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Introduction: Identification and treatment of neurological disorders depend

much on brain imaging and neurotherapeutic decision support. Although

they are loud, do not remain in one spot, and are rather complex,

electroencephalogram (EEG) signals are the principal tool used in research of

brain function. This work employs an Adaptive Transformer-based technique

with improved attention processes to extract temporal and spatial relationships

in EEG data, effectively addressing these issues.

Methods: First processed to eliminate noise and split them into time-series

chunks, EEG data are then included into the proposed approach. Channel-wise

embeddings and temporal encoding help to depict the data. Then, a transformer

design including spatial attention for inter-channel interactions, multi-head

self-attention for temporal aspects, and an adaptive attention mask for domain-

specific modifications is used. Other openly accessible EEG datasets as well

as the TUH EEG Corpus and CHB-MIT were evaluated against the model. Its

performance was scored using metrics like accuracy, precision, memory, and

F1-score.

Results: The suggested method was more accurate than standard models like

CNNs and LSTMs, with a score of 98.24%. The method was also shown to be

able to find minor patterns in EEG data by improving precision and memory.

Attention maps showed important areas of time and space, which made them

easier to understand and useful in professional settings.

Discussion: The Adaptive Transformer turns out to be a useful tool for

neurotherapeutic use of EEG data modeling. The approach provides greater

medical assistance and knowledge on the functioning of the brain as well
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as answers significant issues. Future research might focus on subject-specific 

modifications and interaction with real-time systems. 

Conclusion: This study demonstrates the potential of transformer-based models 

in revolutionizing EEG analysis for precision brain imaging and neurotherapeutic 

decision-making. 

KEYWORDS 

EEG signal analysis, transformer architecture, neurotherapeutic decision support, 
temporal-spatial modeling, precision brain imaging, adaptive attention mechanism, 
machine learning in neurology 

1 Introduction 

Understanding brain function and detecting neurological 
diseases has long depend on electroencephalography (EEG), a 
fundamental instrument. EEG oers real-time understanding of 
brain dynamics by gathering electrical activity using non-invasive 
electrodes positioned on the head. Its uses are many and range 
from monitoring brain-computer interface systems to diagnosis 
of epilepsy and cognitive state evaluation. Because of its great 
temporal resolution, which makes it essential for research on 
the complex temporal and spatial patterns of the brain, EEG 
is crucial in precision brain imaging. Nevertheless, given the 
natural complexity of the signals, EEG analysis presents significant 
diÿculties even with its promise (Ajali-Hernández et al., 2024; 
Dong et al., 2024). 

Usually impacted by both internal and external events, 
EEG signals are famously non-stationary–that is, their 
statistical characteristics shift with time. This feature makes 
the identification of significant trends diÿcult as conventional 
approaches find diÿculty to adjust to such dynamic changes. 
Another major obstacle is noise as ambient interference, muscle 
movements, or artifacts from eye blinks can contaminate EEG 
recordings. Furthermore very complicated temporal and spatial 
connections seen in EEG data need for sophisticated analysis 
methods to reveal underlying patterns. These diÿculties 
have spurred a lot of study on more advanced computer 
approaches for EEG analysis (El Hadiri et al., 2024; Gunia 
et al., 2024). 

Although conventional machine learning and deep learning 
models have been extensively used in EEG signal processing, they 
have natural restrictions. Support vector machines or random 
forests are two examples of classical machine learning methods 
that mostly depend on feature engineering, which calls for domain 
knowledge and usually misses the whole complexity of EEG signals. 
By automating feature extraction and developing hierarchical 
representations, deep learning models–CNN and LSTM among 
others–have shown a significant improvement (Ibitoye et al., 2021; 
Khayretdinova et al., 2024). These models, too, have limitations. 
CNNs are great in extracting spatial characteristics, but they 
often ignore the temporal dynamics that are very important in 
EEG analysis. On the other hand, LSTMs struggle with spatial 
connections between EEG channels while specializing in modeling 
sequential data. Usually requiring huge datasets to properly 

generalize, both methods are prone to overfitting when used on 
smaller, domain-specific datasets. Moreover, their interpretability 
is still restricted, which makes clinical adoption diÿcult when 
explainability is essential (Kim et al., 2024; Klooster et al., 
2024). 

