patches are
added either to the training or the validation set. The region with a
blue overlay indicates the segmentation of the target object in the
image while the yellow circles show the extracted viewing patches.

2.3 Simulator

The second module of our model is the phosphene simulator,

which transforms the stimulation pattern produced by the encoder

into a simulated prosthetic vision representation. This module

does not include trainable parameters and instead relies on

predefined specifications to replicate the perceptual effects of

electrical stimulation in visual prosthetics.

In the recent literature, various simulators have been

introduced with the objective of achieving a more biologically

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1549698
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Nejad et al. 10.3389/fnhum.2025.1549698

TABLE 1 Architecture of the encoder unit.

Type In Out Size Stride Pad Normalization Activation

1 Conv 3 8 3 1 1 BN LReLU

2 Conv 8 16 3 1 1 BN LReLU

3 Conv+Pool 16 32 3 1 1 BN LReLU

4 Conv+Pool 32 64 3 1 1 BN LReLU

5 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU

6 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU

7 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU

8 Res 64/64 64/64 3/3 1/1 1/1 BN/BN LReLU/LReLU

9 Conv+Pool 64 32 3 1 1 BN LReLU

10 Conv 32 16 3 1 1 BN LReLU

11 Conv 16 8 3 1 1 BN LReLU

12 Conv 8 3 3 1 1 - LReLU

13 Conv 3 1 3 1 1 - Sigmoid

Conv is convolutional layer; Res is residual block; Pool is max-pooling layer; BN is batch normalization; LReLU is leaky rectified linear unit.

plausible representation of visual stimuli through activation

patterns (van der Grinten et al., 2024; Srivastava et al., 2009,

2007). For this study, we adopted a fundamental simulation of

cortical prosthetic vision to demonstrate the training process of

our end-to-end model. This simulation employs homogeneously

distributed, equally-sized phosphenes, as outlined by De Ruyter van

Steveninck et al. (2022). The choice of simulator is a simplified

assumptions to lay the groundwork for more biologically plausible

approaches, with a focus on incorporating gaze information in

encoding strategies. We opted for binary patterns rather than

biologically inspired phosphene generation methods to obtain a

sound estimate of the impact of the model and its training process

on phosphene informativeness.

In this approach, each element in the 32 × 32 stimulation

protocol is mapped to preassigned pixels in a 256 × 256

image, creating the simulated visual field. Each element is

rendered as a dot-shaped phosphene at the corresponding location

in the output, effectively generating the simulated prosthetic

vision representation.

2.4 Blind unit

The blind unit functions as a surrogate user, responsible

for observing the simulation and identifying objects within the

image. It uses the ResNet152 (He et al., 2016) classification model

pretrained on the ImageNet dataset (Deng et al., 2009).

In this study, we utilized the first six layers/units of ResNet152

for the feature extraction component and allocated the remaining

layers for the classification section of the blind unit. This division

was based on the observation that the shallower layers of the

network retain low-level image features closely aligned with the

original input, enabling both the blind and sighted units to

converge toward a higher-level understanding of the input image.

In contrast, deeper layers in deep neural networks extract more

abstract and complex features, often discarding spatial information

as typically perceived by humans (Erhan et al., 2009). The

decision to divide ResNet152 at this specific layer was determined

empirically. Figure 3 illustrates the architecture of ResNet152 as

applied to our blind unit.

2.5 Sighted unit

The sighted unit utilizes the first six layers/units of the

pretrained ResNet152 on the ImageNet dataset, which remain fixed

during training. Similar to the blind unit, these initial layers are

tasked with feature extraction, providing an abstract yet spatially

coherent representation of the input image. Figure 3 illustrates the

architecture of ResNet152 and the layers employed for the sighted

unit in our pipeline.

The primary goal of the sighted unit is to align the blind unit’s

interpretation of visual information in simulated vision with the

sighted unit’s perception of the original image. This alignment is

achieved through the application of perceptual loss, as detailed

in Section 2.6. To focus on the essential aspects of the input,

the sighted unit processes the target object without background,

thereby encouraging the encoder to encode information specific to

the object of interest.

