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Introduction: Motor imagery functional near-infrared spectroscopy (MI-fNIRS) 
offers precise monitoring of neural activity in stroke rehabilitation, yet accurate 
cross-subject classification remains challenging due to limited training samples 
and significant inter-subject variability. This study proposes a Cross-Subject 
Heterogeneous Transfer Learning Model (CHTLM) to enhance the generalization 
of MI-fNIRS signal classification in stroke patients.

Methods: CHTLM leverages labeled electroencephalogram (EEG) data from healthy 
individuals as the source domain. An adaptive feature matching network aligns task-
relevant feature maps and convolutional layers between source (EEG) and target 
(fNIRS) domains. Multi-scale fNIRS features are extracted, and a sparse Bayesian 
extreme learning machine classifies the fused deep learning features.

Results: Experiments utilized two MI-fNIRS datasets from eight stroke patients 
pre- and post-rehabilitation. CHTLM achieved average accuracies of 0.831 (pre-
rehabilitation) and 0.913 (post-rehabilitation), with mean AUCs of 0.887 and 
0.930, respectively. Compared to five baselines, CHTLM improved accuracy by 
8.6–10.5% pre-rehabilitation and 11.3–15.7% post-rehabilitation.

Discussion: The model demonstrates robust cross-subject generalization 
by transferring task-specific knowledge from heterogeneous EEG data while 
addressing domain discrepancies. Its performance gains post-rehabilitation 
suggest clinical potential for monitoring recovery progress. CHTLM advances 
MI-fNIRS-based brain-computer interfaces in stroke rehabilitation by mitigating 
data scarcity and variability challenges.
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Introduction

Stroke is one of the leading causes of adult disability, with 70–85% 
of first-time patients experiencing hemiplegia (Nutter, 2023). A major 
clinical challenge in stroke rehabilitation is the lack of objective, 
quantitative indicators for assessing motor function recovery. 
Traditional evaluation methods rely on subjective clinical assessments, 
which can lead to inconsistencies in diagnosis and treatment planning. 
As an innovative active rehabilitation approach, motor imagery brain-
computer interface (MI-BCI) technology enables the collection of 
brain signals during motor imagery tasks, decodes brain intentions, 
and converts them into control commands for rehabilitation training 
devices. These devices assist patients in executing movements, thereby 
facilitating neural pathway remodeling and promoting the recovery of 
motor functions (Sebastián-Romagosa et al., 2020). This rehabilitation 
method holds great promise in clinical applications and offers 
significant therapeutic value (Vourvopoulos et al., 2019). Functional 
near-infrared spectroscopy (fNIRS) is an optical imaging technique 
that measures hemodynamic responses associated with neural activity 
by detecting changes in oxyhemoglobin (HbO) and deoxyhemoglobin 
(HbR) concentrations. This non-invasive method provides high 
spatial resolution and can effectively capture cortical activation 
patterns during motor imagery tasks.

MI has high temporal resolution but is susceptible to noise, while 
fNIRS offers better spatial resolution and signal stability but has lower 
temporal resolution, making it difficult to capture rapid brain activity 
changes. The integration of MI and fNIRS (MI-fNIRS) offers a 
promising approach for neurorehabilitation. The combination of both 
modalities effectively compensates for the limitations of each single 
modality, improving data quality and enriching feature information. 
MI-fNIRS enables real-time monitoring of cortical activation during 
imagined movements, making it a valuable tool for brain-computer 
interface (BCI) applications in stroke rehabilitation. In this study, 
we adopt the MI-fNIRS fusion approach and introduce the Cross-
Subject Heterogeneous Transfer Learning Model (CHTLM) to further 
overcome inter-subject variability, improve the classification accuracy 
of MI-fNIRS signals, and better support stroke rehabilitation training.

Related work

In recent years, convolutional neural networks (CNNs), renowned 
for their powerful feature-learning capabilities, have been extensively 
applied in the field of MI-BCI. They provide an effective approach for 
processing and analyzing brain signals (Khademi et  al., 2023). 
Although CNNs exhibit great potential in MI-BCI applications, 
training high-performing models typically requires large amounts of 
data. However, in medical research, acquiring MI-fNIRS data from 
stroke patients necessitates specialized equipment, skilled 
professionals, and expert annotations from medical practitioners 
(Leamy, 2015). This process is both time-consuming and costly, often 
resulting in insufficient training samples for CNN-based MI-fNIRS 
classification tasks (Ma et al., 2021).

Additionally, inter-individual variability in brain signal 
characteristics poses a major challenge for cross-subject classification 
models. Models trained on data from one patient often fail to 
generalize effectively when applied to new patients, leading to poor 
generalization performance (Lee et al., 2024). Thus, applying CNNs to 

MI-fNIRS classification is hindered by both the limited availability of 
training data and substantial inter-subject variability.