With these constraints, the development of transformer-based 
models oers a transforming answer. Originally designed for 
“natural language processing,” (NLP), transformers with their 
attention techniques have transformed sequential data processing. 
Transformers are especially fit for complicated temporal and 
spatial modeling as they can record long-range relationships 
within data unlike conventional recurrent or convolutional 
architectures. Transformers’ fundamental invention is their self-
attention mechanism, which gives input components dynamic 
weights according on their significance for the current job. This 
adaptability lets transformers concentrate on the most useful 
sections of the data, which fits very well with the diÿculties 
of EEG signal analysis (Li et al., 2024). Transformers-based 
models have shown amazing success in dierent fields. Models 
like BERT and GPT have established new standards in NLP by 
deftly grasping semantics and context. Using both global and 
local information, transformers have outperformed conventional 
CNNs in computer vision applications like object identification and 
picture categorization. Time-series analysis, in which transformers 
have been used to anticipate financial patterns, track industrial 
processes, and project medical results, has likewise evolved from 
their usage. These developments show the adaptability and 
possibilities of transformers, therefore motivating their use in EEG 
analysis (Mutawa and Hassouneh, 2024). 

Transformers’ capacity to solve important problems drives 
their acceptance for EEG study. Overcoming CNN and LSTM, 
their self-attention method can concurrently represent spatial 
linkages and temporal dynamics. Furthermore, transformers are 
naturally scalable and can handle big and complicated datasets 
free from sequential computation’s limitations (Dong et al., 
2024; El Hadiri et al., 2024). For EEG research, where the data 
volume might be significant and real-time processing is usually 
needed, this scalability is very helpful. Moreover, transformers 
provide better interpretability than conventional deep learning 
models. Visualizing attention weights helps researchers and doctors 
understand which areas of the EEG data best support the 
predictions of the model, therefore strengthening confidence and 
enabling clinical decision-making. 
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This work aims to provide a unique adaptive transformer-based 
method for neurotherapeutic decision assistance and precision 
brain imaging. The following are our novel contributions: 

• Using a domain-specific adaptive attention mask, the adaptive 
attention mechanism dynamically focuses on important 
temporal and spatial EEG characteristics for EEG variance. By 
stressing important areas and reducing noisy or pointless data, 
this approach guarantees consistency and resilience across 
subjects and situations. This approach targets significant 
patterns and reduces brainwave data variance, therefore 
enhancing the accuracy of EEG analysis. 

• Integrating transformers for temporal-spatial modeling: 
Transformers endowed with “multi-head self-attention” 
record long-range temporal interdependence in EEG 
channels. Analyzing inter-channel interactions with spatial 
attention oers a whole temporal-spatial awareness of EEG 
data. This integration models concurrently time-based 
dynamics and spatial interdependencies, therefore enabling 
the whole interpretation and analysis of an EEG signal. 

• Positional encoding provides an end-to-end framework to 
retain sequential structure of the EEG signal by means of 
feature embedding framework. Transformers convert raw 
EEG data into high-dimensional channel-wise embeddings, 
therefore eectively processing it. Through analysis of intricate 
temporal-spatial patterns in EEG data, this paradigm clarifies 
and guides application of brain activity dynamics. 

This work oers many dierent kinds of contributions. It 
first presents a new framework using transformer architecture 
to replicate the complex spatial and temporal dynamics of 
EEG signals. Second, it visualizes attention weights to close the 
interpretability gap in EEG data and oers doctors practical 
insights. Third, it shows how scalable and flexible transformers 
are in managing various EEG datasets, hence opening the path 
for individualized neurotherapeutic uses. This work attempts to 
improve the accuracy, eÿciency, and usefulness of EEG-based 
diagnoses and treatment by bridging the gap between modern 
computational approaches and clinical demands. 

In EEG analysis for precision brain imaging and 
neurotherapeutic decision assistance, the suggested adaptive 
transformer-based method marks a major advance. This study 
introduces an adaptive transformer-based model that enhances 
EEG signal analysis by capturing complex spatial and temporal 
relationships. The proposed approach improves neurotherapeutic 
decision support and enables better precision in brain imaging. 
By integrating domain-specific modifications, it ensures robust 
and scalable performance across diverse EEG datasets. The 
combination of innovative models which include transformers 
with domain-specific knowledge oers excellent capability for 
commencing new horizons in neuroscience and clinical practice as 
the field develops. 

2 Literature review 

The study of brain dynamics through EEG analysis has 
become increasingly significant, oering a window into the 

functioning and disorders of the human brain. EEG provides 
a non-invasive, cost-eective approach to understanding brain 
activity, facilitating advancements in neurological diagnosis and 
therapeutic interventions. Despite its potential, the complexity of 
EEG signals, influenced by non-stationary characteristics and noise, 
presents substantial challenges for eective analysis. Advanced 
computational techniques, particularly those incorporating 
machine learning and deep learning, have been extensively 
employed to address these challenges, yet limitations remain. 

Eorts to utilize self-supervised learning in EEG analysis 
have demonstrated promising outcomes, particularly in brain 
disease diagnosis, where adaptive node feature extraction has 
been shown to improve classification accuracy. This approach 
highlights the need for advanced modeling techniques capable of 
leveraging the hierarchical nature of brain networks (Zeng et al., 
2024). Similarly, genetic variations influencing oscillatory alpha 
power in EEG data have been linked to specific neurobiological 
mechanisms, suggesting the potential for personalized models in 
precision brain imaging (Tichelman et al., 2023). The introduction 
of growth charts for brain function from infancy to adolescence 
provides a benchmark for understanding neural development, 
oering a reference point for the detection of anomalies 
(Iyer et al., 2024). 

