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A significant challenge in developing reliable Brain-Computer Interfaces (BCIs) is 
the presence of artifacts in the acquired brain signals. These artifacts may lead to 
erroneous interpretations, poor fitting of models, and subsequent reduced online 
performance. Furthermore, BCIs in a home or hospital setting are more susceptible to 
environmental noise. Artifact handling procedures aim to reduce signal interference 
by filtering, reconstructing, and/or eliminating unwanted signal contaminants. 
While straightforward conceptually and largely undisputed as essential, suitable 
artifact handling application in BCI systems remains unsettled and may reduce 
performance in some cases. A potential confound that remains unexplored in the 
majority of BCI studies using these procedures is the lack of parity with online 
usage (e.g., online parity). This manuscript compares classification performance 
between frequently used offline digital filtering, using the whole dataset, and an 
online digital filtering approach where the segmented data epochs that would 
be used during closed-loop control are filtered instead. In a sample of healthy 
adults (n = 30) enrolled in a BCI pilot study to integrate new communication 
interfaces, there were significant benefits to model performance when filtering 
with online parity. While online simulations indicated similar performance across 
conditions in this study, there appears to be no drawback to the approach with 
greater online parity.
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Introduction

Background

Brain-Computer Interfaces (BCIs) have emerged as a promising technology for facilitating 
communication and control between the human brain and external devices (Kübler, 2020; 
Wolpaw and Wolpaw, 2012). BCIs hold immense potential to enhance quality of life for 
individuals with diverse needs and may allow individuals to perform a wide range of tasks, 
including typing messages, controlling a wheelchair or robotic arm, selecting items from a 
menu, or playing video games (Allison et al., 2020; Kawala-Sterniuk et al., 2021).

In particular, BCI systems can potentially improve the quality of life for people with severe 
disabilities by restoring their ability to communicate and interact with the world around them. 
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BCIs for communication (cBCIs) enable individuals with severe 
motor disabilities, such as quadriplegia or locked-in syndrome, to 
communicate with the outside world using their brain signals. cBCIs 
detect and interpret specific patterns in the user’s brain activity, which 
are then translated into commands that can control a computer or 
other electronic device to generate speech, text, or other forms of 
communication output, and which can be customized to the user’s 
specific needs and preferences. Like other Augmentative and 
Alternative Communication (AAC) devices, cBCIs can provide 
individuals with a means of expressing themselves and engaging in 
social interactions, which can have a significant positive impact on 
their quality of life (Kübler et al., 2009; Milekovic et al., 2018; Peters 
et al., 2022; Pitt et al., 2022; Pitt and Brumberg, 2023). These systems 
may be implantable, requiring surgical intervention with the benefit 
of higher signal quality, or non-implantable, low-risk sensors external 
to the end-user yet subject to higher electrical or other interference. 
While the implantable BCIs are approaching a speed closer to spoken 
text and are a promising technology, the need for non-surgical and 
low-cost options will remain an area of interest to both end-users and 
researchers (Willett et al., 2021).

Several brain signals and interfaces can be  leveraged for 
non-implantable cBCIs (Peters et al., 2022; Akcakaya et al., 2014). 
Many rely on event-related potentials (ERPs), like the N200/P300 
attentional responses. These mechanisms are often paired with typing 
interfaces such as the Matrix Speller or Rapid Serial Visual 
Presentation (RSVP) (Akcakaya et  al., 2014; Acqualagna and 
Blankertz, 2013) to facilitate communication. However, the successful 
implementation of cBCI systems faces significant challenges, primarily 
due to the presence of artifacts in the acquired brain signals. Artifacts, 
which are unwanted signals or noise, can degrade the accuracy and 
reliability of BCIs (Awais et  al., 2024; Jafarifarmand and 
Badamchizadeh, 2019; McDermott et  al., 2022; Minguillon 
et al., 2017).