2.6 Loss functions and optimization

The Point-SPV model is trained using a combination of two

loss functions: perceptual loss (LP) and cross-entropy loss (LCE).

These losses play complementary roles in optimizing the trainable

components of the model, as illustrated in Figure 1. Perceptual loss

is formulated as

LP =
||Si(I

′)− Bi(V(E(I)))||
2
2

WiHiCi
(1)
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FIGURE 3

The blind unit is a full ResNet152 model, with the first six layers/units serving as the feature extractor and the remaining layers functioning as the
classifier. For the sighted unit, only the first six layers/units of ResNet152 are used, similarly responsible for feature extraction.

where Bi and Si denote the ith layer output of the blind unit

and the sighted unit, respectively. E is the encoder and V is the

simulator. The input simulated viewing patch with and without

background are I and I′, respectively. Wi, Hi, and Ci are the

shapes of the output at the ith layer. Equation 1 aligns the

features extracted by the blind unit with those from the sighted

unit. The sighted unit processes the viewing patch of the target

object without including the background, generating a feature

representation focused on the object. Meanwhile, the blind unit

processes the SPV representation generated by the simulator,

based on the activation map provided by the encoder. The loss

is calculated by comparing mid-layer features of the blind unit

with corresponding features from the sighted unit, using a squared

L2 norm.

The perceptual loss influences both the encoder and the

feature extraction layers of the blind unit. For the encoder, it

ensures that the SPV representation remains consistent with

the visual structure of the original image and that the SPV

output is perceptually meaningful. Simultaneously, it optimizes

the feature extraction component of the blind unit to extract

features from the phosphene representation that match those

extracted by the sighted unit, enabling the blind unit to adapt to

the SPV.

Cross-entropy loss is applied to all layers of the blind unit,

which predicts the object’s class based on the SPV representation.

This loss optimizes classification by minimizing the difference

between the predicted class probabilities and the ground-truth

labels. Additionally, the gradients from LCE propagate back through

the encoder, enhancing the quality of its output for object

representation purposes.

The encoder and the feature extraction layers of the blind unit

are optimized using both LP and LCE in the form of a weighted

combination, formulated as

L = γ LP + (1− γ )LCE (2)

where γ is a value between zero and one. In this study, we

empirically set γ to 0.75.

After training the Point-SPV model, it was essential to evaluate

its effectiveness in supporting object recognition in humans. To

achieve this, we conducted a behavioral experiment designed

to test the model’s performance, providing insights into its

real-world applicability.

3 Behavioral experiment

To assess the effectiveness of Point-SPV, we conducted a

screen-based gaze-contingent experiment comparing participant

performances under two conditions: using Point-SPV or the

Canny edge detection algorithm (Canny, 1986). Such edge

detection techniques are commonly employed as standalone

representation methods (Vergnieux et al., 2017) or for evaluating

encoders (De Ruyter van Steveninck et al., 2024). Prior to executing

the experiment, we performed a pilot study, which is described in

the Supplementary material.

The experiment evaluated object discriminability across the two

methods in terms of accuracy, reaction time, and visual exploration.

We evaluated visual exploration by measuring the number of

saccades per stimulus and the proportion of the image area covered

by fixations. Together, these metrics provided a comprehensive

view of how effectively participants processed and interpreted

stimuli under each representation method.

3.1 Methods and materials

3.1.1 Participants
Data was collected from 20 adult participants (13 female;

mean age: 30 years, SD: 6.3 years; age range: 22–53 years). All

participants reported to be healthy and have (corrected to) normal

vision. The study received approval from the Ethical Committee

of the Faculty of Behavioral and Social Sciences at the University

of Groningen.
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FIGURE 4

The experimental setup using a screen and a desk-mounted
eye-tracker. The participant views the gaze-contingent stimuli on a
screen while their eyes are being tracked via a desk-mounted
eye-tracker.