Deep learning-based frameworks have emerged as a dominant 
paradigm for EEG analysis, leveraging their ability to capture 
intricate temporal and spatial patterns. For example, research 
centered on classifying ADHD through deep learning methods 
have highlighted the role of particular mind regions inside 
the sickness, demonstrating the capability of neural networks 
in localizing pathophysiological markers (Sanchis et al., 
2024). Also, reusable benchmarks for mind-age prediction 
have showcased the software of resting-state EEG signals in 
identifying age-associated neural changes, presenting a robust 
platform for exploring brain health throughout the lifespan 
(Engemann et al., 2022). 

The hierarchical organization of complex correlation patterns 
in the brain has been eectively modeled to define a functional 
architecture, advancing the understanding of brain dynamics. Such 
models contribute to the identification of robust biomarkers for 
neurological conditions (Varga et al., 2024). Comparisons between 
EEG and MRI for early detection of “cortical dysmaturation” 
have highlighted the complementary nature of these modalities, 
emphasizing the need for integrative approaches in neuroimaging 
(White et al., 2024). The engineering of pluripotent stem cells 
for monitoring brain function and controlling neural activities 
further illustrates the interdisciplinary potential of EEG analysis 
(Cheng et al., 2024). 

Sleep studies have also benefited from EEG biomarkers, 
particularly in understanding the activation of the brain’s 
lymphatic drainage system and its association with the blood-
brain barrier. This opens avenues for exploring the therapeutic 
implications of sleep on neurological health (Semyachkina-
Glushkovskaya et al., 2023). Meanwhile, transformer-based 
models have recently gained attention for their applicability in 
brain-computer interfaces, leveraging attention mechanisms 
to enhance the analysis of EEG signals (Pfeer et al., 2024). 
Hybrid approaches combining EEG with other modalities 
like “functional near-infrared spectroscopy” (fNIRS) have 
further enriched the analytical capabilities, particularly in tasks 
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requiring multidimensional feature extraction (Maher et al., 
2023). 

Scales Food and environmental elements have been shown to 
be sensitive by EEG studies on how outside events influence brain 
responses (Wu et al., 2022). Moreover, a novel approach linking 
visual stimuli to neural responses for cognitive analysis is stimulus-
evoked EEG manifold learning for neural image classification 
(Falciglia et al., 2024). Finding indicators unique to the brain 
has demonstrated benefit from machine learning approaches. This 
makes more individualized therapies possible as well as more 
accurate diagnosis (Bomatter et al., 2024). 

There are still issues even with these developments. 
Because EEG data is not always the same and has many 
dimensions, many times classic machine learning and deep 
learning models such CNNs and LSTM networks struggle 
with it. These techniques overfit, particularly in cases of noise 
presence, and need a lot of feature engineering to be done by 
hand. Furthermore, they are more diÿcult to grasp and use 
in dierent contexts as people are not always aware of the 
structural and geographical connections included within EEG 
patterns. 

Originally designed for natural language processing 
applications, transformer-based models have developed a fresh 
approach of viewing EEG data. Long-range links and contextual 
linkages are quite well captured by these models. This qualifies 
them ideal for handling complicated in terms of time and spatial 
EEG data. Many fields have seen eective use of transformer 
designs as they can adapt to various data types and uncover 
interesting trends. 

Building on these concepts, this work proposes to 
use a technique especially intended to operate with EEG 
data based on flexible transformers. This approach adds 
domain-specific modifications, such as a flexible attention 
mechanism, aiming to solve the issues with present models. 
This should make neurotherapeutic decision support and 
brain imaging more exact. This approach not only models 
complex data using the best characteristics of transformers 
but also provides us with a means to make EEG analysis 
more scalable and understandable. With this novel concept, 
the research aims to close the gaps in present approaches 
and therefore advance precision medicine and tailored brain 
care. 

3 Methodology 

As shown in the following Figure 1, The TUH EEG Corpus 
dataset was used in this study, providing a diverse collection of 
labeled EEG recordings that facilitate model evaluation across 
various neurological conditions, including seizure detection and 
cognitive state analysis. In continuation it included in this study 
are noise and non-stationarity’s related problems. The five basic 
steps that constitute the approach that has been described are 
preprocessing of the data, feature representation, transformer 
design, integration of adaptive attention masks, and the output 
layer customized for neurotherapeutic predictions. Every stage 
uses the use of mathematical ideas-based sophisticated methods in 
signal processing and machine learning. 