Artifact handling in BCI systems generally involves a series of 
steps: avoidance, detection, removal, and, if necessary, the 
reconstruction of the EEG data. Artifact avoidance can include 
experimental design modifications (e.g., using shielded rooms or 
adjusting the distance from electromagnetic sources), user instructions 
(e.g., minimizing blinks), or participant screening procedures. While 
avoiding artifacts appears to be the most straightforward approach, 
such methods may not be practical for real-world BCI applications, 
which are inherently noisier than controlled laboratory environments. 
Furthermore, even common instructions—such as asking users to 
refrain from blinking—can lead to reduced control signal amplitudes 
or increased mental fatigue (Magliacano et  al., 2020; Ochoa and 
Polich, 2000; Oken et  al., 2018). Artifact filtering, which involves 
removing or attenuating non-brain signal frequencies, is another 
common approach. However, the choice of filter—particularly the 
frequency cutoff and filter order—can impact performance. If not 
applied correctly, filtering can either introduce unwanted noise or 
inadvertently remove important brain activity. While most filtering 
approaches fall within the 0.1–75 Hz range, there is as-yet no 
consensus on the best filter type, and no “one-size-fits-all” solution has 
emerged in the literature (Zhang et al., 2024; Zhang et al., 2024a). It 
may be fruitful then to distinguish between artifact filtering applied 
offline (after data collection) and online hardware filtering, which is 
done during EEG acquisition to avoid losing information due to the 
Nyquist limit for sampling frequency, or due to amplifier saturation as 

a result of very low frequency activity shifts in baseline. Furthermore, 
studies have shown that removing or reconstructing data 
contaminated with artifacts can have the opposite of the intended 
effect and potentially lower performance (McDermott et al., 2022; 
Delorme, 2023; Thompson et al., 2019), while others show benefits 
(Zhang et al., 2024b). In any case, the impact of these artifacts on BCI 
has proven detrimental (Awais et al., 2024).

Review of relevant literature

Despite extensive research on artifact handling in BCIs 
(McDermott et al., 2022; Minguillon et al., 2017; Guarnieri et al., 2018; 
Kim and Kim, 2018; Liu et  al., 2021; McDermott et  al., 2023; 
McFarland et  al., 2005; Vaughan et  al., 2006), and in cognitive 
neuroscience more generally (Zhang et al., 2024a; Delorme, 2023; 
Zhang et al., 2024b; Islam et al., 2016; Jiang et al., 2019; Saba-Sadiya 
et al., 2021; Urigüen and Garcia-Zapirain, 2015), a clear best practice 
has yet to emerge for existing interfaces. That is, researchers generally 
acknowledge the problematic nature of EEG artifacts and their 
potential to detrimentally affect control signals, but there has been no 
consensus on how or when to implement corrective actions in BCIs. 
Handling artifacts for BCIs may be especially challenging, since these 
steps must necessarily be  performed in a real-time, closed-loop 
fashion, and the artifact handling approach must be resilient to sample 
loss, time constraints, and potential processing resource limitations. 
A crucial yet often overlooked aspect of BCI design is “online 
parity”—the need for processing conditions to match those applied 
during real-time use. This principle was advocated for in terms of 
practicality for use in daily-life by Minguillon et  al. (2017), who 
argued that, for a BCI to be practically useful in daily life, it must 
be able to operate online with acceptable delays. While many studies 
adopt artifact handling procedures from co neuroscience (often 
filtering data offline), these approaches have not been systematically 
evaluated for their effectiveness in closed-loop BCI systems. It may 
be tempting to pull best practices from the cognitive neuroscience 
literature, particularly in a calibration task that can be trained offline 
with filtering applied to the whole session (referred to as “conventional” 
filtering in this manuscript). For optimal performance and 
transferability, signal models would ideally be trained on the same 
data, processed in the same way, and under the same conditions as 
during online use. A review of all literature used in this manuscript 
reveals that the majority of relevant studies rely on this conventional 
filtering approach (Kübler et  al., 2009; Akcakaya et  al., 2014; 
Acqualagna and Blankertz, 2013; Awais et al., 2024; McDermott et al., 
2022; Oken et al., 2018; Thompson et al., 2019; McDermott et al., 2023; 
Hoffmann et al., 2008; Mowla et al., 2020).

Other studies have employed adaptive filtering or online 
calibration techniques, which effectively ensure adherence to the 
online parity principle (Guarnieri et al., 2018). Furthermore, more 
advanced methods of artifact reconstruction may be  used to 
replace missing or corrupted data. Techniques include 
independent components analysis, principal components analysis, 
empirical mode decomposition, and canonical correlation 
analysis. These techniques have been shown to improve accuracy 
in some settings, such as motor imagery classification (Ferracuti 
et al., 2022), while others have demonstrated detrimental effects, 
such as in P300 applications (Thompson et  al., 2019). These 
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techniques, while promising, are currently limited in their online 
applicability; they may require high processing resources, 
computation time, or manual intervention to select the right 
components. Additionally, the transferability of these components 
between sessions has not been thoroughly evaluated and could 
be  limiting given the lack of stationarity of the underlying 
EEG signals.