To address these challenges, researchers have explored transfer 
learning (TL), which offers advantages in scenarios with limited 
training data (Salehi et al., 2023). TL facilitates knowledge transfer 
from a source domain to improve learning in a target domain, thereby 
enhancing model performance (Limpiti et al., 2021). In heterogeneous 
transfer learning applications within the MI-fNIRS domain, feature 
representation and distribution disparities exist between the source 
(EEG data) and target (fNIRS data) domains (Valverde et al., 2021). 
Consequently, heterogeneous transfer learning has gained attention 
(Bao et al., 2023), as it enables knowledge transfer between EEG and 
fNIRS—two distinct modalities with fundamentally different feature 
representations, data distributions, and signal characteristics (Day and 
Khoshgoftaar, 2017).

However, directly transferring all knowledge from the source 
domain can result in poor adaptation to the target task, leading to 
negative transfer effects that degrade model performance (Wang et al., 
2019). Therefore, in MI-fNIRS tasks, effective knowledge selection and 
transfer mechanisms are crucial. It is essential to identify task-relevant 
knowledge and determine optimal integration points within the target 
model. Traditionally, researchers rely on manual methods to establish 
correspondences between source and target model layers, but this 
process is resource-intensive and lacks adaptability (Wang et al., 2020). 
Manual alignment may limit the efficiency of transfer learning, as it 
does not autonomously identify the optimal knowledge 
transfer locations.

This study introduces three key innovations: (1) The use of wavelet 
transformation to convert raw fNIRS signals into image data, 
enhancing clarity in displaying frequency components and temporal 
changes to enrich signal features. (2) The CHTLM algorithm employs 
an adaptive feature matching network to explore correlations between 
the source and target domains. It transfers useful knowledge from the 
source model relevant to the target task to appropriate positions in the 
target model, thereby enriching the target model’s knowledge and 
mitigating individual differences. (3) Integration of sparse Bayesian 
theory into the ELM algorithm to achieve sparse solutions, effectively 
alleviating overfitting issues and enhancing the model’s 
generalization capabilities.

Materials

Experimental paradigm

In the process of model development and validation, we primarily 
employed the motor imagery EEG data from the BCI Competition IV 
Dataset 2a (Mohammadi et al., 2022) as the source domain dataset, 
and collected fNIRS data from eight stroke patients performing motor 
imagery as the target domain dataset. Among them, fNIRS data 
belongs to the retrospective study data.

The source domain dataset comprises EEG data collected from 
eight subjects performing four different motor imagery (MI) tasks: left 
hand, right hand, foot, and tongue. The experimental design involved 
a trial process consisting of six runs, with each run containing 48 MI 
trials, resulting in a total of 288 trials—72 trials per task. Before the 
experiment, subjects were provided with sufficient rest and informed 
about the experimental procedure. At the beginning of each trial, a 
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black screen with a fixed cross was displayed, followed by a short 
auditory cue. Two seconds later, an arrow pointing left, right, or in 
another direction appeared on the screen for 1.25 s, prompting the 
subject to perform the corresponding MI task. The task lasted for 6 s, 
after which the cross disappeared, signaling the subject to rest and 
prepare for the next trial.

The target domain dataset consists of fNIRS data collected from 
eight stroke patients performing MI tasks with their hemiplegic hand. 
This dataset is divided into two subsets: pre-rehabilitation and post-
rehabilitation training data. During the experiment, participants 
underwent a trial process comprising 20 trials—10 MI task trials and 
10 resting-state trials. The experimental paradigm is illustrated in 
Figure 1. Before the experiment, participants were allowed sufficient 
time to rest and were briefed on the procedure. The experiment 
commenced with a 10-s initial rest period, followed by a 1-s auditory 
cue. The participants then performed MI of their hemiplegic hand for 
15 s. Another 1-s auditory cue was played, signaling the beginning of 
a 20-s rest period before the next trial. This process was repeated for 
20 trials, concluding with a 3-s post-experiment rest period.

Data acquisition

For the self-collected MI-fNIRS dataset, eight stroke patients aged 
35 to 68 participated in the study, with an average age of 50.25 years 
and a sample variance of 57.76. All patients were fully conscious, able 
to understand instructions, and actively engaged in the rehabilitation 
process. They all exhibited hemiparesis due to either ischemic or 
hemorrhagic stroke. All participants voluntarily consented to the 
study and signed an informed consent form. Among them, four had 
left-hand hemiparesis, and four had right-hand hemiparesis.

Data acquisition was conducted using the NirSmart 6000B 
medical-grade portable system, developed by Huichuang Medical 
Equipment Co., Ltd., Danyang, China. The system was equipped with 
seven light sources and seven detectors, forming a total of 16 channels, 
which were symmetrically placed on the motor cortex around C3 and 
C4, with eight channels per region. The source-detector distance was 
set to 30 mm, and data were collected at two wavelengths (730 nm and 

850 nm) with a sampling rate of 11 Hz. The position distribution of 
the fNIRS optodes is shown in Figure 2. For details on the EEG signal 
acquisition of the source domain dataset, please refer to the 
Supplementary material S1.