3.1 Experimental setup 

To assess the impact of hyperparameter variations, an ablation 
study was conducted by adjusting key parameters: 

• Number of attention heads: Models were evaluated with 4, 8, 
and 12 heads, showing optimal performance at 8 heads. 

• Model depth: 3-layer and 6-layer configurations were tested, 
with 6 layers achieving the best balance of accuracy and 
computational eÿciency. 

• Learning rate: A range from 0.0001 to 0.005 was explored, with 
0.001 yielding optimal stability and convergence. 

3.2 Dataset 

The “TUH EEG Corpus” dataset was used in this study, 
providing a diverse collection of labeled EEG recordings that 
facilitate model evaluation across various neurological conditions, 
including seizure detection and cognitive state analysis. This dataset 
comprises labeled EEG signals spanning a broad spectrum of 
neurological illnesses, including cognitive assessments and seizure 
detection. Preprocessing the data helps to remove noise and 
artifacts, thereby ensuring the high quality of the input for the 
training and model testing. Their great number of temporal and 
spatial patterns makes them ideal for assessing novel transformer-
based algorithms in neurotherapeutic uses. 

3.3 Data preprocessing 

Electroencephalogram signals are inherently noisy due to 
artifacts from muscle movement, eye blinks, and external 
interference. Preprocessing ensures that only relevant neural 
information is retained. The EEG data used in this study was 
recorded using the NeuroScan SynAmps2 EEG system with a 
64-channel cap following the 10–20 electrode placement system, 
ensuring standardized spatial coverage. EEG signals were sampled 
at 256 Hz, and preprocessing included: 

• Artifact Removal: techniques such as Independent 
Component Analysis (ICA) are employed to separate 
noise from neural signals as shown in Equation 1. 

X = A.S (1) 

where X is the “observed EEG data”, A is the” mixing matrix”, and 
S is the “source signal matrix”. ICA estimates S by maximizing 
independence among components. 

• Filtering: Band-pass filtering retains frequencies within a 
specific range (e.g., 0.5–50 Hz) used to remove low-frequency 
drifts and high-frequency noise as shown in Equation 2. 

Y 
�
f 
 

= H 
�
f 
 
.X(f ) (2) 

where H(f) is the “filter response” and X(f) is the “input signal” in 
the frequency domain. 
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FIGURE 1 

Proposed system architecture. 

• Segmentation: Signals are divided into “fixed-length time 
windows” (T) to capture temporal patterns, as shown in 
Equation 3, where t0 is the “start time of the window”, 
Signals were divided into 2-second epochs to capture relevant 
temporal patterns 

Sw (t) = {s(t)|t0 ≤ t ≤ t0 + T} (3) 

3.4 Feature representation 

To make EEG signals compatible with transformer models, 
they are converted into structured, high-dimensional embeddings 
as shown in Figure 2 and Table 1. 

• Temporal Encoding: Position within the time-series sequence 
is encoded to retain temporal dependencies as shown in 
Equations 4, 5. A sinusoidal function is used 

PEpos,2i = sin 

 
pos 

10000 
2i 
d 

 

(4) 

PE(pos, 2i+1) = cos 
 

pos 

10000 
2i 
d 

 

(5) 

where pos is the “position”, i is the “dimension index” and d is 
the “embedding size”. 

• Channel-wise embedding: Each EEG channel is treated as 
a separate sequence, and a linear embedding maps it to a 

FIGURE 2 

Feature representation: PSD values across frequency bands. 
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TABLE 1 Feature representation of EEG data.

EEG channel Delta (0.5–4 Hz) Theta (4–8 Hz) Alpha (8–12 Hz) Beta (12–30 Hz) Gamma (30–50 Hz)

Channel 1 0.5824 0.8669 0.8959 0.7605 0.5955

Channel 2 0.1993 0.2766 0.6028 0.1393 0.184

Channel 3 0.9114 0.9563 0.0052 0.8625 0.938

Channel 4 0.5257 0.4489 0.9188 0.0075 0.8405

Channel 5 0.2966 0.6412 0.3232 0.5229 0.8083

higher-dimensional space, as shown in Equation 6.

Ec = Wc.Sc + bc (6)

3.5 Transformer architecture

The core of the proposed method is the transformer, which
effectively models temporal-spatial relationships in EEG data. The
proposed model is configured as follows:

• Layers: 6 Transformer encoder layers, balancing depth and
computational efficiency.
• Attention heads: 8 multi-head attention units, ensuring

effective feature extraction.
• Embedding size: 256 dimensions, capturing rich temporal-

spatial representations.
• Feedforward network: Two fully connected layers with ReLU

activation for non-linear transformations.

Ablation studies confirmed that increasing depth
beyond 6 layers led to diminishing gains, while 8 attention
heads provided the best trade-off between complexity
and performance.