3.1.2 Equipment
The experiment utilized an EyeLink1000 eye-tracker with a

chin-rest. The stimuli were displayed on a light-emitting diode

(LED) backlight monitor (BenQ XL2540) with a 144 Hz refresh

rate and a resolution of 1,920 × 1,080 pixels. The screen’s

luminance was measured at 52 cd/m2. The experimental setup is

depicted in Figure 4. The stimuli were generated and displayed

using a computer equipped with an Nvidia GTX 1060 3GB GPU

and an Intel Core i7-8700 CPU. The behavioral experiment was

implemented in Python using the PyLink library.

3.1.3 Procedure and stimuli
The experimental design aimed for a direct comparison of

the two methods while controlling for order effects and potential

familiarity with the source images. For this reason, the participants

were divided into two groups. For one group (10 participants),

the first block featured stimuli processed using the Point-SPV

method, while the second block presented the same stimuli

processed using the Canny edge detectionmethod. The other group

(10 participants) performed the experiment in the reverse order,

starting with the Canny edge filtering method in the first block and

switching to Point-SPV in the second block.

Participants viewed images of cats and dogs placed against

realistic backgrounds. These images were extracted from the

internet and resized to the resolution of the screen. The stimuli

were presented in a gaze-contingent manner, where only a circular

region around the current viewing location was displayed using

one of the representation methods. Example outputs of Point-

SPV and Canny edge detection are shown in Figure 5A. The gaze-

contingent setup captured momentary gaze location data, which

was used to generate phosphene representations in real time. Each

time the participant’s gaze shifted, the system extracted a patch

around the gaze location from the original image, processed it

through the representation method, and displayed the result at the

corresponding screen location. Figure 5B showcases examples of

the original stimuli used in this behavioral experiment.

The gaze patches were substantially smaller than the target

animals, thus requiring participants to scan the object to gather

sufficient visual cues (e.g., the animal’s leg, face, and ears) for

complete recognition. Figure 6 shows a source image from the

dataset overlaid with some examples of scanned regions with

fixation points and saccade trajectories during the gaze-contingent

behavioral experiment using Point-SPV. For clarity, we excluded

the content that would have been presented during the saccades.

The experiment began with an eye-tracker calibration phase

to ensure accurate eye-movement data. Eyelink’s built-in 9-point

calibration procedure was utilized to calibrate the eye movements

before each block. Prior to each trial, participants fixated on a

central green cross, guaranteeing that finding the target animal,

which was always positioned at the center, did not require a

search effort. Participants were thus informed about the target’s

location and were given up to 30 s to provide their response

for each trial. During stimulus viewing, both eye movements

and the final keypress response and the reaction time were

recorded. Participants were instructed to indicate whether the

stimulus contained a cat or a dog by pressing one of two

designated buttons (left and right arrow keys) on the keyboard.

We used the EyeLink1000 analysis software default settings for

saccade detection.

Each participant completed two blocks of 50 trials each. The

same set of images was used in both blocks. Within each block,

the order of presentation was randomized. For each trial, we

recorded the participant’s keypress response (cat/dog decision) and

reaction time. We also collected continuous eye-tracking data,

from which we derived saccade events and viewing locations

using the EyeLink1000 analysis software using default settings for

saccade detection.

3.1.4 Data analysis
Four primary performance metrics were computed: accuracy,

reaction time, number of saccades, and stimulus coverage. Per

block, these metrics were averaged across all stimuli presented to

a participant.

Accuracy was measured as the proportion of correctly

categorized stimuli, and reflects participants’ ability to extract the

relevant information for distinguishing the categories from the

displayed phosphene representations. Reaction time refers to the

elapsed time from stimulus onset to the participant’s response,

and reflects the time required for processing the represented

information and making a decision.

Number of saccades was calculated by counting the number of

saccades during each trial until the moment of the response. These

rapid eye movements between fixation points provided insights

into participants’ visual exploratory behavior.

To compute stimulus coverage, we modeled each viewing point

as a two-dimensional Gaussian distribution (σ = 50) centered

at its location within the viewing patch. We then applied these
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FIGURE 5

(A) Example outputs of the Canny edge detector and Point-SPV for two sample patches extracted from two images used in our behavioral
experiment. (B) Examples of the original images presented via the two representation methods in our behavioral experiment.