Several modeling techniques have become standard of practice, 
and research continues to make incremental progress in the 
classification of P300 and other signals for use in BCIs (Mowla et al., 
2020). When implementing artifact handling procedures, it is 
important to consider the role of signal modeling. For instance, signal 
models with decomposition or processing components, such as neural 
network layers or component analyses, can act as processors for the 
underlying signals and may function well without pre-processing 
(Alzahab et al., 2021). Alzahab et al. (2021) in their systematic review 
of deep learning BCIs reported 21% of papers using the technique did 
no preprocessing whatsoever while maintaining accuracy. 
Furthermore, these approaches have had limited success in 
transferring to group or population models, likely due to the high 
signal and cognitive variability between users and sessions (Höller 
et al., 2013). Considering the unknown underlying information used 
for classification and the impact of decomposition layers, the effect of 
artifact handling procedures on different models remains unclear.

In summary, the literature pertaining to artifact handling in BCIs 
has not reached consensus on best practice. Furthermore, the use of 
neural or decomposition components in a signal modeling pipeline 
may add further confounds to this goal. The majority of studies 
reviewed pre-process data in a conventional way without justification 
for the practice or analysis to show whether online parity processing 
would be contraindicated.

Hypothesis

The present study aims to advance the literature on artifact 
handling in BCIs by investigating the concept of online parity in signal 
filtering. We hypothesize that a filtering approach that aligns with the 
conditions of online use will lead to better classifier accuracy 
compared to an approach that mismatches online and offline filtering. 
Specifically, we compare the conventional filtering approach (CF) to 
an online filtering approach (OF), examining their effects on classifier 
accuracy across several established BCI signal models.

Methods

We used P300 spelling calibration data from a convenience sample 
pilot study involving 31 participants without disabilities (mean 
age = 49 ± 20 years) (Peters et al., 2025). One participant was excluded 
due to hardware failure. Data were collected in an office environment 
at Oregon Health & Science University (OHSU). The pilot study 
consisted of a single visit, during which participants completed an 
RSVP calibration task, followed by RSVP copy phrase tasks (more 
details below). Some of the original copy phrase tasks included switch 
inputs to test a new typing interface. For the primary analysis, we used 
the calibration data from 30 participants. In subsequent simulations 
of copy-phrase data, data from six participants were not available due 

to low calibration accuracy (< 0.70 AUC) or hardware failure in the 
original study (n = 25) (Table 1).

Task

The RSVP calibration task presented letter characters at a rate of 
5 Hz, with 110 inquiries consisting of 10 letters each (for a total of 
1,100 trials) using BciPy (Memmott et al., 2021). The stimuli included 
all 26 letters of the English alphabet, as well as the characters “_” for 
space and “<“for backspace. In 10% of the inquiries, only non-target 
characters were shown. The sequential order of target stimuli was 
randomly distributed among the 10 possible positions across the 110 
RSVP inquiries. Between inquiries, there was a two-second blank 
screen. Each inquiry consisted of a one-second prompt showing the 
target letter, followed by a 0.5-s fixation, and then the presentation of 
the 10-letter inquiry (see Figure 1). The letters were displayed in the 
center of the screen using the Overpass-Mono font, in white on a black 
background. Target prompts were yellow, while fixation crosses were 
rendered in red.