• Multi-head self-attention: Captures dependencies across time
within each channel where Q,K,V are “query, key and value”
matrices derived from input embeddings as shown in the
following Equation 7

Attention (Q, K, V) = softmax

(
Q.KT√

dk

)
.v (7)

• Feedforward layers: Each attention output is processed
through a position-wise feedforward network, as shown in
Equation 8, where W1, W2 are weights and b1, b2 are the
biases:

FFN (x) = ReLU
(
W1.x+ b1

)
.W2 + b2 (8)

• Spatial attention: Captures inter-channel relationships as
shown in Equation 9:

As
(
i, j
)
=

exp(eij)∑C
k = 1 exp(eik)

(9)

where As (i, j) represents the spatial attention weight between
channel i and channel j, eij is the similarity score, and C is the total
number of channels.

3.6 Adaptive attention mask

Electroencephalogram variability across subjects and
conditions necessitates domain-specific adjustments. The
adaptive attention mask emphasizes critical temporal-spatial
regions dynamically.

• Dynamic masking: A learned mask M is applied to attention
scores, as shown in Equation 10. Here A(i,j) is the original
attention score, and M(i,j) is the adaptive mask weight.

Â
(
i, j
)
= A

(
i, j
)
.M(i, j) (10)

• Optimization of mask: Masks are trained using a loss function
that penalizes irrelevant regions as shown in Equation 11.

Lmask =
∑

i,j

(
1−M

(
i, j
))

.A(i, j) (11)

3.7 Output layer

The final layer converts the transformed embeddings into
actionable predictions, either classification or regression outputs.

• Classification: A softmax function maps the output to
probabilities for each class as shown in Equation 12,

P
(
y = k

∣∣ x
)
=

exp(Wk.h+ bk)∑K
j = 1 exp(Wj.h+ bj)

(12)

where h is the hidden representation, Wk and bk are the weight and
bias for class k, and K is the total number of classes.

The methodology concludes by integrating preprocessed EEG
signals with feature extraction and adaptive transformer-based
modeling, as depicted in Figure 3. This framework ensures precise
temporal-spatial analysis and robust neurotherapeutic decision
support.

The proposed Algorithm 1 for Adaptive Transformer-
Based EEG Analysis leverages advanced transformer
architectures to address the challenges of non-stationarity,
noise, and temporal-spatial complexity inherent in EEG
signals. By integrating domain-specific adaptive attention
mechanisms, the algorithm dynamically prioritizes
critical regions of the EEG data, enabling precise and
interpretable neurotherapeutic predictions. This innovative
approach ensures robust performance across diverse
subjects and conditions.
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ALGORITHM 1: ADAPTIVE TRANSFORMER-BASED EEG ANALYSIS 

1 Input: EEG signals (N samples, C channels, T time points) 

2 Output: Neurotherapeutic predictions 

3 Preprocessing 

4 Remove → noise and artifacts using (ICA and band-pass filtering). 

5 Normalize EEG signals channel-wise. 

6 Segment signals into fixed-length windows (size T). 

7 Feature Representation 

8 Represent each EEG channel as a time-series sequence. 

9 Apply → embedding to transform input sequences into 

high-dimensional vectors. 

10 Temporal Encoding 

11 Add positional encodings to embed temporal dependencies. 

12 Transformer Architecture 

13 Initialize multi-head self-attention 

14 Compute Query (Q), Key (K), and Value (V) matrices. 

15 Calculate attention scores → softmax(QKT / 
p 

(dk)). 

16 Compute weighted outputs → Attention(Q, K, V) = softmax(QKT /p 
(dk)) * V. 

17 Apply → spatial attention to model inter-channel relationships. 

18 Pass outputs through feedforward layers for nonlinear transformations. 

19 Use layer normalization after each sublayer to stabilize training. 

20 Adaptive Attention Mechanism 

21 Integrate an adaptive attention mask to prioritize significant temporal 
and spatial features. 

22 Dynamically adjust weights based on domain-specific variations in 

EEG data 

23 Output Layer 

24 Apply → dense layers for classification 

25 Generate → neurotherapeutic predictions. 

26 Training and Evaluation: 

27 Train model using cross-entropy loss (for classification) or MSE (for 

regression). 

28 Evaluate using metrics: “accuracy, precision, recall, specificity, F1-score, 
and AUC” 

29 End. 

*“Q (Query): Encodes the current token’s feature representation, K (Key): Represents the 
feature encoding of all tokens, V: Contains contextual information corresponding to the 
input tokens.dk : Scaling factor, equal to the dimension of the key vector, ensuring numerical 
stability in softmax” 

3.8 Computation efficiency 

While transformers are computationally intensive, 
optimizations ensure eÿciency in real-time EEG analysis: 

• Sparse attention mechanism: Reduces computation by 
focusing on relevant regions in the EEG sequence. 

