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Introduction: Lower sensitivity (LS) to acute alcohol promotes hazardous

alcohol use, increasing risk for alcohol use disorder (AUD). Compared to peers

with high sensitivity (HS), LS individuals exhibit amplified responses to alcohol

cues and difficulty exerting inhibitory control (IC) over those cued responses.

However, it is unclear whether LS and HS individuals differ in neural or behavioral

responses when exerting IC over affectively neutral prepotent responses (i.e.,

domain-general IC). This fMRI pilot study examined domain-general IC and its

neural correlates in young adult LS and HS individuals.

Methods: Participants (N = 32, Mage = 20.3) were recruited based on their

Alcohol Sensitivity Questionnaire responses (HS: n = 16; LS: n = 16; 9

females/group) to complete an event-related fMRI IC task in a sober state.

Retrospective assessments of alcohol craving, consumption, and problems were

taken outside the lab.

Results: Although IC performance (accuracy) was numerically lower for the LS

group (M[SD] = 0.527[0.125]) compared to the HS group (M[SD] = 0.595[0.124]),

no significant difference was detected [t(30) = 1.55, p = 0.132]. Across groups,

IC-related activity was observed in bilateral fronto-cortico-striatal circuitry,

including dorsal striatum (DS) and dorsal/supragenual anterior cingulate cortex

(dACC). Within group HS, IC-related dACC activity was greater among individuals

reporting less intense (b-95 CI = [−0.201, −0.041], p = 0.004) and less frequent

alcohol craving experiences (b-95 CI = [−0.131, 0.005], p = 0.068), whereas in

group LS, IC-related dACC activity was greater among individuals reporting more

intense (b-95 CI = [0.009, 0.140], p = 0.028) and more frequent alcohol craving

experiences (b-95 CI = [0.022, 0.128], p = 0.007).

Discussion: In sum, while LS and HS individuals demonstrated similar domain-

general IC performance and recruited similar neural resources to perform IC,

findings suggest that compensatory over-activation of frontocortical nodes of

the fronto-cortico-striatal IC circuitry may be related to affective-motivational

aspects of AUD symptomatology (craving in daily life) among LS individuals.

Based on these preliminary findings, future studies with larger samples are

warranted to determine the extent to which domain-general IC performance
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associated with fronto-cortico-striatal IC circuit activation contributes to the

alcohol use pathophysiology, and whether therapeutic interventions (e.g., non-

invasive brain stimulation) targeting fronto-cortico-striatal IC circuitry may

decrease AUD symptomatology.
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1 Introduction

Alcohol use is highly prevalent and socially acceptable
compared to the use of other addictive substances, yet poses a
myriad of acute and chronic harms to individuals and society
(Connor, 2017; Duke et al., 2017; Griswold et al., 2018). Chronic use
of alcohol, like other addictive substances, is associated with deficits
in multiple forms of executive functioning (EF) (Brion et al., 2017;
Fernández-Serrano et al., 2011). Individual differences in inhibitory
control (IC), one facet of EF, are strongly implicated in risk for
onset and relapse across various substance use disorders (SUDs),
including alcohol use disorders (AUD) (Gunawan et al., 2024;
Morein-Zamir and Robbins, 2015; Smith et al., 2014; Zilverstand
et al., 2018). IC encompasses the cognitive ability to stop a
prepotent response (Friedman and Miyake, 2004, 2017; Miyake
et al., 2000). Lower IC task performance is associated with heavier
and more hazardous patterns of alcohol use (Hu et al., 2016; López-
Caneda et al., 2014; Mullan et al., 2011; Murphy and Garavan,
2011; O’Halloran et al., 2020) and higher likelihood of relapse
(return to use) among individuals attempting to abstain from
drinking alcohol (Czapla et al., 2016; Rupp et al., 2016). The
associations between IC and AUD risk may be driven by individual
differences in susceptibility to the acute effects of alcohol, including
IC impairment, as well as by individual differences in IC abilities in
the sober state.