After completing the RSVP calibration task, participants 
performed several rounds of a copy spelling task using different user 
interfaces (RSVP copy phrase task). In this online task, participants 
were instructed to spell a predetermined five-letter word within a 
larger phrase. For example, in the phrase “I want to go to the store,” 
they would be asked to type “store” using the BCI system. Participants 
could select the backspace character (“<“) if they made an incorrect 
selection. The experimental copy phrase included three Inquiry 
Preview (IP) conditions and one No Preview condition. In the IP 

TABLE 1 Participant demographics.

n = 30

Age (years)

Mean ± SD (range) 48.83 ± 20.06 (19–82)

Gender

Female 18

Male 12

Race

American Indian or Alaska Native 2

Black or African American 1

Asian or Asian American 3

Caucasian 22

Other/Multiple 2

Ethnicity

Hispanic/Latino 2

Not Hispanic/Latino 28

Education

High School/GED 1

Some college 4

Associate degree 2

Bachelor’s degree 8

Postgraduate degree 15
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conditions, a box with symbols appeared before the fixation to alert 
the participant to the upcoming inquiry. The two of the three IP 
conditions allowed participants to confirm or skip the upcoming 
inquiry using a button press. For the present analysis, only the No 
Preview condition of the copy phrase task was used. Each participant 
completed four copy phrases in this condition, and the order of 
conditions was randomized for each participant.

Data acquisition

EEG data were collected using the DSI-24, dry electrode cap 
(Wearable Sensing, San Diego CA) at a sampling rate of 300 Hz. The 
device employs a hardware filter permitting a collection bandwidth of 
0.003–150 Hz. Data were recorded from Fp1/2, Fz, F3/4, F7/8, Cz, 
C3/4, T7/T8, T3/T4, Pz, P3/P4, P7/P8, T5/T6, O1/2 with linked-ear 
reference (A1 and A2) and ground at A1. All data were collected using 
a Lenovo Legion 5 Pro Laptop with Windows 11, an Intel Core 
i7-11800H @ 2.30 GHz, 16 GB DDR4 RAM, and a NVIDIA GeForce 
RTX 3050. Trigger fidelity on the experiment laptop was verified using 
the RSVP Time Test Task in BciPy and a photodiode. The results of 
this timing test were used to determine static offsets between hardware 
and prevent experimentation with any timing violations greater than 
+/− 10 ms. All software was written by the research team and is freely 
available on GitHub or PyPi using BciPy version 2.0.1rc4 (pip install 
bcipy==2.0.1rc4).

Filters

To investigate the impact of filtering procedure on model 
performance, two filtering pipelines were constructed. The first, which 
was labeled as conventional filter (CF), applies a signal filter to the 
whole calibration dataset and then segments the data into target/
non-target trials. This approach represents the current state of EEG 
processing across disciplines. Next, an online filter (OF) was 
constructed in which the calibration datasets were reshaped into 
inquiries with a one second buffer on each end, filtered, and then 
divided into trials (target, non-target) for classification. The signal 
filters consisted of the following in order: a zero-phase 
(two-directional) 60 Hz notch filter with quality factor 30, 1-20 Hz 
bandpass filter, and down sampling by a factor of two. The bandpass 

filter used was a causal (forward-only) Butterworth IIR filter, 5th 
order, constructed using Scipy version 1.5.2 (Virtanen et al., 2020). 
This filter was the default used in BciPy for P300 spellers (Figure 2).

Signal modeling

The following signal models were used for P300 classification: 
Linear Discriminant Analysis (LDA), Logistic Regression (LR), and 
lastly, the default BciPy model, which is a channel-wise Principal 
component analysis, followed by a Regularized discriminant analysis 
and Kernel density estimation (PRK). All other models and 
performance exports besides the default were constructed using scikit-
learn (Pedregosa et  al., 2011). The models were trained using 
GridSearchCV over ten-fold cross-validation, exporting the mean of 
model performance in terms of Balanced Accuracy (BA) and 
Matthew’s Correlation Coefficient (MCC). The resulting meta 
parameters for the models were then used for reporting. The LR 
model used an L2 penalty, L-BFGS solver, and an inverse regularization 
of 0.0183. The LDA model used Xdawn Covariance and Riemann 
Tangent Space transformers before inputting into an LDA model 
(Barachant et al., 2012; Barachant et al., 2013; Coelho Rodrigues et al., 
2017). LDA was trained with shrinkage set to auto and solver to eigen. 
All filtering approaches are trained and tested using the same 
modeling procedure; for example, when filtering using CF, the model 
is trained and tested using trials filtered with the same approach.

Performance metrics

Model performance was measured using BA and MCC. While 
MCC may be a better measure of performance for these data, both are 
reported to make comparisons between published studies easier. BA 
measures the performance of a classifier and supplies a more exact 
metric than simple area under the curve (AUC) or accuracy, since it 
considers the unequal class frequencies that are common in BCI 
interfaces (Brodersen et al., 2010). It is the average of the True Positive 
Rate (TPR; sensitivity) and True Negative Rate (TNR; specificity).