• Quantization & pruning: Lowers model size while maintaining 
accuracy, enabling deployment on edge devices. 

• Sliding window processing: Instead of analyzing entire 
EEG sequences at once, real-time analysis is performed on 
overlapping time windows to minimize latency. 

These techniques improve eÿciency, enabling real-time 
inference without significantly sacrificing accuracy. 

4 Results output and discussion 

The adaptive transformer-based approach outperforms other 
EEG signal analysis methods for neurotherapeutic decision support 
as shown in Figure 4 and Table 2. The proposed method 
outperforms the decoding user’s movements method (97.33%), 
seizure prediction approach (94.6%), and interictal epileptiform 
discharge (IED) detection framework (95.2%) with 98.24% 
accuracy. This shows how transformers can capture complex 
temporal and spatial dependencies in EEG data. 

At 97.8%, the proposed method has higher precision in 
identifying positive cases. Despite its 98.6% recall, the seizure 
prediction method’s 90.5% precision suggests a trade-o due to 
imbalanced datasets. The proposed method balances these metrics 
better, ensuring high sensitivity without sacrificing accuracy 
with 98.5% recall. 

The proposed method’s 97.6% specificity in identifying negative 
cases shows its robustness. This is higher than all comparison 
methods, including seizure prediction (89.8%). The proposed 
method has the highest F1-score (98.15%), indicating balanced and 
reliable performance across diverse scenarios. 

To evaluate robustness, EEG data with varying noise levels (10, 
20, and 30% added Gaussian noise) was analyzed: 

• With 10% noise, model accuracy remained above 97.5%, 
indicating strong resilience. 

• At 20% noise, performance declined to 94.3%, reflecting 
moderate robustness. 

• At 30% noise, accuracy dropped to 89.6%, suggesting 
sensitivity to extreme noise levels. 

These findings indicate that eective artifact removal 
significantly enhances model reliability, emphasizing the need 
for robust preprocessing strategies. 

The proposed approach has the highest area under the 
curve (AUC) value of 98.7%, supporting these findings. This 
metric highlights the method’s ability to distinguish classes across 
thresholds. Conclusions show that the proposed method can 
provide accurate, sensitive, and reliable neurotherapeutic decision 
support, overcoming limitations in existing methods. 

5 Conclusion, limitation, future 
scope and implications 

The suggested adjustable transformer-based technology is 
a useful method for evaluating EEG data for exact brain 
imaging and supporting medical professionals in making decisions 
about neurotherapeutic treatments. Temporal-spatial modeling, 
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FIGURE 3 

Visualization of preprocessed EEG signal (2-second segment) and its power spectral density (PSD) distribution across frequencies. 

FIGURE 4 

Comparative graph of various models. 

TABLE 2 Evaluation parameters comparison of proposed method vs. existing methods. 

Method Accuracy Precision Recall Specificity F1-score AUC 

Proposed method 98.24 97.8 98.5 97.6 98.15 98.7 

Decoding user’s movements (Zhang and Li, 2022) 97.33 97.36 97.3 96.8 97.32 97.6 

Seizure prediction (Al-Quraishi et al., 2022) 94.6 90.5 98.6 89.8 94.3 95.1 

IED detection (Rao et al., 2024) 95.2 93.8 94.5 92.7 94.15 95.5 

domain-specific flexible attention processes, and advanced feature 

representations help the method to be better than usual 
models in terms of accuracy, precision, and simplicity of 
understanding. This improvement has greatly helped to tackle 

some of the most important diÿculties in EEG analysis– 

that of noise, non-stationarity, and complicated temporal-
spatial correlations. In the framework of brain applications, 
it helps to uncover ideas with better accuracy and finally 

more usefulness. 

Though the method has several good features, there are 

significant problems with it. Transformer models may be tricky 

to operate with in real time as they are diÿcult to compute, 
especially for big EEG datasets. Training depends on a lot of named 

data, hence it is likely that it will not function as expected with 

datasets lacking a lot of it. Though the domain-specific changes are 

useful, they must be optimized for every dataset. Sadly, this might 
cause their scalability to be less consistent under certain types of 
EEG settings. 
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Investigating lightweight transformer designs most eective 
for real-time applications and creating semi-supervised or 
unsupervised learning techniques that do not rely as much 
on labeled data can help one discover answers to these 
problems going forward. Investigating how this technique 
may be used with other techniques, including functional 
magnetic resonance imaging (MRI), would be interesting 
to help one to have a more complete knowledge of 
brain functioning. 