Prior to rehabilitation training, patients’ brain fNIRS data were 
collected as pre-rehabilitation experimental data. They then 
underwent a two-week rehabilitation program. After completing the 
rehabilitation regimen, their fNIRS data were recorded again as post-
rehabilitation experimental data. The rehabilitation intervention 
utilized a smart mechanical hand rehabilitation device that integrates 
pneumatic and electrical components. This device stimulates motor 
nerves through physiological electrical stimulation, regulating neural 
excitability in the hemiparetic hand, facilitating muscle contraction, 
and enhancing wrist and hand joint movement. Detailed specifications 
of the device are provided in Supplementary material S2.

Methods

Data preprocessing

To ensure the quality and experimental applicability of the self-
collected motor imagery fNIRS data, we conducted a preprocessing 
procedure that primarily consists of five aspects: (1) Raw data 
conversion, where we  applied the modified Beer–Lambert law to 
accurately convert the raw optical data into concentration changes of 
oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). (2) Channel 
selection, where we retained the HbO2 and HbR data from 16 channels 
in the motor cortex to focus on studying brain regions related to 
movement. (3) Filtering, where a bandpass filter of 0.01–0.2 Hz was 
applied to the initially processed data to effectively remove the 
interference of high-frequency noise and low-frequency baseline drift 
while retaining physiological signals closely related to changes in 
cerebral blood oxygen levels, thus improving the signal-to-noise ratio. 
(4) Time window processing, where, to align the data of motor 
imagery and resting states and ensure that the extracted cerebral blood 
oxygen responses are closely related to the experimental tasks, 
we utilized the fNIRS data corresponding to the 10s motor imagery 

FIGURE 1

Timing scheme of the experimental paradigm.
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task time and 10s resting state time in each trial. (5) Time-frequency 
representation of EEG signals based on STFT: EEG signals exhibit 
relatively stable rhythmic activity within well-defined frequency 
bands. STFT provides a fixed resolution across all frequencies, making 
it an ideal choice for extracting power spectral features within 
predefined frequency bands. Given the high temporal resolution of 
EEG (with a millisecond-level sampling rate), STFT leverages the fast 
Fourier transform (FFT) to achieve efficient spectral decomposition 
without excessive computational overhead. (6) Image-based time-
frequency representation of fNIRS signals, considering that fNIRS 
signals have high spatial resolution and are two-dimensional time-
series data containing multiple channels. Additionally, wavelet 
transform offers flexibility in processing time-series data (Yu et al., 
2024). Unlike EEG signals, which exhibit distinct rhythmic oscillations 
in well-defined frequency bands, fNIRS signals contain slow 
hemodynamic variations that evolve across different time scales. 
Wavelet transform offers an adaptive time-frequency resolution, this 
makes it well-suited for capturing the complex temporal and spectral 
characteristics of fNIRS signals in the time-frequency domain. The 
details of the preprocessing steps for the source domain dataset can 
be found in Supplementary material S3.

Construction of the CHTLM

The collection and annotation of functional near-infrared 
spectroscopy (fNIRS) data from stroke patients present substantial 
challenges, often leading to a limited number of training samples per 
subject. This scarcity of data restricts deep learning models from 
effectively capturing critical features necessary for accurate 
classification (Thippa Reddy et al., 2020). Additionally, significant 
physiological differences between patients further hinder the model’s 
ability to generalize across subjects, ultimately reducing predictive 
accuracy (Liu et al., 2023). To address these challenges, this study 
introduces a novel classification framework specifically designed for 
fNIRS-based motor imagery tasks—cross-subject motor imagery 
fNIRS signal Classification Algorithm Based on a Heterogeneous 

Transfer Learning Model (CHTLM). The overall structure of CHTLM 
is depicted in Figure 3. This framework overcomes the constraints of 
traditional classification methods that both small sample sizes and 
inter-subject variability.

CHTLM employs heterogeneous transfer learning, which allows 
knowledge transfer from a well-trained source domain model to 
strategically chosen layers of a target model. This adaptation enables 
the model to better generalize across patients and enhance 
classification accuracy. Following this, a multi-scale feature extraction 
mechanism processes fNIRS signals from stroke patients to capture 
both low- and high-level discriminative features. These extracted 
features are then passed through a Sparse Bayesian Extreme Learning 
Machine (BELM), which provides an efficient and robust classification 
solution, particularly suited for limited data scenarios. The CHTLM 
framework consists of three main components: (1) Feature matching 
network with adaptive selection—aligns source and target domain 
features dynamically to ensure effective knowledge transfer. (2) 
Feature extraction via ResNet—Captures spatial and temporal 
characteristics of fNIRS signals through hierarchical feature learning. 
(3) Sparse Bayesian Extreme Learning Machine (BELM) classifier—
enhances classification robustness while reducing model complexity 
and computational cost. By integrating these components, CHTLM 
significantly improves the generalization and accuracy of motor 
imagery classification in stroke patients.