 2.
TPR TNRBA +

=

FIGURE 1

RSVP calibration task. The RSVP calibration task prompts a user to search for a letter in an inquiry. This one-second prompt is followed by a fixation of 
0.5 s, and then the 10-character inquiry. Each inquiry was presented at a rate of 5 Hz for a total time of two seconds per inquiry. The full iteration lasts 
3.5 s. The user completed this process 110 times with a four second blank screen between inquiry iterations.
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MCC was reported to be less affected by large class imbalances 
when compared to other measures, such as BA (Chicco et al., 2021; 
Chicco and Jurman, 2020; Matthews, 1975). In situations where one 
class is rare, MCC provides a more reliable sign of how well a model 
performs, especially with respect to the minority class. Due to the 
high ratio of negative to positive class in this study (10:1), this was an 
ideal measure to avoid type I  and II statistical errors. The MCC 
ranges from −1 to +1, where +1 indicates a perfect prediction, 0 
indicates no better than a random prediction, and − 1 indicates total 
disagreement between prediction and observation. The score can 
be calculated via the True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN) values from the confusion 
matrix via the following formula:

 

( ) ( )
( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +

Simulation

To determine the viability of the different filtering approaches 
online, a simulation using the PRK models on the copy phrase tasks 
were run. The copy phrase data were loaded, filtered using OF to 
simulate the online constraints, and model likelihoods were generated 
from the saved models in the same way that would be done during a 
closed-loop experiment in BciPy. These outputs were then scored 
into a confusion matrix with the following criteria:

True Positive (TP): Targets with likelihoods >1.0
False Negative (FN): Targets with likelihoods <= 1.0

False Positive (FP): Non-targets with likelihoods >1.0
True Negative (TN): Non-targets with likelihoods <= 1.0
From these scored values, BA and MCC were calculated using the 

formula detailed above.

Statistics

The filter application results were evaluated for significant 
differences (p < 0.05) using a permutations cluster two-tailed 
t-test (50,000 permutations) between model types using 
MNE-Python (Gramfort et  al., 2013). The threshold for 
permutations were calculated using SciPy percent point function 
(ppf) with an alpha of 0.05 and 29 degrees of freedom (Virtanen 
et al., 2020). The resulting Mean, Range and Standard Deviation 
values are reported alongside p-values.

Results

Filter application

In the investigation of the filter application procedure, the OF 
model, which featured greater online parity, yielded the best 
performance across multiple models and metrics. On average, all 
model types showed statistically significant improvements with 
the OF procedure, with the exception of BA in the PRK model, 
which just trended toward significance (p = 0.131). The statistical 
results are summarized in Table 2 and further examined through 
group averages (see Figure 3). There were no significant visual 
differences observed in the ERP plots.

FIGURE 2

Online and conventional filter application. This study examines two filtering pipelines, each with several similar steps. However, the OF condition 
requires an additional epoching step before filtering. The top of figure illustrates this distinction. In the OF condition, raw data is first epoched into 
Inquiry Data before filtering, then further epoched into Trials, and finally passed into a Signal Model. In contrast, the CF condition filters the data 
immediately, epochs it into trials, and then passes it to a Signal Model for training.
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Supplementary analyses

To complement the aforementioned analyses, two supplementary 
investigations were conducted: (I) an analysis of varying filter bands, 
and (II) a simulation using the evaluated models on collected online 
data from the RSVP copy task.

 (I) In the first analysis, different filter bands were applied to the 
PRK model. Model performance was assessed using MCC 
(see Figure  4). The following filter bands were tested: 
1–10 Hz and 0.2–20 Hz, as recommended by Zhang et al. 
(2024b) for N200/P300 ERPs; 1–20 Hz, the default filter in 
BciPy; and 0.1–50 Hz, selected to test a less restrictive filter. 
The choice of filter band significantly affected classification 
performance, with the 1–20 Hz filter yielding the best results 
in the default model. The broader filter bands (0.2–20 Hz and 
0.1–50 Hz) performed similarly and yielded the lowest MCC 
estimates overall.