The real world bears major consequences from this corpus of 
study. A strong basis is given which helps neurotherapeutic choices 
to be made with better accuracy, therefore enabling early evaluation 
and the formulation of a particular treatment plan. Apart from 
this, it might improve brain-computer interface technologies, 
which would lead to more use in cognitive neuroscience and 
therapy domains. 
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Gunia, A., Moraresku, S., Janča, R., Ježdík, P., Kalina, A., Hammer, J., et al. (2024). 
The brain dynamics of visuospatial perspective-taking captured by intracranial EEG. 
Neuroimage 285:120487. doi: 10.1016/j.neuroimage.2023.120487 

Ibitoye, R., Castro, P., Desowska, A., Cooke, J., Edwards, A., Guven, O., et al. (2021). 
Small vessel disease disrupts EEG postural brain networks in ‘unexplained dizziness in 
the elderly.’. Clin. Neurophysiol. 132, 2751–2762. doi: 10.1016/j.clinph.2021.07.027 

Iyer, K. K., Roberts, J. A., Waak, M., Vogrin, S. J., Kevat, A., Chawla, J., et al. 
(2024). A growth chart of brain function from infancy to adolescence based on EEG. 
eBioMedicine 102:105061. doi: 10.1016/j.ebiom.2024.105061 

Khayretdinova, M., Zakharov, I., Pshonkovskaya, P., Adamovich, T., 
Kiryasov, A., Zhdanov, A., et al. (2024). Prediction of brain sex from EEG: 
Using large-scale heterogeneous dataset for developing a highly accurate and 
interpretable ML model. Neuroimage 285:120495. doi: 10.1016/j.neuroimage.2023. 
120495 

Kim, B., Ding, W., Yang, L., Chen, Q., Mao, J., Feng, G., et al. (2024). Simultaneous 
two-photon imaging and wireless EEG recording in mice. Heliyon 10:e25910. doi: 
10.1016/j.heliyon.2024.e25910 

Klooster, D., Voetterl, H., Baeken, C., and Arns, M. (2024). Evaluating robustness 
of brain stimulation biomarkers for depression: A systematic review of magnetic 
resonance imaging and electroencephalography studies. Biol. Psychiatry 95, 553–563. 
doi: 10.1016/j.biopsych.2023.09.009 

Frontiers in Human Neuroscience 09 frontiersin.org 

https://doi.org/10.3389/fnhum.2025.1551168
https://doi.org/10.1016/j.irbm.2024.100836
https://doi.org/10.1016/j.irbm.2024.100836
https://doi.org/10.1109/ACCESS.2022.3213996
https://doi.org/10.1109/ACCESS.2022.3213996
https://doi.org/10.1016/j.ebiom.2024.105259
https://doi.org/10.1016/j.ebiom.2024.105259
https://doi.org/10.1016/j.fmre.2024.03.003
https://doi.org/10.1016/j.neuroimage.2024.120744
https://doi.org/10.1016/j.neuroimage.2024.120744
https://doi.org/10.1016/j.rineng.2024.102664
https://doi.org/10.1016/j.neuroimage.2022.119521
https://doi.org/10.1016/j.neucom.2024.127654
https://doi.org/10.1016/j.neuroimage.2023.120487
https://doi.org/10.1016/j.clinph.2021.07.027
https://doi.org/10.1016/j.ebiom.2024.105061
https://doi.org/10.1016/j.neuroimage.2023.120495
https://doi.org/10.1016/j.neuroimage.2023.120495
https://doi.org/10.1016/j.heliyon.2024.e25910
https://doi.org/10.1016/j.heliyon.2024.e25910
https://doi.org/10.1016/j.biopsych.2023.09.009
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1551168 September 30, 2025 Time: 13:50 # 10

Nemade et al. 10.3389/fnhum.2025.1551168 

Li, Z., Zhao, Y., Hu, Y., Li, Y., Zhang, K., and Gao, Z. (2024). Brain Stimulation 
Transcranial low-level laser stimulation in the near-infrared-II region (1064 nm) for 
brain safety in healthy humans. Brain Stimul. 17, 1307–1316. doi: 10.1016/j.brs.2024. 
11.010 

Maher, A., Mian Qaisar, S., Salankar, N., Jiang, F., Tadeusiewicz, R., Pławiak, P., et al. 
(2023). Hybrid EEG-fNIRS brain-computer interface based on the non-linear features 
extraction and stacking ensemble learning. Biocybern. Biomed. Eng. 43, 463–475. doi: 
10.1016/j.bbe.2023.05.001 

Mutawa, A., and Hassouneh, A. (2024). Multimodal real-time patient emotion 
recognition system using facial expressions and brain EEG signals based on machine 
learning and log-sync methods. Biomed. Signal Process Control. 91:105942. doi: 10. 
1016/j.bspc.2023.105942 

Pfeer, M., Ling, S., and Wong, J. (2024). Exploring the frontier: Transformer-
based models in EEG signal analysis for brain-computer interfaces. Comput. Biol. Med. 
178:108705. doi: 10.1016/j.compbiomed.2024.108705 

Rao, W., Zhang, L., Wang, X., Jiang, J., and Chen, D. (2024). in A Precise Interictal 
Epileptiform Discharge (IED) Detection Approach Based on Transformer BT - Applied 
Intelligence, eds D. Huang, P. Premaratne, and C. Yuan (Singapore: Springer Nature 
Singapore), 328–338. 