Feature matching network based on 
adaptive selection

In this study, the BCI Competition IV Dataset 2a served as the 
training data for the source domain model, while self-collected fNIRS 
data from stroke patients were used for the target model. Given the 
larger sample size of the source domain, a deeper architecture—
ResNet34—was employed to fully exploit the dataset’s potential and 
enhance feature extraction. Conversely, the target model utilized a 
lighter ResNet18 architecture to reduce computational complexity and 
improve training efficiency. The overall model structure is depicted in 
Figure  4. Both models aim to extract rich, high-level feature 
representations from EEG and fNIRS signals, effectively learning deep 
features that are closely related to motor imagery. This approach 
facilitates the development of a cross-subject classification model with 
high accuracy. Details regarding the training parameter settings are 
provided in Supplementary material S4.

To enhance classification performance and improve 
generalizability, this study introduces a feature matching network 
(FMN) that dynamically selects and transfers relevant features from a 
pre-trained source model to strategically chosen layers in the target 
model. This adaptive feature-layer alignment ensures that only task-
relevant information is transferred, preventing the introduction of 
redundant or misleading features that could degrade performance. In 
this study, the source model is trained on motor imagery (MI) tasks 
involving left- and right-hand movements in healthy individuals, 
while the target model is designed to classify MI tasks involving the 
paralyzed hand of stroke patients. The FMN first extracts multi-scale 
feature representations from the source model and then evaluates 
their relevance to the target task. It selectively transfers the most 
informative feature sets to corresponding layers in the target model, 
facilitating better adaptation to stroke patients’ MI signals. This 

FIGURE 2

The positional distribution map of fNIRS optodes.
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FIGURE 3

The algorithmic framework diagram of CHTLM.

FIGURE 4

Structural diagrams of the source model and the target model.
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process improves classification accuracy, particularly for 
distinguishing motor imagery involving the paralyzed hand.

The architecture of the feature matching network is illustrated in 
Figure 5, and it consists of two primary components, adaptive feature 
selection and layer-wise feature transfer. Adaptive feature selection 
(Figure 5a) identifies and extracts relevant feature representations 
from the source model that are beneficial for the target task. Layer-
wise feature transfer (Figure 5b) integrates the selected features into 
optimally positioned layers of the target model, ensuring efficient 
adaptation to stroke patients’ MI signals. By effectively leveraging 
knowledge learned from healthy individuals, this transfer learning 
strategy enhances the target model’s ability to recognize MI signals in 
stroke patients, leading to improved cross-subject motor imagery 
classification accuracy.

The primary challenge in designing the feature-matching 
network is identifying which knowledge should be transferred from 
the source model to the target model. In heterogeneous transfer 
learning for cross-subject brain signal analysis, not all intermediate 
features from the source model contribute meaningfully to classifying 
motor imagery (MI) tasks involving the hemiplegic hand in stroke 
patients. To selectively transfer only the most relevant feature 
representations, this study introduces a weighted feature-matching 
loss mechanism. This approach quantifies the actual utility of each 
source feature map in the target task and assigns greater importance 
to features that enhance classification accuracy. Because different 
feature maps contribute unequally to the target model, a fully 
connected neural network is introduced to learn optimal weight 
values for each feature map. By processing the source model’s feature 
maps, this network automatically assigns importance scores, ensuring 
that the most informative features receive higher attention in the loss 
calculation. A fully connected neural network ,k dfφ  to learn the 
weights ,k dwθ  for each feature map in the target task. By inputting the 
feature maps from the source model into ,k dfφ , the weight values are 
obtained. As shown in Figure 5a, for a given set of feature maps from 
both the source model and the target model, trainable weights are 

assigned to each source feature map. Higher importance corresponds 
to greater weight values, allowing the model to prioritize essential 
features during transfer learning. This targeted selection of useful 
features enhances the effectiveness of knowledge transfer, ensuring 
that the model adapts well to MI signal classification in 
stroke patients.

Beyond selecting relevant features, the feature-matching network 
must determine where to transfer these features within the target 
model. Establishing layer-wise correlations between the source and 
target models is essential for effective knowledge transfer. By aligning 
feature representations from corresponding layers, the system ensures 
that critical MI knowledge learned from healthy individuals is mapped 
to the appropriate layers in the target model, thereby improving 
classification performance for hemiplegic hands in stroke patients. As 
depicted in Figure  5b, the adaptive feature-matching network 
facilitates this process by systematically mapping source-domain 
features to corresponding target-domain layers. Additional 
implementation details can be found in Supplementary material S5.