 (II) To examine impact in an online setting, the PRK trained model 
for each participant was tested in a simulation using data from 
the RSVP copy phrase task. The individual OF and CF PRK 
models performed similarly (see Figure 5), with a slight trend 
toward significance in the OF condition (p = 0.15).

Discussion

In this study, we  investigated the hypothesis that filter 
application with greater online parity would improve cBCI 
calibration performance. The results demonstrate that the OF was 
a suitable procedure for data pre-processing and resulted in small 
but significant improvements to model performance across model 
types. Furthermore, usage of models trained in this manner 
during online simulations demonstrated its viability.

To explain the differences in filtering results, several plots 
were presented alongside the statistical results. Alongside the 
default BciPy filter used, we  presented data using several 
common filters advocated for in literature on the PRK model 
(Zhang et  al., 2024a). As demonstrated in Figure  4, the ideal 

filter for this model appears to be  1-20 Hz, with the OF 
outperforming CF. In all other high- and low-pass conditions, 
performance dropped for both filtering approaches. By reducing 
the high pass filter, CF outperformed or matched OF results, 
however overall performance declined significantly. This 
suggests that the OF approaches produces a better filter for 
application of trials to be classified for usage online, particularly 
when tighter filters were used. Although exploring model-
specific differences was outside of the scope of this manuscript, 
such an exploration would be  a fruitful avenue for future  
research.

Reflecting on Zhang et  al.’s (2024b) earlier filtering 
exploration, it is possible that both the N200 and P300 information 
are relevant for model classification; otherwise, a 1-10 Hz or lower 
high-pass filter might have produced the best results. While 
reducing high pass filtering to recommended settings did not 
increase classification performance, it may be the optimization for 
signal to noise ratio (SNR) other than amplitude measures (mean 
and peak) were more meaningful for classification. Furthermore, 
a model may be relying on frequency content or other derivations 
of the signal for its classification, while traditional ERP studies 
index amplitude to determine effects where high pass filtering 
could be destructive (Zhang et al., 2024a; Delorme, 2023). The 
difference in usage of underlying signal properties for evaluations 
highlights the need to explore standards of practice in one domain 
before transferring to another.

The results of the simulation on performance between 
models suggests the different approaches are similar (see 
Figure 5). This comparability may not hold as filters become 
stronger (higher order) or tighter (smaller bands), as 
we observed in the different filtering bands during classification 
in the supplementary analyses. Furthermore, forcing likelihood 
measures into a confusion matrix may not be the ideal way to 
compare these conditions. The magnitude of the predictions may 
lead to faster typing performance, where decision thresholds and 
cumulative Bayesian updates would be more sensitive to these 
differences. However, this scenario would be difficult to simulate 
offline given the sequential nature of the task and lack of 
stationarity of the underlying signals. While outside the scope of 
this experiment, more could be done to estimate a typing rate 
change from real or simulated data using different modeling 
techniques. The confusion matrices show some slight differences 
in model performances on average, albeit insignificant in our 
simulations (See Figure 6). The OF model had more positive 
class identifications on average (TP), where CF did better on 
average at identifying the negative class (TN). The impact of 
false identification in either direction would depend heavily on 
the evidence fusion and gathering strategy. As already discussed 
above, for systems using Bayesian fusion, the certainty of that 
label would impact the system significantly, and therefore should 
be monitored closely when selecting models.

In this work, we  performed analyses on a small sample of 
N200/P300-based BCI data. Our analysis may be informative and 
valuable for understanding an artifact-handling procedure’s 
potential benefits and limitations. However, it is essential to note 
that other types of EEG signals are used in BCIs, such as SSVEP 
or code-based visual evoked potentials, and sensory-motor 
rhythm. Future work may investigate how these findings 

TABLE 2 Filter application model performance.