Implementation of IC involves at least one of two potentially
cooperative frontocortical-basal ganglia circuits (Bundt and
Huster, 2024; Hannah and Aron, 2021; Jahanshahi et al., 2015;
Wessel and Anderson, 2024): the indirect and hyperdirect
pathways. The indirect IC pathway involves frontocortical
excitatory drive onto cells in dorsal striatum (caudate/putamen)
with inhibitory projections onto cells in globus pallidus pars
externa (GPe) that in turn have inhibitory projections onto cells
in globus pallidus pars interna (GPi) and substantia nigra pars
reticulata (SNr) that provide inhibitory tone on thalamic cells
with excitatory projections to the primary motor cortex (M1)
in the precentral gyrus. The hyperdirect IC pathway involves
frontocortical excitatory drive onto cells in the subthalamic nucleus
(STN) with excitatory projections onto the inhibitory cells in
GPi/SNr, providing a faster mechanism (in terms of fewer synapses)
for inhibition of M1. Meta-analyses suggest that key frontocortical
nodes for IC implementation include dorsal and ventral lateral
frontal cortices, such as anterior insula, middle and inferior frontal
gyrus, as well as more medial cortices, such as anterior cingulate
and superior frontal gyrus, depending on task-specific demands
(Criaud and Boulinguez, 2013; Gavazzi et al., 2021, 2023; Isherwood
et al., 2021; Simmonds et al., 2008; Zhang et al., 2017).

Individuals with active SUDs tend to exhibit hypo-activation
of frontocortical IC circuit nodes during successful IC compared
to healthy control cases (Goldstein and Volkow, 2002; Le et al.,
2021; Luijten et al., 2014; Moeller et al., 2016; Zilverstand et al.,
2018), suggesting that, functionally, “under-recruitment” of IC
circuits lies at the core of SUD-related IC deficits. However, the
story is complicated by potential differences between SUDs as
well as by differential relationships to different aspects of risk
(e.g., craving, consumption, and consequences) across the lifespan
and/or substance use trajectory (Heitzeg et al., 2015; Hildebrandt
et al., 2021; Luijten et al., 2014; Moeller et al., 2016). Indeed, as
noted by Moeller et al. (2016), hyper- rather than hypo-activation
of frontocortical IC circuit nodes during successful IC has been
associated with craving and relapse (return to use) risk in clinical
samples (Froeliger et al., 2017; Grieder et al., 2022; Prisciandaro
et al., 2013; Stein et al., 2021), as well as with risky substance use
patterns (e.g., binge drinking) in non-clinical samples (Herman
et al., 2019; Suárez-Suárez et al., 2020). To reconcile such findings
with the over-arching idea that SUD-related IC deficits are due
to “under-recruitment” of IC circuits, it has been proposed that
to achieve certain levels of IC performance some individuals
compensate for hypo-active IC circuits by expending additional
effort or neural resources (Heitzeg et al., 2015; Hildebrandt et al.,
2021), leading to apparent “over-recruitment” of IC circuits.

1.1 Low sensitivity to alcohol: an
endophenotype of AUD risk

Individual differences in susceptibility to alcohol intoxication
are known to moderate risk for AUD onset and progression.
Specifically, lower sensitivity (LS) to acute alcohol predicts heavier
alcohol use and more alcohol use-related problems, including AUD
(Schuckit et al., 2007, 2017, 2021). Several mechanisms have been
proposed to account for LS-related AUD risk, including paradoxical
hyper-sensitivity to appetitive effects of alcohol (Fleming et al.,
2016; King et al., 2021, 2022), including cue reactivity (Bartholow
et al., 2010; Cofresí et al., 2022b), and hypo-sensitivity to aversive
effects (Davis et al., 2021; Fleming et al., 2016; Hone et al., 2017;
Piasecki et al., 2012). Despite continued empirical and theoretical
progress in understanding LS-related AUD risk (Parker et al., 2020;
Ray et al., 2010; Schuckit et al., 2021), the role of potential sober-
state differences in EF facets like IC in LS-related AUD risk remains
under-explored.

