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Investigating the effects of 
construction industry noise on 
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Despite growing industrialization, the cognitive and psychological impacts of 
construction noise on workers remain inadequately addressed in empirical 
research. This study examines the impact of different noise types and intensities 
on the cognitive performance and learning efficiency of construction workers, 
using electroencephalogram (EEG) and behavioral data. Specifically, it analyzes 
the effects of complex noise and steady noise on workers’ attention, mental 
workload, mental fatigue, and mental stress. The results indicate that complex 
noise significantly reduces learning efficiency, notably impairing accuracy and 
reaction time relative to steady noise. This adverse effect is attributed to the 
unpredictability and variability of complex noise, which disrupts workers’ cognitive 
processing and heightens mental fatigue. In contrast, although steady noise does 
not significantly impact mental workload, it induces greater mental fatigue and 
mental stress than complex noise, especially at high noise levels. The findings 
also reveal that workers develop some level of adaptation to continuous noise, 
mitigating its overall impact on learning efficiency. However, elevated noise 
levels, regardless of type, consistently lead to significant declines in attention 
and increases in mental stress and mental fatigue. This research makes an original 
contribution by providing evidence-based insights into the interaction between 
noise characteristics and worker cognition, offering practical implications for 
targeted noise management strategies to improve learning efficiency and well-
being in construction environments.
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1 Introduction

The development of the construction industry is fundamentally dependent on its extensive 
workforce. However, due to limited skill levels and insufficient knowledge, many construction 
workers often struggle to adapt to the demands of industrialized construction, particularly the 
operation of intelligent equipment and the requirements of precision production. This skills 
gap poses a significant barrier to the transition from traditional construction roles to those 
suited for industrialized construction processes, becoming a major obstacle to the industry’s 
transformation and upgrading. Therefore, enhancing the knowledge and skill levels of 
construction workers has become one of the critical challenges that must be addressed to 
facilitate the industry’s transformation and advancement. Despite various re-education and 
skill training programs implemented by the government and enterprises, workers’ participation 
remains low, and the effectiveness of these initiatives is limited (Sun and Wang, 2017).
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In practice, construction workers primarily acquire new skills 
through a “learning while working” approach, which directly ties their 
learning efficiency to the work environment. Discrepancies between 
controlled training environments and the more complex, real-world 
conditions often hinder workers’ ability to adapt quickly and 
effectively, necessitating additional learning and adjustment periods 
(Xiong et al., 2018). Thus, it is essential to deeply analyze the factors 
influencing training effectiveness within the actual work environments 
of construction workers to better support their transition to 
industrialized roles.

Noise is one of the most hazardous factors in construction work 
environments. Beyond its direct physiological harm, noise significantly 
affects workers’ psychological states and overall work efficiency, 
thereby reducing productivity (Lie et al., 2016). Prolonged exposure 
to high-decibel noise environments can lead to temporary or 
permanent hearing loss, while also contributing to cardiovascular 
issues such as hypertension and arrhythmias (Skogstad et al., 2016). 
Additionally, long-term exposure to noise can induce anxiety, tension, 
and stress anxiety, tension, and stress, which diminish job satisfaction 
and further negatively impacts their job performance and productivity 
(Basner et al., 2014). Noise also disrupts concentration, resulting in 
lapses in attention that compromise decision-making, reduce work 
efficiency, and elevate the risk of workplace accidents (Singh 
et al., 2010).

In the construction industry, noise has a pervasive and profound 
impact on the learning efficiency of construction workers. Continuous 
exposure to noise disrupts essential cognitive abilities such as attention 
and memory, imposing additional mental workload when workers 
attempt to learn new skills or comprehend complex information. This 
results in even simple training content requiring longer time to master 
(Lan, 2010; Xiong et al., 2018). Furthermore, noise-induced hearing 
impairments and communication barriers hinder effective knowledge 
transfer, reducing team collaboration efficiency. Chronic noise 
exposure also adversely affects sleep quality, thereby impairing 
daytime alertness and learning capacity. Over time, persistent 
psychological stress and anxiety induced by noise diminish workers’ 
motivation and focus, leading to lower job satisfaction and reduced 
participation in training activities (Smith, 1990; Singh et al., 2010).

Research on the impact of noise in the construction industry has 
traditionally focused on hearing loss, protective measures, and noise 
control management. Most of these studies rely on subjective survey 
methods, such as questionnaires and interviews, which are more 
susceptible to subjective biases. Previous research has demonstrated 
that individuals’ subjective perceptions of noise can vary over time, 
with individuals alternating between categorizing the same sounds as 
noise or non-noise depending on the period (Fernandez et al., 2009). 
Given the limitations of subjective approaches, physiological 
measurement tools offer a more objective assessment of noise’s impact 
on cognitive states. Common physiological measurement tools 
include electroencephalogram (EEG), heart rate variability (HRV), eye 
tracking, and skin conductance.

In recent years, the rapid development and increasing availability 
of portable EEG devices and data processing algorithms have 
produced significant findings on the impact of noise in the 
construction industry. For instance, Chen et al. (2016) used EEG to 
calculate the cognitive states of construction workers and assess the 
risks they face while performing tasks, thereby helping to reduce 
accident rates. Qi et al. (2021) evaluated the interference of industrial 

noise on workers’ cognitive states by analyzing power spectra from 
various frequency bands during noise exposure. Ke et  al. (2021) 
explored how different noise conditions affected workers’ behavioral 
performance in safety recognition tasks, examining cognitive state 
indicators such as attention and mental workload using EEG metrics. 
Similarly, Mir et al. (2022) studied the impact of different levels and 
types of construction noise on emotional states using EEG, aiming to 
reduce the adverse impacts of noise on its recipients.

Despite these advancements, most EEG-based research has 
primarily concentrated on construction safety, with limited focus on 
understanding how construction noise affects workers’ learning and 
training. This oversight represents a critical gap in the literature, as 
cognitive performance in learning environments is crucial for the 
development and skill acquisition of construction workers. In the 
context of noise research within the construction industry, the use of 
EEG signal features to evaluate the impact of noise on cognitive states 
has garnered increasing attention from scholars. Nevertheless, the 
majority of studies remain centered on safety-related issues, while 
investigations into the effects of noise on learning efficiency and 
training processes have been relatively sparse.

Therefore, this study employs non-invasive portable EEG devices 
to collect brainwave data, aiming to address the impact of noise on 
learning and training during the transition of construction workers to 
industrialized roles. The aim is to evaluate the effects of various noise 
levels and types on the learning efficiency and cognitive states of 
construction workers. By deepening the understanding of how 
industrial noise affects cognitive functions, this research aims to 
mitigate its adverse impacts and improve the overall effectiveness of 
learning and training programs for workers. Ultimately, the findings 
will provide critical insights to inform decision-making processes to 
expedite the transition of construction workers to industrialized 
construction roles.

2 Literature review

2.1 Research on learning and training of 
construction workers

With the continuous advancement of the construction industry 
toward industrialization, facilitating the transformation of 
construction workers into industrialized construction workers has 
emerged as a pivotal trend in the development of the industry (Wei 
et al., 2012). This shift requires not only technological and managerial 
innovations but also places a significant emphasis on enhancing 
workers’ skills and knowledge through learning and training initiatives.