FIGURE 6

Illustration of the gaze-coupled phosphene representations used in the behavioral experiment. (A) A source image from our dataset used in the
behavioral experiment. (B) An example of the scanned regions that provided visual cues for recognizing a target animal when presenting the original
stimuli using Point-SPV in the gaze-contingent behavioral experiment. In (B, C), each circle represents a fixation point during the trial, with the
observed content displayed at that fixation. In (C), the numbers indicate the sequential order of fixations, while the arrows depict the saccade
trajectories between fixation points. Note that in the behavioral experiment, the phosphene representations were continuously updated, also during
saccades. For clarity, here the representations during such transitions have been excluded from the illustration.

Gaussian distributions over time and across the image, allowing

them to overlap. At each pixel, we took the maximum Gaussian

value from all overlapping distributions to form a continuous

heatmap. To obtain a single coverage metric, we summed the

Gaussian values across all pixels in the resulting heatmap and

normalized this sum by the total number of pixels. This procedure

produced a coverage metric that could range continuously up to

100%, where 100% ccoverage for one stimulus would indicate

that every pixel in the image was encompassed by at least one

viewing patch.

3.1.5 Statistical analysis
Each participant viewed the same set of stimuli under both

representationmethods, and all performancemetrics were analyzed

by combining data from both conditions, regardless of the order

in which the methods were presented. With this approach, we

balanced out any potential learning or familiarity effects that might

arise from the exposure to the original images. Subsequently,

a repeated measures ANOVA test was conducted for each

performance metric to evaluate differences between Point-SPV and

Canny edge detection.

4 Results

In this section, participants’ visual discrimination performance,

for phosphene representations generated using either our Point-

SPV or the Canny edge detection method, is compared in terms of

their accuracy, reaction time, and visual exploration, with the latter

assessed through number of saccades and stimulus coverage.

4.1 Accuracy

As shown in Figure 7A, participants first viewing Point-SPV-

generated representations achieved an average accuracy of 87%

(SD = 5.8%), compared to 80% (SD = 8.3%) for those who
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FIGURE 7

Comparison of behavioral metrics across blocks and methods (Point-SPV and Canny edge detection). Metrics include overall accuracy, reaction time,
number of saccades, and stimulus coverage proportion, presented as violin plots with individual participant data points. Yellow-colored columns
represent metrics obtained from participants using Point-SPV, and blue-colored columns correspond to the Canny edge detector. (A) Accuracy. (B)
Reaction time. (C) Number of saccades. (D) Stimulus coverage.

first viewed edge detection generated representations. In the second

block, among the participants who switched from Point-SPV to

edge detection in the second block, 9 out of 10 showed a decline

in accuracy, dropping to 80% (SD = 7.1%) on average. In contrast,

the performance of the participants who started with edge detection

and switched to Point-SPV demonstrated improved, with accuracy

rising to 89% (SD = 3.8%) on average.

The results differed significantly between the two methods,

with participants using Point-SPV achieving significantly higher

accuracy [F(1, 19) = 31.6, p < 0.001]. The average accuracy of

the participants was approximately 88% (SD = 5.1%) when using

Point-SPV, compared to 79% (SD = 7.9%) when using Canny

edge detection.

4.2 Reaction time

As illustrated in Figure 7B, participants starting with Point-

SPV had an average reaction time of about 8 s (SD = 2.9),

while those beginning with edge detection responded in about 11

seconds on average (SD = 3.6). When participants switched from

Point-SPV to edge detection, their reaction times remained similar.

However, participants transitioning from edge detection to Point-

SPV responded noticeably faster with an average reaction time of 6

s (SD = 1.6).

Participants had an average reaction time of approximately 6

s (SD = 2.15) with Point-SPV, compared to 8 s (SD = 3.53)

with Canny edge detection. This difference between methods was

significant [F(1, 19) = 5.3, p = 0.03].