Early indication of potential sober-state differences in EF-
related processes as a function of alcohol sensitivity phenotype
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came from an attentional IC (flanker task) study using event-
related brain potentials. This study found that, despite similar task
performance, the P300 was smaller among LS individuals relative to
HS peers (Bartholow et al., 2003). The P300 is an attention-related
brain potential that integrates activity across multiple distributed
neural systems (Linden, 2005; Polich, 2007). To our knowledge,
there has been only one prior fMRI study of IC performance as a
function of alcohol sensitivity phenotype, that is, only one prior
study that would be able to identify the specific neural substrates
of potential sober-state differences in IC processes. This study
found that, at matched IC performance levels, sober LS individuals
“over-recruit” anterior (frontal, cingulate, precentral) cortical areas
during successful IC compared to their HS peers (Schuckit et al.,
2012). Consequently, LS and HS individuals may or may not differ
in IC abilities per se, yet may differ in terms of frontocortical
circuitry recruitment to successfully implement IC.

Replicating the latter finding and establishing the extent to
which IC performance and its neural substrates differ between LS
and HS individuals is important for understanding the potential
role of domain-general (viz., “core”) self-control abilities in
shaping LS and HS individuals’ different alcohol craving and
consumption topographies in the natural environment (Kohen
et al., 2023; Piasecki et al., 2012; Trela et al., 2016, 2018).
Furthermore, potential differences in the neural substrates of IC as
a function of alcohol sensitivity phenotype can help inform early-
stage indicators for risk of developing AUD, as well as provide
guidance on neuroanatomical locations for testing non-invasive
brain stimulation (NIBS) to modulate IC in the context of AUD.

1.2 The current study

A functional magnetic resonance imaging (fMRI) pilot study
was conducted to examine potential differences in sober-state
domain-general IC performance and its neural underpinnings
among young adults who regularly use alcohol and report relatively
extreme LS or HS to acute alcohol. Based on (Schuckit et al., 2012),
it was hypothesized that IC performance would be similar between
groups, but that successful IC performance would be associated
with elevated activity, as indexed by the blood oxygen-level
dependent (BOLD) response, in the frontocortical nodes of the IC
circuits for group LS compared to HS. Given an extensive literature
linking LS to alcohol with elevated alcohol craving, consumption,
and consequences, alcohol sensitivity phenotype-based effects on
IC circuit activation were examined while accounting for potential
moderation by between-person differences in alcohol use and
problem levels or daily experiences with alcohol craving.

2 Materials and methods

This report presents primary analysis of behavioral task
performance and brain activity measures derived from a domain-
general IC task completed in the context of a functional
neuroimaging pilot study focused on alcohol cue reactivity
among young adults with relatively extreme LS or HS to
acute alcohol. Detailed description of the sample, including its
sociodemographics and alcohol use behavior, as well as in-depth

coverage of laboratory visit procedures were published in our
recent report on the alcohol cue reactivity results of the study
(Cofresí et al., 2024). Below, we provide brief coverage where
details are available in our recent report, and in-depth coverage of
aspects relevant to the IC task and its analysis.