On the one hand, numerous scholars are vigorously exploring and 
applying cutting-edge technologies with the aim of revolutionizing 
traditional training models. Advanced technologies such as artificial 
intelligence (AI), virtual reality (VR), and augmented reality (AR) are 
driving significant improvements in conventional training methods. 
Tang et  al. (2023) found the traditional worker training overly 
theoretical with subpar results. They thus introduced a “Building 
Information Modeling (BIM) + VR” immersive setup, enhancing 
training autonomy and learning effectiveness. Similarly, multiple 
studies have furthered VR-related training advancements. Frédéric 
et al. (2015) combined mixed reality (MR), VR, and visualization for 
better learning efficiency and willingness. Osti et al. (2021) created a 
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VR-based simulated environment that outperformed 2D video 
training in knowledge retention, task performance, learning speed, 
and engagement. Bao et al. (2022) proposed an IFC-and immersive 
network-based cross-platform framework. This allowed workers to 
engage in VR safety training via mobile or desktop, with real-time 
interaction to boost efficiency. Collectively, these efforts demonstrate 
the significant potential of VR-integrated technologies in enhancing 
construction worker training. On the other hand, certain scholars are 
integrating new technologies into traditional training and research 
models. For example, Zhou et al. (2021) integrated VR into traditional 
safety training, enhancing construction workers’ cognitive abilities 
and reducing unsafe behaviors. Shi et al. (2019) used VR to study 
behavioral demonstrations in hazardous sites, finding positive ones 
promoted safety while negative ones led to more errors. Lin et al. 
(2018) applied Three-Dimensional (3D) visualization to break 
communication barriers for low-literacy workers, improving training 
efficiency. Hasanzadeh et al. (2017) utilized eye-tracking in safety 
training, boosting both training and workplace efficiency. These 
studies showcase various ways of using technologies to enhance 
construction worker training and safety.

Moreover, some researchers focused on enhancing workers’ 
learning and training effectiveness by improving educational content 
and optimizing courses. Xu et  al. (2019) emphasized individual 
differences among construction workers, suggesting personalized 
safety training for better efficiency and performance. Chen et  al. 
(2020b) identified subjective norms as key in construction workers’ 
learning, proposing norm-based management in training programs. 
Pham et  al. (2023), using the Theory of Planned Behavior, found 
different influencing factors on learning intentions for non-managerial 
or non-professional workers. Duan et al. (2024) proposed a neural-
network-based character approach to generate safety labels, 
recommend materials, and boost worker participation and safety 
training effectiveness.

2.2 The impact effects of noise in 
construction workplaces

Traditional noise assessment typically relies on sound pressure 
level as a key indicator. Sound pressure refers to the force exerted by 
sound waves as they vibrate through the air, reflecting the intensity of 
the sound. It is measured in decibels [dB(A)]. Research has shown that 
when noise levels exceed 70 dB(A), significant physiological changes 
occur in subjects. Noise levels between 35 dB(A) and 65 dB(A) can 
cause annoyance, while noise levels ranging from 66 dB(A) to 
85 dB(A) can trigger bodily alarm responses, potentially leading to 
hearing loss (Seidler et al., 2017; Golmohammadi et al., 2022). Noise 
in the workplace can negatively impact health, including both auditory 
and non-auditory effects.

The most common auditory effect of noise is Noise-Induced 
Hearing Loss (NIHL), which, in severe cases, can result in hearing 
disability (Li et al., 2016; Le et al., 2017). High noise levels continuously 
stimulating the cochlea damage ear hair cells, which cannot regenerate, 
leading to permanent hearing loss under prolonged exposure. 
Multiple studies across various industries, such as a manufacturing 
enterprise study by Rn et al. (2022) showing increased detection rates 
of hearing loss and hypertension with age and noise exposure 
duration, a petrochemical companies’ risk assessment by Deng et al. 

(2022) revealing permanent threshold shifts in hearing for noise-
affected workers, and those in the automotive manufacturing industry 
(Huang et al., 2013; Bao et al., 2019; Chen et al., 2020c) indicating that 
longer exposure and higher intensities increase the likelihood of 
hearing loss, along with Lie et al.'s (2016) systematic review finding an 
occupational noise-induced hearing loss rate of 7–21% with higher 
risks in sectors like manufacturing, shipbuilding, construction, 
military, and agriculture, all confirm the significant impact of noise on 
hearing. Additionally, Chen et  al. (2020a) summarized the 
epidemiology, pathogenesis, and preventive measures for occupational 
noise-induced hearing loss, stressing the importance of noise 
prevention programs like reducing noise production or guiding 
proper use of Hearing Protection Devices (HPDs). Non-auditory 
effects of noise refer to health impacts beyond damage to the auditory 
system, encompassing a wide range of conditions such as noise-
induced annoyance, cardiovascular diseases, impaired cognitive 
performance, sleep disturbances, and changes in neurobehavioral 
functions (Luo et  al., 2005). In a study by Skogstad et  al. (2016) 
investigating the incidence and mortality of cardiovascular diseases 
linked to occupational noise exposure, it was found that long-term 
exposure to workplace noise increases the risk of cardiovascular 
diseases. Workers exposed to noise levels above 85 dB(A) showed 
statistically significant risk estimates for hypertension, cardiovascular 
diseases, and cardiovascular mortality. Noise-induced annoyance 
typically arises from noise interfering with daily activities, rest, or 
sleep, and the accompanying negative emotions increase the risk of 
disease (Basner et  al., 2014). Prolonged and high-intensity 
occupational noise exposure can lead to neurobehavioral changes, 
such as reduced sensitivity to visual and auditory stimuli, increased 
reaction time, and deteriorated cognitive abilities, particularly 
memory (Gomes et al., 1999). Numerous studies have demonstrated 
that cognitive performance is significantly affected in noisy 
environments, increasing mental stress and altering mental workload 
(Jung et al., 2009; Irgens-Hansen et al., 2015; Hao and Conway, 2022).

While construction industry research has conventionally centered 
on hearing loss, protective measures, and noise control management 
(Arezes and Miguel, 2005; Lewkowski et al., 2018), it’s crucial to note 
that noise affects speech comprehension, shortens attention span, 
decreases work and learning efficiency, heightens work pressure, and 
raises error rates, thus reducing productivity and increasing 
production costs (Sörqvist, 2014; Ruan et  al., 2016; Vassie and 
Richardson, 2017); in the manufacturing industry, noise is classified 
as steady or complex, with complex noise being steady noise overlaid 
by high-energy transient impulse noise, and epidemiological studies 
and animal experiments showing it often causes more hearing loss 
than steady noise due to its irregular temporal patterns and sudden 
high-energy bursts (Stephenson, 2017), and construction site noise 
perception surveys indicating that construction equipment with 
complex noise characteristics like drills and crushers causes more 
annoyance to workers (Lee et al., 2019).

2.3 EEG-based measurement of cognitive 
states

Cognitive states, including attention, mental workload, mental 
stress, and mental fatigue, are critical factors in ensuring work quality 
and safety (Chen et al., 2017). Specifically, cognitive states not only 
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affect construction workers’ health and well-being but also influence 
their decision-making processes and behavior patterns, thereby 
impacting work efficiency and safety (Mitropoulos and Memarian, 
2012). Although various tools for assessing cognitive states have been 
developed within academic research, their practical application 
among construction workers remains limited. This limitation largely 
stems from the reliance on self-report questionnaires, which, as 
retrospective feedback tools, have inherent flaws. These tools often 
lack reliability, are subject to strong subjective biases, and can 
be influenced by the respondent’s immediate perceptions or emotions, 
making it difficult to accurately reflect their true cognitive state 
(Lohani et al., 2019).

The physiological and physical mechanisms related to human 
cognition are complex, neurons in the brain communicate through 
electrical and chemical signals (Gligoroska and Manchevska, 2012). 
When a person is in different cognitive states, such as focusing on a 
task or being under stress, specific neural circuits are activated. For 
example, during high-attention tasks, the prefrontal cortex, which is 
associated with decision-making and attention control, shows 
increased activity. EEG can capture these electrical signals on the scalp 
surface, providing a window into these underlying neural activities 
(Pessoa, 2008). The different frequency bands in EEG, namely δ, α, β, 
θ, and γ waves, are related to distinct cognitive functions (Cheng et al., 
2022). δ waves are primarily associated with deep sleep. During this 
stage of sleep, the body undergoes essential restorative processes, and 
the brain’s activity is at a relatively low level. In some cases of severe 
brain injury or certain neurological disorders, abnormal delta wave 
activity may be observed even during wakefulness. α waves are linked 
to a relaxed yet awake state, often dominant when one is at rest with 
eyes closed. β waves, associated with active thinking and concentration, 
prevail during focused mental tasks. θ waves, which emerge during 
drowsiness, light sleep, and creative thinking, also surface in moments 
of mental relaxation. γ waves, related to complex cognitive processes 
like perception and memory integration, play a role in high-level 
information processing.