4.3 Number of saccades

As shown in Figure 7C, participants using Point-SPV in the

first block made on average 18 saccades per trial (SD = 6.9),

whereas those starting with edge detection showed higher numbers,

averaging 31 saccades per trial (SD = 17.6). For participants

who switched from Point-SPV to edge detection, the number of

saccades remained relatively stable around 18 saccades (SD = 7.2).

In contrast, those transitioning from edge detection to Point-SPV

showed a reduction in the number of saccades, from 30 to 17

saccades (SD = 6.1).

Our findings from the paired samples t-test for the number of

saccades were significant, demonstrating that participants using the

Point-SPV method performed significantly less saccades [F(1, 19) =
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FIGURE 8

Average fixation heatmaps for two example stimuli across experimental conditions. Heatmaps are shown separately for Group 1 (switching from
Point-SPV to edge detection) and Group 2 (switching from edge detection to Point-SPV), with visual attention averaged across all participants in each
block. Warmer colors indicate areas with higher fixation density.

6.2, p = 0.02] than the edge detection method. Participants

exhibited an average number of saccades of approximately 16

saccades (SD = 6.26) when using Point-SPV, compared to 24

saccades (SD = 15.06) with Canny edge detection.

4.4 Stimulus coverage

As shown in Figure 7D, stimulus coverage analysis revealed

that participants using Point-SPV in the first block covered an

average of 5% of the stimulus area (SD = 0.01), while those

starting with edge detection had a higher coverage, around 7%

(SD = 0.02). After switching representation methods, participants

transitioning from Point-SPV to edge detection showed a slight

increase in coverage, from 5% to 6%, whereas those moving from

edge detection to Point-SPV exhibited a decrease (from 7% to

4%). Figure 8 shows the average fixated areas for two example

stimuli, calculated separately for each block and averaged across

all participants. On average, participants explored about 4% of the

stimulus area (SD = 0.015) with Point-SPV, whereas the coverage

increased to 6% (SD = 0.024) when using Canny edge detection.

Thus, participants in the Point-SPV condition tended to inspect

smaller regions of the stimuli [F(1, 19) = 11.6, p = 0.002].

5 Discussion

In this study, we introduce Point-SPV, an end-to-end deep

learning model for prosthetic vision that incorporates simulated

viewing to enhance object recognition for observers. This work

serves as a proof of concept for how simulated viewing points

can be integrated into the optimization process of a as an initial

step for gaze-based optimization of representation models. Our

primary aim is to demonstrate the feasibility of incorporating gaze-

inspiredmechanisms in phosphene representations. In a behavioral

experiment, we demonstrated that the representations generated by

Point-SPV, in comparison to the ones generated by a conventional

edge detection method, made it easier and faster for observers to

distinguish between cats and dogs shown on realistic backgrounds.

Moreover, when using Point-SPV, participants made fewer saccades

and their gaze covered a smaller part of the stimuli, indicating our

new model generates more efficient representations.

Moreover, our task-oriented approach is supported by the

understanding that the human visual system processes information

differently depending on the specific task (Orban et al., 1996).

Point-SPV enhances the relevance of the visual information

presented to the user by tailoring the representation method

specifically to the object recognition task. This is accomplished

through a task-specific architecture that includes an object

classification unit (the blind unit), where the encoder is additionally

optimized based on how effectively its representations can

be recognized by the object classifier unit. This approach

contrasts with previous methods that focused on general-purpose

optimization without considering viewing information integration

or task specificity (De Ruyter van Steveninck et al., 2022; Relic

et al., 2022). However, previous methods could also benefit

from incorporating aspects of the Point-SPV training process in

their frameworks.

One of the key strengths of Point-SPV is its end-to-end

deep learning design, which jointly optimizes both the encoding

and final representation stages to better support human object

recognition. By integrating the entire processing pipeline within

a single trainable framework, the system is guided not only by

classification objectives but also by perceptual cues derived from

a sighted reference unit. This approach encourages the learned

representations to be spatially consistent, perceptually meaningful,

and directly useful to human observers.