2.1 Participants

Participants for the fMRI pilot study were recruited from
a 95 pool of individuals who were actively involved in or
had recently (past year) completed a NIH-funded longitudinal
study (AA025451) characterizing alcohol sensitivity across early
emerging adulthood. Eligibility criteria for the longitudinal
(“parent”) study have been previously reported (Cofresí et al.,
2022a; Cofresí et al., 2022b; Kohen et al., 2023, 2024). Briefly,
inclusion criteria at time of enrollment in the parent study
included: (1) being age 18–20; (2) English language proficiency;
(3) normal or corrected-to-normal vision; and (4) regular alcohol
use (at least monthly use across past year, and at least 1 binge
drinking episode in past 6 months). Exclusion criteria at time
of enrollment in the parent study included: (1) a history of
unsuccessful attempts to moderate or quit alcohol use; (2) any
current or past psychosis; (4) any history of major chronic illness
or neurological disease (e.g., epilepsy); (5) any history of head
injury that resulted in loss of consciousness; or any (6) EEG
contraindications (e.g., highly sensitive skin, hairstyle preventing
scalp access for electrode placements). Individuals were excluded
from potential participation in the fMRI pilot study if they reported
any of the following at subsequent screening: (1) no longer living
in or near Columbia, MO or inability or unwillingness to travel
to the lab again for a new study; (2) MRI contraindications
(e.g., claustrophobia, non-removable medical electronics or ferrous
metal in the body, sensitivity to loud noises); (3) new history of
unsuccessful attempts to moderate or quit alcohol use; (4) irregular
(less than monthly) or no alcohol use in past year; (5) any current
or new history past psychosis; (6) new history of major chronic
illness or neurological disease; (5) new history of head injury that
resulted in loss of consciousness. From the remaining pool of 76
otherwise eligible individuals, 15 (7 females, 8 males) were excluded
from potential participation due to moderate alcohol sensitivity
phenotype (see “2.3.1. Alcohol Sensitivity Questionnaire (ASQ)”
for details). This left 61 prospective participants, only 36 of whom
could possibly be enrolled due to the limited funds available for
the fMRI pilot study. Prospective participants were contacted and
enrolled strategically to ensure similarly sized HS and LS groups,
and similar numbers of females and males within these groups. Of
34 individuals scheduled for participation prior to the end of the
enrollment (and funding) period, only 33 visited the lab (1 person
failed to present themselves and did not reply to rescheduling
attempts). Additional exclusion criteria at the time of the MRI
scan were: (1) alcohol intoxication; and for female participants:
(2) pregnancy, trying to become pregnant, and/or breastfeeding.
One individual who visited the lab to participate in the fMRI pilot
study was able to tolerate procedures in the training/mock scanner,
but unable to do so in the actual MRI scanner due to unexpected
claustrophobia—this person’s data were excluded from all analyses.
Ultimately, 32 participants (age 18–23 years at time of MRI scans;
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56% female, 94% Non-Hispanic White, 91% Right-Handed), 16
HS and 16 LS, were included in the final analytic sample for this
study. For more sociodemographic details, see our recent report
also based on this sample (Cofresí et al., 2024).

2.2 Procedures

All procedures were approved by the University of Missouri
Institutional Review Board. Laboratory visits lasted ∼2 h and took
place at the University of Missouri Cognitive Neuroscience Systems
Core facility. Sobriety was verified with a breath alcohol test upon
arrival and then informed consent was obtained. To rule out
claustrophobia in the MRI environment, participants underwent
training in a mock MRI scanner. Urine samples were collected
and tested for cotinine (Healgen One Step COT, Healgen Scientific
LLC, Houston, TX, USA), and for female participants, pregnancy
(Sure-Vue hCG-STAT, Fisher Healthcare, Pittsburgh, PA, USA). All
participants then underwent the MRI phase of the study, which
included a ∼7-min IC task (see “2.4.3. IC fMRI task” for details) and
a ∼30-min cue reactivity task (previously reported: Cofresí et al.,
2024). Finally, outside of the scanner, participants completed an 8-
day TimeLine Follow-Back calendar (Sobell and Sobell, 1992), were
debriefed, and compensated ($50 USD).

2.3 Questionnaires

Alcohol sensitivity and AUD risk levels were assessed before
the lab visit using electronically administered surveys (Harris et al.,
2009), whereas recent alcohol craving experiences were assessed at
the lab visit between the mock MRI scanner training and the MRI
phase of the study. Assessments were conducted using validated,
standardized questionnaire instruments (described next). For more
details about alcohol and other substance use in this sample, see our
recent report (Cofresí et al., 2024).