Feature extraction based on convolutional 
neural networks

To effectively explore and utilize the multi-scale feature 
information in fNIRS and thus enhance the model’s accuracy. In the 
study, the convolutional kernels of the convolutional layers in the 
target model were used as feature extractors. Each feature extractor’s 
feature map was averaged to obtain the corresponding deep learning 
features from the fNIRS data. Through structural analysis of ResNet18 
(He et  al., 2016; Liu et  al., 2023), we  calculated that the network 
contains a total of 3,904 convolutional kernels. Therefore, 3,904 deep 
learning features were extracted from the fNIRS data for each subject. 
Furthermore, this study employed the Mann–Whitney U test 
(MacFarland and Yates, 2016) method to filter the fNIRS features, 
aiming to identify those that are highly relevant to the task and 

FIGURE 5

Adaptive feature matching network: (a) Selecting source knowledge useful for the target task; (b) Matching of feature layers between the target and 
source models.
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statistically significant. Details of feature extraction of the target model 
can be found in Supplementary material S6.

Construction of Sparse Bayesian Extreme 
Learning Machine

Bayesian Extreme Learning Machine (BELM) (Chaturvedi et al., 
2018) is an algorithm that integrates Bayesian learning theory with 
Extreme Learning Machine (ELM) (Chouikh et al., 2021). This 
method utilizes the prior probability distribution inherent in Bayesian 
inference to randomly initialize the connection weights and biases 
between the input and hidden layers, resulting in a set of randomly 
parameterized neural networks. Subsequently, Bayesian inference is 
employed to estimate the posterior probability distribution of these 
parameters, allowing for fine-tuning of the weights and biases to 
achieve an optimal model solution. Compared to traditional 
approaches that manually set weights and biases, BELM offers a faster 
learning process, mitigates the overfitting issues associated with 
conventional ELM, and enhances the model’s generalization ability. To 
further improve the optimization and solution robustness of BELM, 
this study introduces an L1 norm constraint, promoting sparsity in the 
learned model parameters. Based on this approach, we construct a 
Sparse Bayesian Extreme Learning Machine (SBELM) classification 
model, as illustrated in Figure  6. Further details on the SBELM 
algorithm can be found in Supplementary material S7.

The Bayesian Extreme Learning Machine (BELM) (Chaturvedi 
et  al., 2018) is an advanced neural network model that integrates 
Bayesian learning theory with Extreme Learning Machine (ELM) 
(Chouikh et al., 2021). Unlike conventional ELM, which manually 
initializes network weights and biases, BELM leverages Bayesian 
inference to randomly initialize these parameters while maintaining a 
prior probability distribution. Subsequently, posterior probability 
estimation is performed to refine the weights and biases, leading to an 
optimized classification model. Compared to standard ELM 
approaches, BELM offers: (1) Faster training speeds due to efficient 

parameter initialization. (2) Reduced overfitting, as Bayesian inference 
provides regularization. (3) Improved generalization, making it more 
robust for cross-subject MI classification tasks. To further enhance 
model sparsity and improve robustness, this study introduces an 
L1-norm constraint, promoting the selection of only the most relevant 
model parameters. This enhancement results in the construction of a 
Sparse Bayesian Extreme Learning Machine (SBELM) classification 
model, as illustrated in Figure 6. Further implementation details of 
SBELM can be found in Supplementary material S7. Furthermore, this 
study employed the Mann–Whitney U test method to filter the fNIRS 
features, aiming to identify those that are highly relevant to the task 
and statistically significant.

Evaluation and comparison of models

To evaluate the model performance, the study used accuracy, area 
under the receiver operating characteristic curve (AUC), recall, and 
F1-score as performance metrics for the classification model. Among 
them, accuracy is used to evaluate the overall performance of the 
model on all categories. The motor imagery of the paralyzed hand is 
considered a positive case, while the resting state is a negative case. 
AUC is used to evaluate the model’s ability to correctly classify positive 
and negative cases. Recall assesses the model’s ability to identify 
positive cases. F1-score helps analyze the model’s balance in predicting 
positive and negative cases.

To validate the effectiveness of each module in CHTLM, five 
comparative experiments were conducted in this study: (1) Different 
transfer sources. The transfer source adopted by CHTLM is the motor 
imagery EEG data from the BCI Competition IV Dataset 2a, while the 
ImageNet-based Cross-Subject Heterogeneous Transfer Learning 
Model (I-CHTLM) uses the large-scale image dataset ImageNet (Deng 
et al., 2009) as the transfer source. (2) Different features. The features 
used by CHTLM are deep learning features extracted based on 
convolutional neural networks. The second set of experiments adopts 
six statistical features, forming a statistical feature-based 

FIGURE 6

Construction of the classifier.

https://doi.org/10.3389/fnhum.2025.1555690
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Feng et al. 10.3389/fnhum.2025.1555690

Frontiers in Human Neuroscience 08 frontiersin.org

heterogeneous transfer learning model (SF-HTLM). (3) Different 
classifiers. CHTLM employs SBELM as the classifier, while the third 
set of experiments uses ELM as the classifier, forming an ELM-based 
heterogeneous transfer learning model (E-HTLM). To evaluate the 
potential effectiveness of CHTLM, we  conducted comparative 
experiments on datasets collected before and after rehabilitation 
training. (4) Different transfer learning models. CHTLM employs a 
heterogeneous transfer learning model and we compared it with two 
transfer learning models. The fourth set of experiments used an 
instance-based transfer learning model (ACTL), and the fifth set of 
experiments used a parameter-based transfer learning algorithm 
(TLCMI).