The results of the behavioral experiment highlight the

advantages of the Point-SPV representation method across various

performance metrics. The approximately 9% overall gain in

accuracy and the approximately 3 seconds reduction in response

time demonstrated that Point-SPV’s representations significantly

enhanced participants’ ability to correctly and more rapidly

categorize stimuli, compared to those based on edge detection. It

is important to note, that the observed performance gains cannot

be solely attributed to the incorporation of gaze information, as

other factors, such as the filtering methods, also play a role. This

paper proposes an optimization process based on viewing points
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and our behavioral experiment highlights the potential in such an

optimization strategy.

We also measured the number of saccades and the proportion

of the stimulus covered. Participants using Point-SPV required

fewer saccades and a smaller stimulus coverage, suggesting

Point-SPV allowed for a more focused and efficient exploration of

the stimuli.

Using our present hardware, Point-SPV was capable of

presenting real-time computed representations of stimulus patches

with a refresh rate of 60 Hz. This frequency ensured a sufficiently

smooth and responsive user experience. Such real-time processing

is essential for practical deployment in assistive devices, as latency

can significantly impact usability and user comfort.

6 Limitations and future directions

For the training of our model, we utilized viewing patches,

which represent a simplified version of natural viewing behavior.

However, this approach does not account for the saccadic patterns

characteristic of natural vision (Nejad et al., 2024; Kothari

et al., 2020). Future research could enhance these models by

incorporating natural gaze behavior, expanding the architecture

to process a continuous stream of gaze positions. Our study

introduced a proof-of-concept for including viewing points in the

training process. Future work should explore integrating saccadic

patterns and top-down gaze influences to increase validity.

Parameter choices, such as the γ value balancing perceptual

and cross-entropy loss, the depth at which ResNet152 was divided

into feature extractor and classifier, and the thresholds for Canny

edge detection, were based on empirical observations to achieve the

best performance. Future work can explore the effect of changes

in the mentioned parameter. Future work can also focus on

comparing our model to other end-to-end models, testing them

using more biologically plausible simulators (van der Grinten et al.,

2024) to investigate the shortcomings and advantages among all

available methods. In our study, a simulator with homogeneously

distributed and equally-sized phosphenes was chosen because this

study serves as a proof-of-concept with simplified assumptions,

laying the groundwork for future biologically plausible approaches.

Our model is designed with flexibility, allowing the simulator to

be replaced and the system to be retrained accordingly. Future

work can also focus on utilizing and designing automatic quality

assessment methods (Tolie et al., 2024) to assess the content of the

representation prior to behavioral experiments.

The behavioral experiment was conducted in a controlled

lab environment using a screen-based gaze-contingent display,

which may not fully reflect real-world prosthetic vision use.

The controlled setup isolated the impact of the representation

method but lacked many aspects of dynamic, real-world tasks. This

underscores the need for future research in virtual or augmented

reality. To illustrate how our model could work in the context of

a complex real-world multi-object environment, we applied it to

a recording from a mobile eye-tracker while viewing objects. This

video is provided in the Supplementary material.

Although our study balanced the order of representation

methods across blocks, we did not specifically analyze potential

order or interaction effects in the behavioral results. The presence

or absence of such effects remains unconfirmed, and future

studies could explore whether the sequence of methods affects the

performance metrics.

Our pilot behavioral experiment, included in the

Supplementary material, suggested that the effectiveness of

Point-SPV depends on stimulus characteristics. In an animate-

versus-inanimate task using images with white backgrounds, both

methods performed similarly and near ceiling levels. However, this

can suggest that Point-SPV’s advantages could be influenced by the

specific images or categories used.

7 Conclusion

Our proposed method, Point-SPV, represents an advancement

in the field of prosthetic vision by integrating simulated viewing

points and employing a task-oriented design to enhance object

recognition. Our end-to-end deep learning model takes an initial

step toward training of models using gaze information and

proposes an optimization approach for object representation. Our

behavioral findings illustrate the potential gain of our task-based

optimization on simulated viewing patches. By tailoring the visual

representation to the specific needs of the task and the user,

Point-SPV offers a promising pathway toward more effective and

naturalistic representation in prosthetic vision.
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