2.3.1 Alcohol Sensitivity Questionnaire (ASQ)
Each participant’s general sensitivity to the acute effects of

alcohol was assessed using the ASQ (Fleming et al., 2016). The
ASQ’s 15 items each query whether the respondent has experienced
a specific effect from drinking alcohol (e.g., feeling buzzed; passing
out), and for all endorsed effects respondents indicate the number
of standard drinks they typically require to experience it. For
current purposes, responses (i.e., numbers of drinks) across all 15
items were averaged to produce the ASQ total score. These scores
were used to classify participants as either LS or HS based on upper
and lower terciles of the sex-stratified ASQ score distribution. More
details about the sex-stratified thresholds are available in Cofresí
et al. (2024). Internal consistency reliability (ICR) for ASQ scores
was excellent (α = 0.91–0.95). Group LS comprised females with
ASQ total scores > 4.50, and males with ASQ total scores > 5.50.
Group HS comprised females with ASQ total scores < 3.00, and
males with ASQ total scores < 4.50.

2.3.2. Alcohol use disorder identification
test (AUDIT)

Past year alcohol use and alcohol-related problem levels were
assessed using the AUDIT (Bohn et al., 1995; Saunders et al.,

1993) subscales for Consumption and Problems (Peng et al., 2012).
Use levels were indexed by summing responses to AUDIT items 1–
3 into AUDIT Consumption subscale scores. Problem levels were
indexed by summing responses to AUDIT items 4–10 into AUDIT
Problem subscale scores. ICR for these AUDIT scores was fair-
to-good (α = 0.78–0.88). Supplementary Table 1 shows AUDIT
subscale scores were elevated in group LS compared to HS, as
previously reported (Cofresí et al., 2024).

2.3.3 Alcohol Craving Experience Questionnaire
(ACEQ)

The frequency and strength of alcohol craving in the past week
were assessed using subscales of the Frequency and Strength forms
of the ACEQ (May et al., 2014; Statham et al., 2011). The Frequency
form focused on the frequency of craving experiences (weak or
strong) during the past week. The Strength form focused on the
strength of the most intense craving experience within the past
week by instructing participants to think about the time in the
past week when they “most wanted” to use alcohol and to refer
to that experience when responding. Craving frequency levels were
indexed by summing responses to 3 items (stem: “how often did
you. . .”; items: “want it?”, “need it?,” “have a strong urge for it?”)
on the Frequency form into ACEQ-Frequency subscale scores.
Peak craving intensity or strength levels were indexed by summing
responses to 3 items (stem: “At that time. . .”; items: “how much
did you want it?,” “how much did you need it?,” “how strong was
the urge to have it?”) on the Strength form into ACEQ-Strength
subscale scores. ICR for these ACEQ subscale scores was good
(α = 0.82–0.83). Supplementary Table 1 shows ACEQ subscale
scores were elevated in group LS compared to HS, as previously
reported (Cofresí et al., 2024).

2.4 MRI

2.4.1 Image acquisition
MRI scans were acquired using a 3T Siemens Prisma

scanner using a 32-channel head coil with padding to
restrict head movements. A high-resolution, T1-weighted
magnetization prepared-rapid gradient echo (MPRAGE) sequence
(TR = 2,300 ms, TE = 2.26 ms, flip angle = 9◦, 192 slices, 1-mm
isotropic voxels, FOV = 256 mm) was used to acquire anatomical
images. Following the acquisition of a B0 field map, functional
T2∗-weighted images were acquired to measure BOLD responses
using a simultaneous multi-slice (SMS) echo-planar imaging (EPI)
sequence (acceleration factor = 3, TR = 2,000 ms, TE = 36 ms, flip
angle = 70◦, 69 slices, 2.2-mm isotropic voxels, FOV = 207 mm).

2.4.2 Image processing
Functional and structural images underwent standard

preprocessing using statistical parametric mapping (SPM)
package version 12 (Penny et al., 2007) in Matlab version
2021b (The Mathworks Inc., Natick, MA, USA). Preprocessing
included: B0 correction; realignment; slice timing correction;
co-registration to structural images; segmentation of structural
images; normalization to MNI space using forward deformations
with resampling to 1.5-mm3 voxels; and smoothing with
a 6-mm3 full-width at half maximum (FWHM) Gaussian
filter.
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2.4.3 IC fMRI task
IC was assessed with the “Go/Go/NoGo” task (Chikazoe et al.,