EEG is an effective tool for measuring brain activity. By capturing 
the minute electrical changes on the scalp surface, EEG provides deep 
insights into the brain’s activity state, especially in evaluating an 
individual’s cognitive and psychological states (Lan et al., 2005). Since 
cognitive states are directly related to brain activity, changes in EEG 
components can intuitively reflect the level of activity within the 
cognitive system. Consequently, it offers distinct advantages over 
other physiological indicators, such as eye movement, heart rate, and 
body temperature, in the assessment of cognitive states. Additionally, 
its cost-effectiveness, portability, and tolerance to movement make 
EEG particularly well-suited for use in dynamic construction 
environments (Sawangjai et  al., 2019). By utilizing EEG to detect 
cognitive states, researchers can address the limitations of existing 
studies that rely on subjective perceptions of noise effects.

Noise impacts human cognition via multiple pathways (Dohmen 
et al., 2022). Noise directly stimulates the auditory system, and the 
resultant signals are transmitted to the brain. This stimulation can 
disrupt normal neural activity within the auditory cortex and other 
related brain regions (Sun et al., 2008). For instance, continuous high-
intensity noise may cause over-activation of neurons in the auditory 
cortex, leading to sensory overload. Simultaneously, noise can trigger 
a stress response in the body. The release of stress hormones, such as 
cortisol, subsequently affects brain functions, including cognitive 

processes. Elevated cortisol levels can interfere with the normal 
communication between neurons in the prefrontal cortex, which is 
essential for attention and decision-making (McEwen, 2007; Arnsten, 
2009). In the case of construction workers, continuous exposure to 
diverse noise types on construction sites may have cumulative effects 
on their cognitive states over time.

In recent years, EEG has gained significant attention as a tool for 
measuring and calculating the cognitive states of construction 
workers. Researchers have employed EEG to investigate various 
cognitive states, such as vigilance, mental fatigue, mental stress, 
attention, mental workload, and emotional states (Cheng et al., 2022). 
In the research regarding the impact of noise on workers through the 
utilization of EEG, Ke et  al. (2021) directed their focus toward 
construction workers and employed EEG to explore the manner in 
which different noise conditions influenced the attention-related 
brainwave indices of worker subjects, thus furnishing valuable insights 
into the impact of noise on workers’ attention. Zhang et al. (2019) 
highlighted the EEG’s potential to capture information about workers’ 
physical and psychological states during work, suggesting that EEG 
could effectively enhance safety management and risk control in the 
construction industry. Within the ambit of research and 
accomplishments related to EEG, Baig and Kavakli (2018) introduced 
a novel method to segment EEG data and analyze the correlation 
between work tasks and cognitive activities. Bai et al. (2017) developed 
a flight simulation platform based on EEG, opening new possibilities 
for studying cognitive states in real-world scenarios. Such 
experimental designs and simulation platform advancements 
contribute to improving the stability and applicability of EEG in 
construction safety research. Similarly, Hajinoroozi et  al. (2015) 
extracted features from EEG to predict drivers’ cognitive states, 
demonstrating the feasibility of applying EEG to analyze construction 
workers’ cognitive states. Qin et al. (2023) analyzed the impact of EEG 
technology across various fields, including its potential in construction 
safety research. Collectively, these studies offer valuable insights and 
practical approaches that are conducive to the utilization of EEG in 
investigating the impact of noise on construction workers.

2.4 Research gaps in noise impact on 
workers’ cognitive performance and 
learning efficiency

The studies reviewed have highlighted the significant emphasis 
that scholars place on improving the learning and training efficiency 
of construction workers. The adoption of advanced emerging 
technologies such as BIM + VR, MR, and VR has been shown to 
effectively improve training efficiency and quality. Through the 
creation of immersive and interactive learning environments, these 
technologies are capable of enhancing the attractiveness and 
engagement of learning, thereby facilitating the improvement of 
learning outcomes. Moreover, the research emphasizes the importance 
of personalized training content. By incorporating the individual 
differences and characteristics of construction workers, training 
efficiency and safety performance can be optimized more effectively.

Despite extensive research on learning and training models, 
methods, and content in the construction industry, the actual working 
environment, particularly noise, remains a critical factor influencing 
learning and training efficiency. Noise not only causes hearing loss but 
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also has non-auditory effects on the cardiovascular system, cognitive 
functions, and psychological well-being, potentially affecting both 
individual health and work efficiency and safety. However, current 
research lacks comprehensive and in-depth exploration of how 
different types and intensities of noise specifically impact workers’ 
cognitive processes (such as attention, memory, and decision-making) 
and, subsequently, their learning efficiency. In this context, EEG has 
emerged as a promising tool for measuring and evaluating 
construction workers’ cognitive states, with potential applications in 
safety management and risk control, as it directly measures brain 
activity to precisely assess cognitive states like vigilance, mental 
fatigue, and attention, augmenting our understanding of cognitive 
state influencing factors and providing scientific evidence for safety 
measures and interventions. Consequently, understanding noise-
impact mechanisms and developing effective noise-control measures 
are crucial for enhancing workplace safety and training efficiency. 
Building on previous research, this study utilizes EEG to investigate 
the specific effects of industrial noise on construction workers’ 
learning efficiency and cognitive states, aiming to identify effective 
protective measures to mitigate noise-induced harm to their physical 
and mental health while enhancing learning efficiency. The study’s 
findings will offer valuable scientific guidance and evidence for 
improving safety management practices and health-protection 
strategies in the construction industry.

3 Hypotheses and research model

3.1 The impact of different types of noise

Hughes et al. (2007) suggested that, compared to complex forms 
of auditory stimuli, steady auditory stimuli have less impact on the 
performance of continuous recall tasks. In a review of the literature, 
Beaman (2005) proposed that complex noise is more disruptive than 
steady noise, leading to greater auditory distraction and reduced task 
performance efficiency. Schlittmeier et  al. (2012) conducted a 
modeling analysis of the effects of about 40 types of background 
sounds on short-term verbal memory, finding that steady sounds have 
minimal, if any, impact on short-term memory, whereas intermittent 
and non-steady sounds significantly increase memory error rates. 
Klatte et al. (2013) also noted that complex noise, such as intermittent 
or fluctuating noise, tends to be more disruptive as it significantly 
elevates mental workload and interferes with tasks that require 
sustained attention and working memory. The unpredictable 
variations of non-steady noise make it more difficult for individuals 
to adapt, leading to increased mental fatigue and diminished 
performance on learning tasks. Based on these findings, the following 
hypotheses are proposed:

H1: Complex noise is more likely to lead to a decrease in learning 
efficiency compared to steady noise.

H1a: Complex noise is more likely to lead to a decrease in 
accuracy compared to steady noise.

H1b: Complex noise is more likely to lead to an increase in 
reaction time compared to steady noise.

Mir et al. (2022), in their investigation of the effects of different 
levels and types of construction noise on emotions, found that 
complex construction noise, such as that produced by saws and 
handheld drills, more easily affects workers’ cognitive states. In 
contrast, steady construction noise, such as that produced by 
bulldozers, is less likely to increase workers’ levels of annoyance 
and mental stress. Similarly, Lee and Jeon (2013), in their study of 
the effects of traffic noise, construction noise, and ventilation 
noise on cognitive performance and subjective perceptions, found 
that the stability and spectral characteristics of traffic noise, as 
well as the abrupt fluctuations in construction noise, make these 
two types of complex noise more annoying compared to the steady 
noise of ventilation systems. Moreover, the cognitive impact of 
these noises on cognitive tasks varies significantly depending on 
their characteristics. Lee et al. (2019) further evaluated the effects 
of noise generated by different machines on construction workers, 
revealing that complex noise produced by machines such as 
crushers, pile drivers, and hammer compaction machines has the 
most substantial impact on workers’ cognitive states. Based on 
these findings, the following hypotheses are proposed:

H2: Complex noise is more likely to lead to poorer cognitive states 
compared to steady noise.