Experiments and results

To evaluate the effectiveness of CHTLM, datasets from eight 
subjects (S1, S2, …, S8) were collected both before and after 
rehabilitation training. A leave-one-out cross-validation (LOO-CV) 
strategy (Cao et al., 2024) was employed in each experimental run, 
using fNIRS data from seven subjects as the training set and the 
remaining subject’s data as the test set. The detailed AUC and accuracy 
(ACC) results for different comparative models are provided in 
Supplementary material S8.

The results demonstrate that CHTLM achieves high classification 
accuracy across both pre- and post-rehabilitation datasets. As shown 
in Figure 7, the average classification accuracy before rehabilitation 
was 0.831, increasing to 0.913 post-rehabilitation. Furthermore, 
subject-wise analysis indicated an improvement in classification 
accuracy ranging from 5 to 15%, suggesting a consistent enhancement 
in distinguishing motor imagery tasks after rehabilitation.

Figure 8 illustrates the receiver operating characteristic (ROC) 
curves of CHTLM for the eight subjects across both datasets. The 
mean AUC improved from 0.886 before rehabilitation to 0.931 post-
rehabilitation. Additionally, individual subject AUC scores exhibited 

increases ranging from 1 to 11%. This improvement suggests that 
rehabilitation training contributes to varying degrees of brain function 
recovery, enabling the model to better differentiate motor imagery 
tasks for the left and right hands.

While statistical significance was not explicitly tested for these 
differences, the consistent improvement across all subjects supports 
the robustness of the model. Future studies could apply hypothesis 
testing, such as paired t-tests or chi-square test, to quantify the 
statistical significance of these improvements.

The mean performance metrics for the pre-rehabilitation dataset 
across the eight subjects are visualized in Figure 9 using a radar plot. 
This plot provides an intuitive comparison across five key indicators: 
accuracy, precision, recall, F1-score, and AUC value. Specific 
numerical values are detailed in Table 1. The radar chart shows that 
CHTLM exhibits the most balanced and robust performance, 
particularly excelling in accuracy (0.831), recall (0.800), and AUC 
(0.887). These metrics suggest that CHTLM not only maintains high 
classification accuracy but also achieves superior sensitivity in 
identifying motor imagery signals.

Among the comparative models, E-HTLM demonstrated a 
relatively balanced performance, though its recall rate was notably 
lower, which may indicate a tendency towards false negatives. In 
contrast, I-CHTLM and ACTL models achieved high accuracy (0.925) 
but had smaller radar chart areas, suggesting weaker performance in 
other metrics such as recall and F1-score. The SF-HTLM and TLCMI 
models exhibited the smallest overall radar areas and the most 
imbalanced metric distributions, indicating inferior performance 
compared to CHTLM.

A similar radar analysis was conducted for the post-rehabilitation 
dataset (Figure  10), confirming the superior and well-rounded 
performance of CHTLM. Compared to the five baseline models, 
CHTLM consistently delivered the highest recall (0.938) and AUC 
(0.930), indicating its strong ability to capture relevant motor imagery 
patterns post-rehabilitation. The E-HTLM model performed well in 
terms of precision (0.867) and AUC (0.820), but its lower recall (0.675) 
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FIGURE 7

Comparison of classification accuracy before and after rehabilitation training for eight subjects.
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and F1-score (0.750) suggest an imbalance between sensitivity and 
specificity. Likewise, I-CHTLM and ACTL exhibited strong precision 
(0.850) and AUC (0.846) but suffered from reduced recall. The 
SF-HTLM and TLCMI models, despite maintaining high accuracy 
(0.865), exhibited lower recall (0.625) and consequently a lower F1-score 
(0.715), limiting their overall effectiveness. To further substantiate these 
findings, future work should include statistical comparisons, such as 
confidence intervals or hypothesis testing on accuracy improvements, 
to validate the significance of the observed differences. Details of the 

specific performance indicators for each subject in the comparative 
models are provided in Supplementary material S9 (see Table 2).

Discussion

Stroke is a prevalent neurological disorder that often results in 
hemiplegia, significantly impairing patients’ motor functions and 
quality of life (Gu and Huang, 2023). In hand rehabilitation therapy 
for stroke patients, traditional rehabilitation methods, such as passive 
training assisted by rehabilitation physicians, offer some benefits but 
are time-consuming, costly, and inherently limited (Baniqued et al., 
2021; Shen et al., 2022). In contrast, the novel active rehabilitation 
approach based on motor imagery brain-computer interfaces 
(MI-BCI) has shown promising potential due to its ability to promote 
neural function recovery and neuroplasticity. Recent research on 
MI-BCI using functional near-infrared spectroscopy (fNIRS) has 
provided clinicians with a new tool to analyze the brain activity of 
stroke patients (Shen et al., 2022). Accurate classification of MI-fNIRS 
signals in stroke patients could yield deeper insights into their neural 
activity, aiding physicians in developing more precise and personalized 
rehabilitation treatment plans (Jiang et al., 2022). Moreover, improved 
classification methods may facilitate the development of more effective 
rehabilitation strategies, ultimately enhancing patients’ 
recovery processes.