2009), which has been validated in SUD populations (Bell and
Froeliger, 2021; Brown A. A. et al., 2023; Froeliger et al., 2017;
Newman-Norlund et al., 2020; Upton et al., 2023a; Upton et al.,
2023b). Using handheld response pads, participants were instructed
to press a button in response to common (gray circles: 75.8% of
trials) and rare (yellow circles: 12.1% of trials) Go stimuli and to
inhibit responding to rare NoGo stimuli (blue circles: 12.1% of
trials). The task provided errors of omission and reaction times
during Go trials, errors of commission on NoGo trials (blue circles)
and controlled for novelty detection via Rare Go trials (yellow
circles). Total task time was 7 min (538 trials, 400 ms stimulus,
400 ms blank); completed in 1 run.

2.5 Analytic approach

2.5.1 IC fMRI task—Behavior
IC performance was indexed by adjusted NoGo trial accuracy.

As in Bell and Froeliger (2021), Froeliger et al. (2017), Newman-
Norlund et al. (2020),and Upton et al. (2023a),b, NoGo trial
accuracy was adjusted to control for transient attentional lapses
unrelated to IC by scoring NoGo trials with null response as
incorrect when the participant did not respond to the Go trial
immediately preceding it. IC performance and other task-derived
behavioral performance measures [e.g., Go or Rare Go correct
response time (RT)] were examined for group differences using
two-tailed independent samples Student’s t-tests and Wilcoxon
rank sum tests, as appropriate.

2.5.2 IC fMRI task—Brain
2.5.2.1 First-level analyses

Preprocessed functional images were entered into a 1st-
level analysis using the general linear model (GLM) to examine
the BOLD response during each of 5 event types: NoGocorrect
(successful IC), NoGoincorrect (error of commission), RareGocorrect
(novel-target detection), RareGoincorrect (novel-target error of
omission), and Goincorrect (error of omission). Each event was
modeled as an impulse at event onset (event duration = 0 s) and
convolved with a canonical hemodynamic response function. If a
person’s data were missing for a given event type (e.g., NoGoincorrect
because the person always correctly omitted responses to the NoGo
stimulus), the specific event type was not included in the 1st-level
model of that person’s data. Intra-run motion was removed through
rigid body rotation and translation, and 6 motion parameters (x, y,
z, roll, pitch, yaw) were included as nuisance covariates. A high-
pass filter (128 s; 0.008 Hz) was applied to remove slow signal drift.
A whole brain mask was applied. To isolate brain activity during
successful IC while controlling for novelty detection, a NoGocorrect–
RareGocorrect contrast image (IC contrast) was generated and fed-
forward to 2nd level analyses.

2.5.2.2 Second-level analyses

A whole-brain 2nd level model was fit to the 1st level model-
derived IC contrast images to identify voxel clusters showing
significant IC-related activity across the full sample (ignoring
alcohol sensitivity phenotype groups). The voxel intensity-based

statistical threshold was set to family-wise error (FWE)-corrected
p < 0.05 using the random field theory (RFT) method in SPM,
which accounts for image smoothing and the statistical dependency
of signal from neighboring voxels. Furthermore, the spatial extent-
based statistical (cluster-forming) threshold was set to kE ≥ 3
voxels to avoid detecting intensely activated but spatially isolated
voxels since these are more likely to be false positives. Person-level
IC contrast beta coefficients were then extracted using MarsBaR
version 0.45 (Brett et al., 2002). The average IC contrast beta
coefficient in a 5 mm radius sphere centered on the peak voxels in
each cluster was extracted. Peak voxel locations are reported using
the Montreal Neurological Institute (MNI) coordinate system.