H2c: Complex noise is more likely to reduce attention compared 
to steady noise.

H2d: Complex noise is more likely to increase mental workload 
compared to steady noise.

H2e: Complex noise is more likely to increase mental fatigue 
compared to steady noise.

H2f: Complex noise is more likely increase mental stress compared 
to steady noise.

3.2 The impact of different noise levels

Xiong et al. (2018) demonstrated that the level of construction 
noise significantly affects learning efficiency. When noise levels exceed 
55 dB(A), physiological reactions such as dizziness and emotional 
discomfort may occur, leading to communication disruptions and 
decreased academic performance. In an experiment by Ke et al. (2021) 
investigating the effects of noise on workers’ hazard recognition, it was 
found that higher noise levels reduced the accuracy of recognition and 
increased reaction time. Fernandes et al. (2019) examined the effects 
of two different noise levels on students’ performance during reading 
and writing tasks. Their results showed that higher noise levels led to 
decreased attention and accuracy. Based on these findings, the 
following hypotheses are proposed:

H3: Higher noise levels are more likely to lead to a decrease in 
learning efficiency.

H3a: Higher noise levels are more likely to lead to a decrease 
in accuracy.
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H3b: Higher noise levels are more likely to lead to an increase in 
reaction time.

Sharma et al. (2019) conducted an empirical study exploring the 
impact of noise type and noise level on human cognitive performance. 
The results showed that cognitive performance was significantly 
affected by both noise type and noise level. Noise type negatively 
influenced reaction time, while higher noise levels substantially 
increased errors during cognitive tasks. Cognitive abilities deteriorated 
significantly when noise levels reached 85 dB(A) across all types of 
noise. Jafari et al. (2019) evaluated participants’ mental workload and 
attention under background noise, and noise levels of 75 dB(A), 
85 dB(A), and 95 dB(A). The findings indicated that at 95 dB(A), 
mental workload and attention significantly decreased, whereas the 
effects were not significant at 75 dB(A) and 85 dB(A). In a study by 
Kordmiri et al. (2023), it was found that high noise levels significantly 
increased workers’ mental fatigue. Based on these findings, the 
following hypotheses are proposed:

H4: Higher noise levels are more likely to lead to poorer 
cognitive states.

H4c: Higher noise levels are more likely to lead to a decrease 
in attention.

H4d: Higher noise levels are more likely to lead to an increase in 
mental workload.

H4e: Higher noise levels are more likely to lead to an increase in 
mental fatigue.

H4f: Higher noise levels are more likely to lead to an increase in 
mental stress.

The theoretical model framework based on these research 
hypotheses is illustrated in Figure 1.

4 Methods

4.1 Experimental instruments and materials

4.1.1 Experimental instruments
The instruments used in this study are primarily for measuring 

environmental noise and collecting EEG signals. According to the 
“Environmental Noise Emission Standards for Construction Site 
Boundaries” (GB12523-2011), noise measurement instruments must 
be automatic noise monitors or integrating sound level meters, and 
their performance should meet the requirements specified in the 
“Integrating Sound Level Meters” (GB/T17181). Therefore, this study 
uses the Shima AS824, a professional sound level meter that adheres 
to these standards, to accurately measure noise levels. The Emotiv-
EPOC X EEG device was selected to capture EEG signals from 
participants exposed to varying noise environments. This device is 
equipped with 14 high-sensitivity electrode channels that cover key 
brain regions, including the frontal lobe (AF3, AF4, F3, F4, F7, F8, 
FC5, FC6), temporal lobe (T7, T8), parietal lobe (P7, P8), and occipital 
lobe (O1, O2). Electrode placement follows the international 10–20 

system, a widely recognized standard for EEG electrode placement, 
ensuring precision, consistency, and comparability in 
electrode positioning.

4.1.2 Noise materials
To simulate the noise conditions that construction workers face 

in real working environments and to investigate the impact of different 
types and levels of noise on workers’ learning efficiency, noise samples 
were directly collected from a component factory’s production site. 
These noise samples cover common noise sources found on 
construction sites, such as the continuous operation of air compressors 
and the drilling sounds from electric drills, accurately reflecting the 
actual noise environment of construction workers’ daily activities. 
Sound editing software was used to isolate the main noise sources 
from the original recordings, and the noise was classified into two 
groups based on industrial noise types: the steady noise group and the 
complex noise group. The steady noise group consists primarily of 
continuous and relatively uniform noise produced by sources like air 
compressors and electric drills, characterized by probability density 
functions that follow a Gaussian distribution. In contrast, the complex 
noise group is based on the steady noise group but includes transient 
high-energy impulse noises, such as hammering, which introduce 
sudden, high-intensity sounds, making the overall noise environment 
more complex and unpredictable.

To more accurately study the effect of noise intensity on workers’ 
learning efficiency, it should be noted that both the steady noise group 
and the complex noise group have their own dedicated control groups. 
This setup facilitates better accounting for various factors and isolating 
the impact of different noise types. Each of these two noise groups, 
namely the steady noise group and the complex noise group, was 
further divided into subgroups according to intensity levels: the 
control group, low noise group, medium noise group, and high noise 
group. For the control groups corresponding to both the steady noise 
group and the complex noise group, white noise from workers’ daily 
lives was used as a baseline condition for comparison. The low noise 

FIGURE 1

Theoretical model framework diagram.
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groups of both the steady and complex noise groups had average 
decibel values set at 60 dB(A), the medium noise groups at 70 dB(A), 
and the high noise groups at 80 dB(A). This approach enables a 
comprehensive analysis of how different noise intensities within each 
noise type affect workers’ learning efficiency.

4.1.3 Learning task materials
A teaching and testing program was designed based on the 

principle of assessing construction workers’ learning efficiency under 
different noise environments. The teaching materials and test 
questions used in the experiment were sourced from the official 
question bank of the “National Prefabricated Construction Vocational 
Skills Competition,” ensuring the professionalism and practical value 
of the content. To better align with the specific learning needs and 
practical experience of the workers, a training instructor from the 
component factory, with extensive teaching experience, was invited to 
participate in the creation of the instructional videos.

To ensure fairness and scientific integrity, four instructional 
videos were produced, each providing a concise and detailed 
explanation of specific knowledge points. The videos were designed 
with high information density to accommodate the unique demands 
of learning in noisy environments. To test learning outcomes, 20 test 
questions were prepared for each video. These questions were directly 
based on the video content and aimed to assess the viewers’ 
understanding and mastery of the instructional material.

During the design process of the teaching content and test 
questions, endeavors were made to keep the difficulty levels similar 
across all videos and their corresponding tests, thereby ensuring the 
consistency and comparability of the experimental results. Moreover, 
the difference in text length between the teaching content and test 
questions for each video was controlled within 10%. This measure was 
adopted to minimize variations in the learning burden induced by 
differences in content lengths, ensuring that the experimental results 
could more accurately reflect the impact of noisy environments on 
learning efficiency.

4.2 Experimental participants

This study recruited 22 construction workers as experimental 
participants, evenly divided into two groups: 11 in the complex noise 
group and 11 in the steady noise group. Each group was composed of 
9 men and 2 women. This gender-balanced distribution within the 
groups helps to minimize potential confounding factors related to 
gender in the analysis of the impact of different noise types on the 
participants. The ages of the participants in both groups spanned from 
18 to 50 years, with an average age of 35 years. The majority of them 
were between 25 and 45 years old. Regarding work experience, it 
ranged from 1 to 30 years, with an average of 12 years. A significant 
proportion of the participants had 1–10 years of experience, while 
some had more than 15 years of experience. The experimental 
protocol was approved by the Ethics Committee of Hainan University. 
The participants represented a diverse range of ages, from younger 
workers to more seasoned professionals, thus reflecting the actual 
demographic distribution within the construction industry’s 
workforce. All participants had normal vision and hearing, normal 
noise tolerance, and were capable of text recognition and verbal 
communication. They were instructed to avoid alcohol or stimulants 

prior to the experiment and actively participated in completing the 
experimental tasks throughout the study.