LR PRK LDA

Matthew’s correlation coefficient

OF M (SD) 0.229 (0.136) 0.342 (0.175) 0.343 (0.193)

CF M (SD) 0.2163 (0.139) 0.329 (0.172) 0.334 (0.197)

p-value 0.01 0.044 0.045

Balanced accuracy

OF M (SD) 0.638 (0.077) 0.739 (0.11) 0.641 (0.088)

CF M (SD) 0.632 (0.079) 0.733 (0.11) 0.636 (0.088)

p-value 0.044 0.131 0.002

Classification performance across models and filter application types. Values reported are 
mean (standard deviation). The OF produced statistically significant improvements across 
models in the MCC metric. While the trend held using BA, PRK only trended toward 
significant (p = 0.131). All models performed similarly classifying this dataset, however the 
PRK model performed best across metrics.
Bolded values indicate a significant difference between conditions.
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generalize to other types of BCIs. In addition, the type of sensor 
and whether or not it is implanted should be considered when 
deciding the correct processing procedures. In this experiment, 
dry electrodes were used. Acknowledging this point, however, the 
N200/P300 BCIs are known to have lower SNR and are sensitive 
to filtering choices, making the analysis pragmatic to the field, 
albeit incomplete. Additionally, replicating these results with a 
greater number of participants and in different environments 
would be informative.

This study focused on one facet of the artifact pipeline, namely 
filter application. However, given these results and previous 
literature, more could be  done to evaluate other strategies to 
mitigate artifacts online. While some studies have shown the 
process of artifact removal to be  detrimental to performance 
measures (Thompson et al., 2019), it could be tested better online 
where some samples could be  recollected to avoid data loss 
constraints. This was explained in some detail by Delorme (2023), 
where the removal of trials was beneficial only to a point. This was 

FIGURE 3

Filter application on EEG signals. (A) Grand average of calibration data (n = 30) showing the averaged ERPs recorded from channels ‘Pz’, ‘Cz’, ‘Oz’, ‘P3’, 
‘P4’, ‘O1’, ‘O2’. This panel shows that the paradigm successfully evoked a P300 response during the target condition that was classifiable for use in 
online typing. In the target conditions, the orange line represents the conventionally filtered data (CF) and the blue line the online filter (OF). In the 
non-target conditions, the red line represents CF and the green line OF. There appears no major distinction on group average for the ERP. 
(B) Topographic maps of target condition for CF (left) and OF (right). These demonstrate activity across channels and the impact of the different 
filtering conditions across channels. The OF produces similar results to CF with some reduction in early potentials (N1, P1) and slight changes in 
topography.
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further demonstrated by Zhang et  al. (2024a), where it was 
advantageous to remove artifacts; however in their dataset, 
removal never exceeded 5% of trials (Zhang et  al., 2024b). 
Therefore, it may become crucial in the presence of select artifacts 
to collect more data instead of dropping trials altogether. 
Furthermore, to complement these investigations, more could 
be  done to quantify the impact of different artifacts (blinks, 
electrode pops, etc.) and their removal on model prediction 
performance directly. An investigation does exist using simulated 
artifacts (Awais et  al., 2024). This data could be  used to help 
define the remedies for various types of noise encountered in 

cBCIs, as these signals could also be  leveraged for increased 
performance in the case of properly timed eye activity (stimuli not 
missed by action) (Liu et al., 2024).

Conclusion

This manuscript presented evidence that training a model in 
the same way it will be used online was a suitable approach and 
may be  beneficial for long-term use. Supplementary analyses 
demonstrated the viability of this online parity pre-processing via 

FIGURE 4

Filter band settings on classification performance. This figure demonstrates the impact of filter band settings on classification performance between 
filter application conditions. All OF results are shown in grey; CF results are shown in black. Performance was determined with the default PRK model 
and measured in terms of MCC. Standard error bars applied. Averages are reported at the bottom of each condition. The OF condition provided better 
or equal performance to the CF condition across all filters. The 1-20 Hz filter performed the best on this dataset across conditions.

FIGURE 5

Online simulation results. The above notched box plots demonstrate stimulated online classification performance between filter application conditions 
across participants. The means are plotted using a green triangle, outliers are denoted with circles above/below the whiskers. In the top plots, MCC 
(left) and BA (right) are plotted. The models performed similarly with OF having a slight advantage on average.
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simulation and provided evidence of the ideal bandpass filter for 
RSVP cBCIs in the 1-20 Hz range. Future studies should test this 
methodology online with varied artifact handling procedures, 
interfaces, and model types to determine transferability 
constraints of this approach across BCI systems.
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FIGURE 6

Online simulation confusion matrices. This figure presents the averaged confusion matrices for the online simulations in the OF (left) and CF (right) 
conditions. While there were no statistical differences in the primary performance measures (BA/MCC), slight differences in model performance can 
be seen on average. The OF model predicted more of the positive class on average, where CF favored the negative class.
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