2.5.2.3 Alcohol sensitivity phenotype group-difference
hypothesis tests

The predicted group difference (LS > HS) in IC-related
neural activity was tested at all extracted functional ROIs using
a multiple linear regression (MLR) approach. This approach
enables testing and controlling for moderating effects of sex and
previously reported group differences (LS > HS) in alcohol use,
problems, and cravings (see Supplementary Table 1). Between-
person differences in alcohol use (AUDIT Consumption), problems
(AUDIT Problem), and cravings (frequency: ACEQ-F; strength:
ACEQ-S) were thus tested as moderators of the predicted
group difference (LS > HS) in IC-related neural activity.
Testing these moderators in separate models was necessary to
mitigate collinearity issues arising from large intercorrelations (see
Supplementary Table 2). They were entered into the MLR models
as grand mean-centered continuous variables. Sex also was tested
as a potential moderator in all models using an effect-coded
binary variable. Handedness was included in all MLR models as a
nuisance covariate using an effect-coded binary variable. A model
selection process was used to find the best-fitting MLR model at
each functional ROI, defined as the most parsimonious model
that explains a significant amount of between-person variance
(per model F-test). This iterative process began with a 3-way
interaction model (e.g., Group × AUDIT Problem × Sex) and
involved dropping non-significant interaction effects followed by
non-significant main effects. The threshold for significance was
p < 0.05. If the process arrived at a best-fitting MLR model
containing a significant main or interaction effect of Group or one
of its potential moderators, then the robustness of that MLR model
to exclusion of statistical outliers or highly influential datapoints
was examined. Only MLR models for which the model F-test
and the relevant beta coefficient t-test remained significant after
exclusion of such datapoints were considered sufficiently robust
to report. Decomposition of significant effects in reported MLR
models involved pairwise comparisons of simple slopes or model-
estimated means. Bonferroni correction for multiple comparisons
was applied to control the Type 1 inferential error rate.

3 Results

3.1 Behavior

As shown in Figure 1, IC performance adjusted for attentional
lapses was numerically lower for group LS compared to HS.
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FIGURE 1

IC Performance by Group. IC performance (% correct = proportion
correct × 100) reflects accuracy on NoGo trials adjusted for
attentional lapses by scoring NoGo trial null responses coded as
incorrect if response to immediately prior FreqGo trial was omitted.
Person-level IC performance scores for the High Alcohol Sensitivity
(n = 16; HS) and Low Alcohol Sensitivity (n = 16; LS) groups are
shown as red-filled circles and teal-filled triangles, respectively.
Group-level mean IC performance scores are shown as black-filled
squares flanked by error bars representing ± 1 SE. Group-level
median IC performance scores are shown as gray-filled rectangles
flanked by error bars indicating the interquartile range.

However, as shown in Table 1, no significant group differences were
detected on IC performance or other aspects of task behavior (e.g.,
Go or Rare Go correct RT, premature response counts).

3.2 Brain

As shown in Table 2, the whole-brain 2nd level model of
successful IC-related activity detected 8 clusters spanning cortex,
striatum, and cerebellum. Cortical clusters were located primarily
in anterior cingulate. Subcortical clusters were located primarily
in rostral dorsal striatum (caudate and putamen). Among these
functional ROIs, only two located in the dorsal/supragenual
anterior cingulate cortex (dACC) exhibited robust effects of
alcohol sensitivity phenotype (Group). These Group effects were
moderated by biological sex and between-person differences in
alcohol craving frequency/strength outside the lab. We present and
decompose these Group effects below.

3.2.1 Left dorsal/supragenual ACC (L-dACC)
3.2.1.1 Group × craving

IC-related activity at a site in the L-dACC (Figure 2A) was best
explained by a MLR model of Group × ACEQ-F interaction, model
F(4, 27) = 3.23, p = 0.027, adj. R2 = 0.22, improvements in model fit
relative to a main effects only model: 1 model F = 10.76, 1 residual
df = 1, p = 0.003, 1 adj. R2 = 0.27. As shown in Figure 2B, follow-
up tests revealed that this L-dACC activity was associated with the
frequency of daily life alcohol craving experiences, albeit in different
directions depending on alcohol sensitivity. Specifically, for group
LS, L-dACC activity during IC increased as the frequency of alcohol
craving experiences increased; this tendency was statistically robust

TABLE 1 IC task behavior by group.