4.3 Data collection

In this experiment, E-Prime 3.0 software was used to collect 
behavioral data from the participants. After confirming that all 
experimental equipment and software were properly set up and 
calibrated, the E-Prime 3.0 software was launched, and the 
pre-designed experimental program was loaded. This program 
included the playback of instructional videos, the answering tasks, and 
the randomization of noise conditions. Once the experimental 
program was initiated, E-Prime 3.0 automatically guided the 
participants through the entire experiment, including watching 
instructional videos, completing multiple-choice questions, and 
taking breaks. During each response phase, the software tracked both 
the participants’ answers and their reaction times. Throughout the 
entire experiment, E-Prime 3.0 continuously and automatically 
recorded data on the accuracy of responses and reaction times, 
ensuring comprehensive data collection. After the experiment, the 
data files were checked to ensure that all information was correctly 
saved, and the collected data were exported for subsequent 
statistical analysis.

EEG data were collected using the Emotiv-EPOC X device during 
this experiment. Before the experiment began, the Emotiv-EPOC X 
device and its accessories were checked for any damage, and the 
accompanying recording software was properly installed. The 
electrodes were coated with an appropriate amount of conductive gel 
to ensure good signal transmission. Prior to the start of the 
experiment, participants were guided through proper scalp cleaning 
procedures, after which EEG electrodes were applied according to the 
international 10–20 system. Care was taken to ensure that each 
electrode maintained secure contact with the scalp for accurate data 
collection. The electrode cap was adjusted to fit comfortably on each 
participant’s head. Once the electrodes were securely placed, the EEG 
recording software was initiated to assess signal quality, ensuring that 
all channels were functioning within acceptable ranges. If any channel 
showed poor signal quality, adjustments were made to the electrode 
positions, or additional conductive gel was applied. As participants 
began the learning tasks, the EEG device was activated to start real-
time recording of EEG data. Throughout the experiment, the EEG 
signal quality was continuously monitored to maintain both accuracy 
and completeness of the data. After the experiment, all EEG data were 
securely stored, with each data set properly labeled for 
subsequent analysis.

4.4 Experimental procedure

During the experimental preparation phase, participants’ 
demographic information—including age, gender, and educational 
background—was systematically recorded. The experimental procedures 
and task requirements were thoroughly explained to the participants, 
and they were provided with sufficient practice sessions to familiarize 
themselves with the protocol. This preparatory phase aimed to ensure 
that participants fully understood the purpose of the experiment and 
reduce potential confusion or anxiety. Prior to the placement of 
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electrodes, the participants’ scalps were meticulously cleaned to 
eliminate any contaminants such as dirt and oils, thereby optimizing 
electrode-skin contact to enhance signal quality. Following the electrode 
installation, their connections were rigorously checked to ensure proper 
attachment, and the correct positioning of the reference and ground 
electrodes was verified. Signal quality was assessed to confirm the proper 
functionality of the EEG recording software. Additionally, sound levels 
were calibrated using noise measurement instrument to ensure that the 
noise conditions conformed to the predefined experimental standards.

During the formal experimental phase, each participant, after 
thoroughly reviewing and confirming their understanding of the 
experimental instructions, initiated the procedure by pressing the start 
button. Upon commencement, the participant watched a five-minute 
teaching video. During this video-watching period, noise interference 
was introduced, and the EEG signals were continuously recorded. 
Note that the noise was present only when the participants were 
watching the teaching video. Following the video, the participant 
completed 20 multiple-choice questions directly related to the video 
content, with a 20-s time limit allocated for each question. Upon task 
completion, participants were provided with a two-minute rest period 
to alleviate fatigue and prepare for the subsequent task. This procedure 
was repeated four times, with each cycle maintaining consistency in 
steps, while the noise levels and teaching videos were randomly 
assigned and shuffled to introduce variability. A comprehensive 
outline of the experimental protocol is presented in Figure 2.

4.5 Data analysis

During the entire EEG recording process, the collected data are 
highly vulnerable to various artifacts, which can significantly affect 

data quality and complicate subsequent data processing and analysis. 
Therefore, EEG data preprocessing is essential to minimize the impact 
of these artifacts. Artifacts are generally classified into two categories: 
intrinsic and extrinsic. Intrinsic artifacts primarily originate from the 
participant’s physiological activities, such as eye blinks and heartbeats, 
which produce noticeable distortions in the EEG signals. Extrinsic 
artifacts, on the other hand, stem from the experimental environment 
and equipment, such as electrode displacement due to head movement 
or loose connections, which can compromise the quality of the 
EEG recordings.

To minimize the impact of artifacts and obtain clean, valid EEG 
data, the EEG signal processing framework proposed by Jebelli et al. 
(2018) was followed, and the EEG data were preprocessed according 
to the steps outlined. First, the raw EEG data were imported into the 
signal processing software EEGLAB. Upon importing the data, 
electrode location information was used to verify the precise 
positioning of each electrode, ensuring accuracy for subsequent 
analysis. Subsequently, a Finite Impulse Response (FIR) filter was 
applied to eliminate the majority of extrinsic artifacts, including 
electrode movement and power line interference, along with 
low-frequency (below 0.5 Hz) and high-frequency (above 40 Hz) 
interference induced by physiological activities like respiration and 
muscle movements, among which heartbeats were included. After 
filtering, interpolation was used to correct any faulty electrodes, and 
bad data segments were removed from the data set. Finally, 
Independent Component Analysis (ICA) was performed to eliminate 
artifacts. As shown in Figure 3, most intrinsic artifacts caused by 
muscle movements, such as eye movements and eye drifts, can 
be isolated into independent components through ICA. These artifact 
components were then identified and removed. After preprocessing, 
clean EEG data were obtained, as illustrated in Figure 4.

FIGURE 2

Experimental procedure flowchart.
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EEG signals can be categorized into five fundamental frequency 
bands, namely δ (1–4 Hz), θ (5–7 Hz), α (8–14 Hz), β (15–30 Hz), and 
γ (above 30 Hz). Power Spectral Density (PSD), which is derived by 
utilizing MATLAB’s pwelch function, is employed to quantify the 
relative PSD values within these bands, thereby providing a basis for 
the assessment of cognitive states including attention, mental 
workload, mental fatigue, and mental stress (Cheng et al., 2022). The 
detailed calculation formulas for these indicators are presented in 
Table 1. The specific computational parameters are set as follows: The 
sampling rate is set at 128 Hz. A Hamming window is employed for 
smoothing purposes. The window length is determined to be 2 s, 
which correspondingly contains 256 sampling points. Additionally, a 
50% overlapping window ratio is utilized to optimize the accuracy and 
reliability of the data analysis. Figure 5 presents a clear depiction of 
the PSD of the EEG signal. The curve represents the PSD values, 
which exhibit a prominent peak at lower frequencies, gradually 
decreasing as the frequency increases. This characteristic pattern is 
typical in EEG power spectra, where lower frequencies often carry 
more significant power. This figure effectively illustrates the broadband 
power spectrum of EEG obtained using the specified parameters, 
providing a visual representation of the frequency-domain 
characteristics of the EEG data and supporting the calculation of 
cognitive states.

5 Results

5.1 Behavioral data analysis

The accuracy and reaction time of participants in both the 
complex noise and steady noise groups are shown in Figure 6. Overall, 
the accuracy at all noise levels in the complex noise environment is 
lower than that in the steady noise environment. This suggests that the 
complex noise environment more easily impairs workers’ ability to 
comprehend and correctly apply the knowledge they have learned 

compared to the steady noise environment. The most pronounced 
difference occurs in the high noise group, indicating that high levels 
of complex noise have a greater adverse impact on comprehension and 
application of knowledge than equivalent levels of steady noise 
environment. Similarly, reaction time across all noise levels are longer 
in the complex noise environment than in the steady noise 
environment. These findings indicates that, compared to the steady 
noise environment, a complex noise environment more readily 
increases workers’ reaction times. This effect is particularly noticeable 
in the low noise group and the medium noise group, suggesting that 
low and medium noise levels in a complex environment have a greater 
impact on workers’ familiarity with and ability to quickly apply 
knowledge than equivalent levels in a steady noise environment.