In recent years, artificial intelligence (AI) has played a crucial role 
in the classification of MI brain signals. For instance, Dose et al. (2018) 
investigated MI EEG signals from 109 healthy individuals, utilizing 
one-dimensional convolutional neural network (CNN) layers to learn 
temporal and spatial filters for feature extraction. They then integrated 
these filters with traditional fully connected layers for classification, 
successfully developing an end-to-end MI EEG classification model. 
Similarly, Ma et al. (2021) explored various CNN-based time-series 

FIGURE 8

Comparison of AUC before and after rehabilitation training for eight subjects.

FIGURE 9

Radar plot of the pre-rehabilitation training dataset.

https://doi.org/10.3389/fnhum.2025.1555690
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Feng et al. 10.3389/fnhum.2025.1555690

Frontiers in Human Neuroscience 10 frontiersin.org

classification methods, applying them to MI fNIRS signals from 36 
healthy individuals. However, due to significant inter-subject 
variability, models trained on data from one individual often fail to 
generalize well to other subjects, resulting in poor cross-subject 
classification performance [33]. This limitation poses challenges for 
physicians in designing personalized treatment plans. Additionally, 
although publicly available MI EEG datasets, such as the BCI 
Competition IV Dataset 2a, provide valuable resources, inconsistencies 
in data types and experimental tasks hinder the development and 
generalization of cross-subject classification models for stroke patients.

To validate the effectiveness of the proposed CHTLM model in cross-
subject MI-fNIRS classification for stroke patients, we  conducted 
comparative experiments against other transfer learning models. The 
experimental results demonstrated the superior performance of CHTLM, 
confirming its effectiveness in this classification task. Specifically, on two 
independent datasets collected before and after rehabilitation training, 
CHTLM achieved an average accuracy of 0.831 and 0.913, respectively, 
with corresponding AUC values of 0.887 and 0.930. Accurate classification 
of MI-fNIRS signals in stroke patients provides essential data for 
optimizing rehabilitation programs and improving patient outcomes. 
Additionally, validation on datasets from different rehabilitation stages 
further demonstrated the model’s generalization capability across varying 
recovery phases and individual differences.

In our comparative study, we first examined the impact of the 
transfer source on the classification model by comparing CHTLM 
with I-CHTLM. The experimental results showed a decline in 
performance across all metrics for I-CHTLM compared to CHTLM, 
with accuracy decreasing by 12.3% and AUC dropping by 9%. This 
decline is attributed to the use of the ImageNet dataset as a transfer 
source, which consists of large-scale image data that fundamentally 
differ from EEG signals at the feature level. When the source and 
target tasks are semantically dissimilar, heterogeneous transfer 
learning struggles to extract meaningful knowledge, leading to 
suboptimal model performance. The ACTL model achieved relatively 
high accuracy and AUC values (0.850 and 0.846, respectively), but its 
recall rate was relatively low (0.750), resulting in a suboptimal F1-score 
(0.788). Since ACTL relies on instance-based transfer learning, its 
performance is limited when the similarity between source and target 
domain instances is weak. In contrast, CHTLM leverages MI EEG 
data from healthy individuals as the transfer source, enabling it to 
capture deep features of healthy brain activity. Through an adaptive 
feature matching network, CHTLM effectively identifies correlations 
between source and target domains, allowing for the seamless transfer 
of relevant feature knowledge to the target model. The SF-HTLM 
model demonstrated the lowest performance across all metrics, with 
accuracy, AUC, recall, and F1-score values of 0.756, 0.816, 0.625, and 
0.715, respectively. A comparison between CHTLM and SF-HTLM 
highlighted the advantage of deep learning-based feature extraction 
over traditional statistical methods, as statistical features fail to capture 
the deeper-level information present in EEG data. Similarly, the 
TLCMI model also exhibited the lowest performance, likely due to the 
inflexibility of its parameter-based transfer learning approach, which 
limits its adaptability to variations in the target task. By contrast, 
CHTLM not only captures hierarchical features but also, through an 
adaptive feature matching network, extracts deeper features that are 
closely associated with MI tasks. This approach effectively mitigates 
the impact of individual variability, enabling the model to achieve 
more robust cross-domain classification performance.

Additionally, a comparison between CHTLM and E-HTLM 
demonstrated that CHTLM, which integrates an Extreme Learning 
Machine (ELM) classifier, fully exploits the advantages of Bayesian 
inference, effectively incorporating the probability distribution of the 
data to improve classification accuracy. The inclusion of the L1 norm 
further enhances the model by producing sparse solutions, reducing 
complexity, and improving overall performance.