Sanchis, J., García-Ponsoda, S., Teruel, M., Trujillo, J., and Song, I. Y. (2024). A novel 
approach to identify the brain regions that best classify ADHD by means of EEG and 
deep learning. Heliyon 10:e26028. doi: 10.1016/j.heliyon.2024.e26028 

Semyachkina-Glushkovskaya, O. V., Karavaev, A., Prokhorov, M., Runnova, A., 
Borovkova, E., Ishbulatov, Y., et al. (2023). EEG biomarkers of activation of the 
lymphatic drainage system of the brain during sleep and opening of the blood-brain 

barrier. Comput. Struct. Biotechnol. J. 21, 758–768. doi: 10.1016/j.csbj.2022. 
12.019 

Tichelman, N., Foerges, A., Elmenhorst, E., Lange, D., Hennecke, E., Baur, D., 
et al. (2023). A genetic variation in the adenosine A2A receptor gene contributes to 
variability in oscillatory alpha power in wake and sleep EEG and A1 adenosine receptor 
availability in the human brain. Neuroimage 280:120345. doi: 10.1016/j.neuroimage. 
2023.120345 

Varga, L., Moca, V. V., Molnár, B., Perez-Cervera, L., Selim, M., Díaz-Parra, A., 
et al. (2024). Brain dynamics supported by a hierarchy of complex correlation patterns 
defining a robust functional architecture. Cell Syst. 15, 770–786.e5. doi: 10.1016/j.cels. 
2024.07.003 

White, P., Ranasinghe, S., Chen, J., Van de Looij, Y., Sizonenko, S., Prasad, J., 
et al. (2024). Comparative utility of MRI and EEG for early detection of cortical 
dysmaturation after postnatal systemic inflammation in the neonatal rat. Brain Behav. 
Immun. 121, 104–118. doi: 10.1016/j.bbi.2024.07.028 

Wu, B., Zhou, X., Blank, I., and Liu, Y. (2022). Investigating the influence of 
monosodium L-glutamate on brain responses via scalp-electroencephalogram (scalp-
EEG). Food Sci. Hum. Wellness 11, 1233–1239. doi: 10.1016/j.fshw.2022.04.019 

Zeng, Y., Lin, J., Li, Z., Xiao, Z., Wang, C., Ge, X., et al. (2024). Adaptive node feature 
extraction in graph-based neural networks for brain diseases diagnosis using self-
supervised learning. Neuroimage 297:120750. doi: 10.1016/j.neuroimage.2024.120750 

Zhang, X., and Li, H. (2022). “Patient-Specific Seizure prediction from scalp EEG 
using vision transformer,” in 2022 IEEE 6th Information Technology and Mechatronics 
Engineering Conference (ITOEC), (Piscataway, NJ: IEEE), 1663–1667. doi: 10.1080/ 
10255842.2024.2326097 

Frontiers in Human Neuroscience 10 frontiersin.org 

https://doi.org/10.3389/fnhum.2025.1551168
https://doi.org/10.1016/j.brs.2024.11.010
https://doi.org/10.1016/j.brs.2024.11.010
https://doi.org/10.1016/j.bbe.2023.05.001
https://doi.org/10.1016/j.bbe.2023.05.001
https://doi.org/10.1016/j.bspc.2023.105942
https://doi.org/10.1016/j.bspc.2023.105942
https://doi.org/10.1016/j.compbiomed.2024.108705
https://doi.org/10.1016/j.heliyon.2024.e26028
https://doi.org/10.1016/j.csbj.2022.12.019
https://doi.org/10.1016/j.csbj.2022.12.019
https://doi.org/10.1016/j.neuroimage.2023.120345
https://doi.org/10.1016/j.neuroimage.2023.120345
https://doi.org/10.1016/j.cels.2024.07.003
https://doi.org/10.1016/j.cels.2024.07.003
https://doi.org/10.1016/j.bbi.2024.07.028
https://doi.org/10.1016/j.fshw.2022.04.019
https://doi.org/10.1016/j.neuroimage.2024.120750
https://doi.org/10.1080/10255842.2024.2326097
https://doi.org/10.1080/10255842.2024.2326097
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	An adaptive transformer-based framework for advanced brain activity mapping and intelligent neurotherapeutic decision support
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Experimental setup
	3.2 Dataset
	3.3 Data preprocessing
	3.4 Feature representation
	3.5 Transformer architecture
	3.6 Adaptive attention mask
	3.7 Output layer
	3.8 Computation efficiency

	4 Results output and discussion
	5 Conclusion, limitation, future scope and implications
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References