A significance analysis was conducted on the differences in 
accuracy and reaction time across various noise levels in the two noise 
environments, as shown in Table 2. The results revealed no significant 
differences in the impact of different noise levels on accuracy and 
reaction time within each noise environment. This indicates that the 
type of noise has a greater effect on workers’ learning efficiency, 
whereas variations in noise levels within the same noise type are not 
significantly impactful.

5.2 Cognitive state analysis

5.2.1 Analysis of the impact of noise on attention
As depicted in Figure 7, the impact of complex versus steady noise 

on attention reveals differing response patterns between the two 
environments. Specifically, under complex noise conditions, both the 
low and high noise groups exhibited better attention performance 
than their counterparts in the steady noise environment. In contrast, 
the medium noise group in the complex noise environment showed 
lower attention performance compared to the medium noise group in 
the steady noise environment. Overall, the type of noise did not 
exhibit a consistent pattern of influence on attention.

FIGURE 3

Removal of eye movement and drift artifacts from EEG signals using ICA analysis.
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A Mann–Whitney U test was conducted to further compare 
attention levels under the two types of noise environments. The results 
indicated that there was no statistically significant difference in 
attention levels between the two noise environments (Z = -0.643, 
p > 0.05), suggesting that different noise types do not have a significant 
impact on attention levels.

Additionally, a separate statistical analysis was performed on the 
attention levels across different noise intensity levels within each noise 
type, and the results are presented in Table 3. In the complex noise 
environment, there were no significant differences in attention 
indicators across the different noise levels. However, in the steady 
noise environment, different noise levels had a significant impact on 

attention, with a relatively large effect size. This indicates that noise 
level in this environment has a strong influence on attention.

To gain deeper insights into the inter-group relationships of 
attention across different noise levels within the steady noise 
environment, a post-hoc multiple comparison was conducted. The 
results, as presented in Table 4, reveal that the attention level at 80 dB 
(A) is significantly lower than that at the other three noise levels [i.e., 
the control group, 60 dB (A), and 70 dB (A)], with a relatively strong 
effect, whereas no significant differences in attention exist among the 
other three noise levels.

The results indicate that in a steady noise environment, significant 
negative effects on workers’ attention occur only when the noise level 
reaches or exceeds 80 dB(A). At this threshold, the disruptive effect of 
noise on individuals’ cognitive function and work efficiency sharply 
increases. In contrast, noise levels below this threshold have a relatively 
minor effect on attention, suggesting that individuals can partially 
adapt to or ignore lower levels of noise, thereby maintaining better 
work performance and attentional focus.

5.2.2 Analysis of the impact of noise on mental 
workload

The impact of complex noise and steady noise on mental workload 
is illustrated in Figure 8. The results indicate that mental workload 
levels do not exhibit a consistent trend across the same noise levels. 
Specifically, in the low and medium noise groups, participants 
experienced higher mental workload under complex noise conditions 
compared to steady noise conditions. However, in the high noise 
group, the mental workload under complex noise is lower than that 
under steady noise.

A Mann–Whitney U test was conducted to compare mental 
workload levels under the two types of noise environments. The 
results indicated no statistically significant difference between the 
complex noise and steady noise conditions (Z = -1.719, p > 0.05), 
suggesting that the type of noise does not significantly affect mental 
workload levels.

Furthermore, a statistical analysis of mental workload across 
different noise levels within each noise environment was performed. 
The analysis revealed no statistically significant impact of different 
noise levels on mental workload in either noise environment 
(Complex noise: p > 0.05, Steady noise: p > 0.05). This indicates that, 
within the same noise type, different noise intensities do not have a 
significant differential impact on workers’ mental workload.

FIGURE 4

Comparison of EEG signals before and after artifact removal.

TABLE 1 Calculation formulas for cognitive state indicators.

Cognitive 
state

Calculation formula Energy source 
channels

Attention Arousal index = αi/βi i = AF3 + AF4 + F4 + F3

Mental workload Engagement index = β/(θ + α) Average of all channels

Mental fatigue θ/α Average of all channels

Mental stress βi i = T7/T8/AF3/AF4

FIGURE 5

Electroencephalogram power spectral density plot.
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Statistical analysis indicates that variations in noise intensity 
within the same noise type do not significantly affect workers’ mental 
workload levels. This suggests that workers maintain relative stability 
in their cognitive processing ability and the psychological stress 
during task execution when exposed to different noise intensities. It 
implies that workers possess a certain level of adaptability to their 
noise environment, and the differences between noise levels are 
insufficient to impact mental workload.

5.2.3 Analysis of the impact of noise on mental 
fatigue

Figure 9 depicts the impact of complex noise versus steady noise 
on mental fatigue. The data demonstrate that mental fatigue levels are 
consistently higher across all noise intensities within the steady noise 
environment in comparison with the complex noise environment. 
This suggests that, compared to a complex noise environment, a steady 
noise environment is more likely to induce mental fatigue in workers.

A statistical analysis was conducted on mental fatigue across different 
noise intensity levels within each noise type, and the results are presented 
in Table 5. In the steady noise environment, no significant differences in 
mental fatigue were observed across varying noise levels, indicating that 
noise intensity did not substantially affect mental fatigue under steady 
noise conditions. Conversely, under complex noise conditions, different 
noise levels had a significant impact on mental fatigue, with a relatively 
strong effect size, highlighting the notable role of noise levels in 
modulating mental fatigue.

A post-hoc multiple comparison of mental fatigue across different 
noise levels within the complex noise environment was conducted, 
and the results are presented in Table  6. In the complex noise 
environment, the high noise group resulted in significantly higher 
mental fatigue compared to the medium noise group and the low 
noise group, exhibiting an extremely strong effect. However, there was 
no significant difference in mental fatigue between the high noise 
group and the control group. Additionally, no significant differences 
were found in the comparisons among the other three groups. This 
indicates that the 80 dB(A) noise level in a complex noise environment 
leads to a significant increase in mental fatigue.

The research results indicate that steady noise is more likely than 
complex noise to induce higher levels of mental fatigue in workers. 
Moreover, when the intensity of complex noise rises to 80 dB(A), there 
is a significant rise in workers’ mental fatigue. This suggests that the 
complexity and variability of noise can, to some extent, mitigate the 
negative impact of noise on mental fatigue. However, noise intensity 
remains a critical factor, once it reaches a certain threshold, it 
significantly elevates workers’ mental fatigue regardless of 
its complexity.

FIGURE 6

Comparison of accuracy (A) and reaction time (B) across different groups.

TABLE 2 Kruskal-Wallis ANOVA results on the impact of noise levels on 
behavioral data.

Noise 
type

Factor Behavioral 
indicator

Degrees 
of 

freedom

H p

Complex 

noise Noise 

level

Accuracy 3 0.446 0.931 > 0.05

Reaction time 3 2.235 0.525 > 0.05

Steady 

noise

Accuracy 3 0.333 0.954 > 0.05

Reaction time 3 1.294 0.731 > 0.05

FIGURE 7

Comparison of attention across different groups.
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5.2.4 Analysis of the impact of noise on mental 
stress

The impact of steady noise and complex noise on mental stress is 
illustrated in Figure  10. The prefrontal cortex (AF3, AF4) and 
temporal lobe regions (T7, T8) are the areas associated with mental 
stress. Mental stress levels under complex noise were higher than 
those under steady noise at the same noise levels, indicating that 
complex noise is more likely to increase mental stress compared to 
steady noise.