The proposed CHTLM algorithm offers several key advantages: 
(1) It leverages data from healthy individuals across different datasets 
and tasks through an adaptively selected feature matching network, 
significantly enriching the training knowledge of the target model. (2) 
It introduces a weighted feature matching loss that emphasizes source 

TABLE 1 Analysis of performance metrics for the comparative experiments on the pre-rehabilitation training dataset.

Subject Method Accuracy AUC Recall Precision F1-score

Mean CHTLM 0.831 0.887 0.800 0.874 0.818

I-CHTLM 0.744 0.800 0.563 0.925 0.684

SF-HTLM 0.725 0.771 0.513 0.912 0.648

E-HTLM 0.75 0.804 0.600 0.868 0.705

ACTL 0.744 0.800 0.563 0.925 0.684

TLCMI 0.725 0.771 0.513 0.912 0.648

FIGURE 10

Radar plot of the post-rehabilitation training data set.
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feature maps based on their relevance to the target task. Additionally, 
learnable parameters are assigned to each pair of feature maps in the 
feature matching network to quantify the degree of knowledge transfer 
from the source model to the target model. (3) By utilizing CNNs, 
CHTLM extracts multi-scale deep learning features that are highly 
relevant to MI classification, enhancing model generalizability and 
mitigating the impact of individual differences. Beyond its technical 
advantages, CHTLM demonstrates strong classification accuracy and 
generalization ability, likely due to the positive role of rehabilitation 
training in enhancing patients’ brain signal clarity. After rehabilitation, 
patients’ feature spaces become more aligned with those of healthy 
individuals, facilitating improved knowledge transfer. Ultimately, 
CHTLM provides a novel approach to knowledge transfer between 
healthy individuals and stroke patients, offering new insights and tools 
for personalized diagnosis and treatment in stroke rehabilitation. 
Experimental results confirm that CHTLM significantly outperforms 
competing methods both before and after rehabilitation, underscoring 
its potential in tracking rehabilitation progress and assessing 
treatment efficacy.

Despite its advantages, this study has several limitations that 
should be acknowledged: (1) To ensure patient comfort and minimize 
fatigue during experiments, the number of trials collected was 
relatively small. Consequently, the dataset may not fully capture the 
neurological diversity of stroke patients, potentially introducing biases 
in the data collection process. In particular, the high inter-subject 
variability among stroke patients may lead to results that are not fully 
generalizable. Future studies should aim to increase the number of 
trials per participant and expand the dataset through multi-center 
collaborations. This will not only mitigate potential biases but also 
enhance the robustness and generalizability of the model. (2) The 
current study is based on offline data analysis, which, while valuable 
for initial validations, does not fully represent real-time clinical 
scenarios. The offline nature of the experiments may overlook 
challenges such as latency and dynamic environmental factors that 
could affect model performance in an online setting. Future research 
should incorporate real-time signal processing and adaptive 
calibration strategies—such as dynamic domain adaptation—to 
validate CHTLM’s effectiveness in practical, clinical applications. 
We plan to develop a prototype system in collaboration with hospitals 
and perform dynamic feedback experiments to assess online 
performance and optimize treatment strategies for stroke patients. (3) 
Besides the small sample size and offline nature of the current 
experiments, other limitations include the challenges in managing 
inter-subject variability and potential data bias. These issues can affect 
the accuracy and reliability of motor imagery classification in stroke 
patients. To overcome these challenges, future work will focus on: real-
time signal processing, enhanced data collection protocols, 

algorithmic optimizations. By addressing these limitations and 
outlining clear strategies for future research, we aim to bridge the gap 
between current offline analyses and real-time clinical applications, 
ultimately enhancing the clinical impact of our findings.

Conclusion

Collecting and annotating fNIRS data from stroke patients 
presents significant challenges, often resulting in an insufficient 
number of training samples per subject. This data scarcity negatively 
impacts the predictive performance of deep learning models. 
Additionally, considerable physiological differences between 
individuals lead to poor cross-subject generalization of trained 
models. To address these limitations, this study proposes the CHTLM 
algorithm, which integrates an adaptive feature matching network and 
a sparse Bayesian-based ELM classifier.

First, we train a source model based on EEG data and a target 
model based on fNIRS data. Leveraging the feature extraction 
capabilities of ResNet, the model aims to capture complex relationships 
and intrinsic patterns across different subjects. Next, an adaptive 
feature matching network is introduced to align the feature 
representations of the source and target models. By selectively 
transferring relevant knowledge from the source domain to the target 
model, this approach mitigates inter-subject variability and enhances 
the model’s ability to generalize across individuals. Beyond its 
technical contributions, CHTLM facilitates knowledge transfer 
between healthy individuals and stroke patients, offering new insights 
and tools for personalized stroke diagnosis and rehabilitation. 
Experimental results demonstrate that CHTLM significantly 
outperforms comparative methods both before and after rehabilitation, 
highlighting its potential for tracking rehabilitation progress and 
assessing treatment efficacy.
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