In order to further analyze the impact of different noise levels on 
mental fatigue within the two noise environments, a Kruskal-Wallis 
ANOVA was carried out. The results demonstrated that there was no 
statistically significant effect of varying noise levels on mental fatigue 
in either the steady or complex noise environments (Complex noise: 
p > 0.05, Steady noise: p > 0.05). This implies that, within a certain 
range, changes in noise intensity do not exert a significant impact on 
workers’ mental fatigue.

Further observation revealed that, in the steady noise 
environment, mental fatigue tended to increase as noise levels 

escalated. Although this trend did not reach statistical significance, it 
implies that exposure to steady noise might potentially aggravate 
workers’ mental fatigue.

5.3 Correlation analysis between cognitive 
state indicators and behavioral indicators

To further investigate the relationships and internal correlations 
between behavioral indicators and cognitive state indicators, this 
study employed the Pearson correlation coefficient (r) as the primary 
tool for measuring associations between variables. The correlation 
results are presented in Table 7. A negative correlation was found 
between reaction time and attention, indicating higher levels of 
attention are associated with shorter reaction times. This finding 
supports the hypothesis that increased attention can effectively 
enhance processing speed. Additionally, a significant positive 
correlation was observed between reaction time and mental 
workload, suggesting that as mental workload increases, reaction 

TABLE 3 Kruskal-Wallis ANOVA results on the impact of noise levels on attention.

Noise type Factor EEG indicator Degrees of 
freedom

H p η2

Complex noise
Noise level Attention

3 3.68 0.298 > 0.05 -

Steady noise 3 10.64 0.014 < 0.05 0.248

TABLE 4 Post-hoc multiple comparison of attention across different noise levels in the steady noise environment.

Comparison groups Test statistic Standard 
error

p Cohen’s d Result

Control group vs. High noise group 11.364 5.477 0.038 < 0.05 1.723 High noise group < Control group

High noise group vs. Low noise group 12.818 5.477 0.019 < 0.05 2.000 High noise group < Low noise group

Medium noise group vs. High noise group 17.091 5.477 0.002 < 0.05 2.494 High noise group < Medium noise group

Control group vs. Low noise group −1.455 5.477 0.791 > 0.05 - No significant difference

Control group vs. Medium noise group −5.727 5.477 0.296 > 0.05 - No significant difference

Medium noise group vs. Low noise group −4.273 5.477 0.435 > 0.05 - No significant difference

FIGURE 8

Comparison of mental workload across different groups.

FIGURE 9

Comparison of mental fatigue across different groups.
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time also increases. This implies that an individual’s response speed 
decreases with higher mental workload, possibly due to reduced 
information processing efficiency caused by excessive 
mental workload.

A positive correlation was also found between reaction time and 
mental stress, suggesting that higher mental stress may impair an 
individual’s information processing ability and response speed. 
However, the correlation between reaction time and mental fatigue 
was not significant, revealing that mental fatigue does not directly 
affect reaction time or that its impact may be too subtle to detect 
statistically. Regarding accuracy, no significant correlations were 
found between accuracy and any of the cognitive state indicators. This 
suggest that accuracy is influenced by multiple factors, and no single 
cognitive state indicator can fully explain its variation.

6 Discussion

Based on the experimental results, the hypotheses were 
systematically tested, and the outcomes are presented in Table 8. The 
following section provides a detailed discussion and analysis of the 
results for each individual hypothesis test.

6.1 The impact of noise type on learning 
efficiency and cognitive state

The experimental results lent support to hypothesis H1, which 
posited that at the same noise level, complex noise exerted a 

TABLE 5 Kruskal-Wallis ANOVA results on the impact of noise levels on mental fatigue.

Noise type Factor EEG indicator Degrees of 
freedom

H p η2

Complex noise
Noise level Mental fatigue

3 19.986 <0.01 0.465

Steady noise 3 0.239 0.971 > 0.05 -

TABLE 6 Post-hoc multiple comparison of mental fatigue across different noise levels in the complex noise environment.

Comparison groups Test statistic Standard error p Cohen’s d Result

Control group vs. High noise group −14.455 5.477 0.146 > 0.05 - No significant difference

High noise group vs. Low noise group −24.273 5.477 0.004 < 0.05 2.982 High noise group > Low noise group

Medium noise group vs. High noise group −22.727 5.477 0.009 < 0.05 3.042
High noise group > Medium noise 

group

Control group vs. Low noise group 9.818 5.477 0.97 > 0.05 - No significant difference

Control group vs. Medium noise group 8.273 5.477 1.000 > 0.05 - No significant difference

Medium noise group vs. Low noise group −1.545 5.477 1.000 > 0.05 - No significant difference

FIGURE 10

Mental stress across different noise levels in the steady noise group (A) and complex noise group (B) for each channel.

TABLE 7 Correlation coefficients between behavioral indicators and 
cognitive state indicators.

Correlation 
indicators

r p

Accuracy - Attention 0.009 0.931 > 0.05

Accuracy - Mental workload 0.155 0.150 > 0.05

Accuracy - Mental stress 0.118 0.275 > 0.05

Accuracy - Mental fatigue −0.017 0.877 > 0.05

Reaction time - Attention −0.220 0.039 < 0.05

Reaction time - Mental 

workload
0.267 0.012 < 0.05

Reaction time - Mental stress 0.229 0.032 < 0.05

Reaction time - Mental fatigue −0.161 0.133 > 0.05
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significantly more negative impact on construction workers’ learning 
efficiency than did steady noise. Specifically, under identical noise 
levels, complex noise was demonstrated to have a more pronounced 
negative influence on the learning efficiency of construction workers 
in comparison with steady noise. The unpredictability and frequent 
variations of complex noise made it challenging for workers to adapt 
and ignore, leading to constant disruption of their working memory 
and information processing capabilities. In a complex noise 
environment, workers had to frequently reallocate and adjust their 
attention, leading to increased mental exhaustion (Hughes et  al., 
2007). High levels of mental workload and prolonged mental stress 
not only reduced learning accuracy and reaction speed but also 
further affected workers’ overall learning efficiency and job 
performance (Klatte et  al., 2013). Additionally, the diversity and 
variability of complex noise continuously captured workers’ attention, 
disrupting their workflow and increasing the strain on their cognitive 
resources (Beaman, 2005). In contrast, while steady noise did affect 
cognitive function to some degree, its consistent nature allowed 
workers to habituate and adapt more easily, thereby reducing 
interference with learning tasks (Schlittmeier et al., 2012). On the 
other hand, the intermittent and irregular nature of complex noise 
increased the mental workload, making workers more susceptible to 
mental fatigue and mental stress, which further impaired their 
learning outcomes and work efficiency.

Regarding the impact of noise type on cognitive state, the 
experimental results did not support hypotheses H2c and H2d. 
This outcome aligns with the findings of Sherman et al. (2023) and 
Li et al. (2023), where the effect of noise type on attention and 
mental workload did not reach statistical significance. One possible 
explanation is that individuals adapted to different noise types, 
reducing their interference of noise on attention and mental 
workload. Additionally, there may be a threshold beyond which 
noise must exceed a certain intensity or duration to significantly 
affect cognitive performance (Lavie and Polly, 2014). More 
specifically, workers’ adaptation to continuous noise likely involves 
several cognitive and physiological processes. Habituation may 
occur as the auditory cortex and related neural pathways adjust to 
repeated noise exposure, reducing the attention directed toward 
the noise. Attentional filtering is also probable, with the prefrontal 

cortex potentially enhancing its role in selectively attending to 
task-relevant information. Stress response modulation might 
involve changes in cortisol release and other physiological 
reactions to maintain stability. The combined effect of these factors 
may have resulted in the non-significant impact of noise type on 
attention and mental workload in this study. The experimental 
results did not support hypothesis H2e; instead, steady noise was 
found to induce mental fatigue more readily than complex noise. 
Continuous noise triggers a sustained stress response. Prolonged 
exposure to continuous noise can lead to chronic stress responses, 
resulting in the release of stress hormones such as cortisol and 
adrenaline. While these hormones for managing immediate 
threats, their long-term release can disrupt proper energy 
allocation, ultimately increasing feelings of fatigue (Heidari et al., 
2021; Mucci et al., 2021). In contrast, although intermittent noise 
also elicits a stress response, it offers brief recovery periods on 
account of its irregular nature. These recovery periods can mitigate 
the cumulative effect of prolonged stress responses and alleviate 
overall fatigue. As a result, steady noise is more likely to cause 
mental fatigue than complex noise.

6.2 The impact of noise levels on learning 
efficiency and cognitive state

In examining the impact of noise levels on learning efficiency, 
the experimental results did not support hypotheses H3a and H3b, 
indicating that variations in noise levels within the same type did 
not significantly affect behavioral indicators. This could be due to 
the gradual adaptation of construction workers to continuous 
noise, which may diminish its negative effects on learning. Previous 
studies have shown that individuals develop an adaptive response 
to persistent background noise, reducing its interference with 
cognitive tasks over time (Park et al., 2018). Moreover, construction 
workers might possess an enhanced tolerance to noise, enabling 
them to maintain a relatively high learning efficiency even within 
noisy environments. This noise tolerance is associated with factors 
including individuals’ cognitive resources, psychological state, and 
past experience (Lewkowski et al., 2018). For example, Chere and 

TABLE 8 Hypothesis test results.

Hypothesis Result

H1a: Complex noise is more likely to lead to a decrease in accuracy compared to steady noise. Supported

H1b: Complex noise is more likely to lead to an increase in reaction time compared to steady noise. Supported

H2c: Complex noise is more likely to lead to a decrease in attention compared to steady noise. Not supported

H2d: Complex noise is more likely to lead to an increase in mental workload compared to steady noise. Not supported

H2e: Complex noise is more likely to lead to an increase in mental fatigue compared to steady noise. Not supported

H2f: Complex noise is more likely to lead to an increase in mental stress compared to steady noise. Supported

H3a: Higher noise levels are more likely to lead to a decrease in accuracy. Not supported

H3b: Higher noise levels are more likely to lead to an increase in reaction time. Not supported

H4c: Higher noise levels are more likely to lead to a decrease in attention. Supported

H4d: Higher noise levels are more likely to lead to an increase in mental workload. Not supported

H4e: Higher noise levels are more likely to lead to an increase in mental fatigue. Supported

H4f: Higher noise levels are more likely to lead to an increase in mental stress. Supported
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Kirkham (2021) demonstrated that household noise significantly 
impair adolescents’ executive functions, but this effect only 
becomes noticeable when the noise reaches a certain level. This 
suggests that the impact of noise on learning efficiency may also 
follow a threshold model, noise fluctuations within a certain range 
may not significantly impact learning efficiency, but once the noise 
level exceeds a specific limit, the impact becomes pronounced.

Regarding the impact of noise levels on cognitive state, the 
experimental results supported hypotheses H4c, H4e, and H4f. 
High levels of steady noise were shown to significantly reduce 
attention, suggesting that individuals find it difficult to maintain 
high levels of attention in a continuous high-level noise 
environment. There was a trend of increased mental stress in high 
levels of steady noise conditions, suggesting that prolonged noise 
exposure increases psychological strain. Additionally, mental 
fatigue was notably elevated in high-level complex noise 
environments. These results consistently reflect the detrimental 
effects of high-level noise on cognitive state, highlighting the 
importance of noise levels and types on workers’ psychological and 
cognitive well-being in the workplace. However, the results did not 
support hypothesis H4d, as high levels of noise did not significantly 
elevate mental workload. This finding is in line with Jafari et al. 
(2019) suggest that noise has a high threshold for influencing 
mental workload. Specifically, even at a noise level of 80 dB(A), 
mental workload did not significantly increase, possibly because 
the effect of noise on mental workload only becomes evident 
beyond a certain intensity. It is also possible that workers had 
adapted to lower levels of noise, with higher noise levels or 
extended exposure being required to substantially affect their 
mental workload. Further analysis suggests that individual noise 
tolerance and adaptability could moderate the impact of noise on 
mental workload (Smith, 1991).

To verify the validity of the EEG-derived metrics, a comparison 
was conducted between these metrics and the behavioral data. The 
existence of significant correlations between attention and reaction 
time, along with those between mental workload and reaction time, 
indicates that the EEG metrics are effective in mirroring the cognitive 
states associated with task performance. Moreover, these metrics can 
be  differentiated from potential artifacts originating from the 
noisy environment.

7 Conclusion

This study explored the impact of noise on construction workers’ 
learning efficiency and cognitive states using EEG technology further 
examined the correlation between cognitive states and learning 
efficiency. The research disclosed how noise affects workers’ cognitive 
processes and learning performance. Moreover, the findings shed light 
on how noise disrupts workers’ cognitive functions and influences 
their ability to acquire and apply knowledge, while also affording a 
deeper understanding of strategies for enhancing learning efficiency 
and mitigating occupational health risks. This study not only presents 
new physiological evidence on the detrimental effects of industrial 
noise in construction settings but also provides scientific foundation 
for optimizing the work environment and promoting worker well-
being. By linking cognitive states to learning outcomes, this study 
offers actionable insights into reducing noise-induced cognitive 

impairments and fostering healthier, more productive work 
conditions. The key research conclusions are outlined as follows:

 1. At the same noise level, complex noise had a more significant 
negative impact on construction workers’ learning efficiency 
compared to steady noise. This finding highlights the 
importance of noise complexity in the workplace and its effect 
on learning efficiency, indicating that the characteristics of 
noise have a considerable influence on workers’ cognitive and 
behavioral performance. This provides scientific evidence for 
the development of more effective noise management policies 
and training programs, which can better protect workers’ 
physical and mental health and promote the healthy 
development of the construction industry.

 2. The impact of noise type on certain cognitive state indicators 
was significant. Specifically, steady noise was more likely to 
induce mental fatigue in workers, while complex noise was 
more likely to increase mental stress. This suggests that in a 
work environment, it is important not only to consider the 
intensity of noise but also to pay attention to the type and 
characteristics of noise in order to develop more effective 
intervention measures and management strategies. These 
strategies can help reduce the adverse effects of noise on 
workers’ psychological and cognitive health, thereby enhancing 
overall work efficiency and worker well-being.

 3. High levels of noise can lead to deteriorated cognitive states, 
particularly in terms of decreased attention, increased mental 
fatigue, and heightened mental workload. Therefore, when 
developing noise management strategies, it is important to 
consider the long-term effects of noise intensity on workers’ 
cognitive functions.

 4. Attention, mental workload, and mental stress were found to have 
a significant correlation with reaction time. This indicates that 
cognitive state acts as a crucial link between noise interference and 
learning efficiency, with different cognitive states influencing 
workers’ responses and performance in noisy environments. 
Consequently, management strategies aimed at mitigating the 
impact of noise on learning efficiency should include monitoring 
and regulating cognitive states to alleviate the negative effects of 
noise on workers’ learning and work, ultimately improving overall 
learning outcomes and work efficiency.

Owing to the restrictions imposed by the Ethics Committee 
regarding noise levels in human experiments, and taking into account 
the actual noise levels prevalent in the component factory, the present 
study solely investigated the impact of three levels of construction 
industrial noise, specifically 60 dB(A), 70 dB(A), and 80 dB(A), on 
construction workers’ learning efficiency and cognitive state. Noise 
levels surpassing 80 dB(A) were excluded from the study, as they 
might potentially inflict uncontrollable harm upon the human body. 
Future research will focus on leveraging state-of-the-art simulation 
tools to mimic the acoustic conditions of more extreme noise levels in 
construction settings. This will enable us to better understand the 
complete range of effects and develop more refined noise management 
approaches. Future research endeavors should strive to augment the 
sample size and make more meticulous distinctions among different 
noise types and sources. By doing so, it would be possible to conduct 
a more in-depth exploration of the specific effects and underlying 
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mechanisms through which diverse types of noise influence learning 
efficiency and cognitive performance.
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