HS LS Group
difference

Accuracy (proportion correct)

M (SD) M (SD) T, p

Frequent Go 0.980 (0.019) 0.973 (0.029) 0.83, 0.412

Rare Go 0.973 (0.027) 0.967 (0.035) 0.52, 0.607

NoGo 0.604 (0.124) 0.540 (0.137) 1.37, 0.180

Adjusted NoGo 0.595 (0.124) 0.527 (0.125) 1.55, 0.132

Premature responses–count

Med (IQR) Med (IQR) U,p

Frequent Go 31 (45.5) 23.5 (28) 137, 0.734

Rare Go 2.5 (5.25) 3.5 (5.50) 117, 0.689

Omitted responses–count

Med (IQR) Med (IQR) U, p

Frequent Go 6.5 (12.75) 6.5 (15.00) 108, 0.472

Rare Go 1.00 (2.25) 2.00 (3.00) 116, 0.671

Response time (milliseconds)

Med (IQR) Med (IQR) U, p

All correct Frequent
Go responses

313.43 (60.89) 319.43 (38.27) 131, 0.926

All correct Rare Go
responses

391.35 (65.77) 378.06 (61.52) 158, 0.270

All NoGo responses
(commission errors)

290.61 (44.03) 292.60 (31.26) 114, 0.616

HS, High Alcohol Sensitivity; LS, Low Alcohol Sensitivity. N = 32 (16 HS, 16 LS, 9
females/group). Adjusted NoGo (primary IC performance index) = NoGo proportion correct
adjusted for lapses in attention (e.g., omission not counted as correct if also omitted response
to the Go trial immediately prior to the NoGo trial). Premature responses were those with
response time (RT) faster than 200 milliseconds. Group comparisons on accuracy measures
used the two-tailed independent samples Student’s t-test whereas the Wilcoxon rank sum test
was used for other measures (e.g., counts, RTs). t-test results for accuracy did not change
when using angularized (transformed) scores, so raw scores and t-test results are presented
for ease of comparison with prior reports. Wilcoxon rank sum tests on accuracy scores also
indicated no significant difference in median accuracy by group.

(simple slope b ± SE = 0.075 ± 0.026, 95% CI: [0.022, 0.128],
p = 0.007, Bonferroni-corrected p = 0.014). In contrast, for group
HS, L-dACC activity during IC decreased as the frequency of
alcohol craving experiences increased, but this tendency was not
statistically robust (simple slope b ± SE = −0.063 ± 0.033, 95% CI:
[−0.131, 0.005], p = 0.068, Bonferroni-corrected p = 0.136).

3.2.2 Right dorsal/supragenual ACC (R-dACC)
IC-related activity at a site in the R-dACC (Figure 3A) was

best explained by a MLR model including both a Group × ACEQ-
S and a Group × Sex interaction, model F(6, 25) = 3.71,
p = 0.009, adj. R2 = 0.34, improvements in model fit relative
to a main effects only model: 1 model F = 8.51, 1 residual
df = 2, p = 0.001, 1 adj. R2 = 0.36. Both the Group × Sex
interaction, b ± SE = 0.332 ± 0.143, t(25) = 2.32, p = 0.029, and
Group × ACEQ-S interaction, b ± SE = 0.098 ± 0.025, t(25) = 3.91,
p = 0.001, were significant. Follow-up on each is presented next.

3.2.2.1 Group × craving

As shown in Figure 3B, IC-related activity at this R-dACC
site was associated with the strength of daily life alcohol craving
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TABLE 2 Regions of successful IC-related activity identified using whole-brain 2nd level model across full sample.

Cluster Cluster size (#
voxels)

Activation
volume (mm3)

MNI coordinates (X, Y, Z)
for peak voxel

Anatomical area of peak
voxel

1 1,260 4,252.5 27, 20, −4 Putamen_R

10, 12, −1 Caudate_R

16, 11, −7 Putamen_R

2 316 1,066.5 −18, 8, −4 Putamen_L

−26, 11, −2 Putamen_L

−28, 18, −4 Insula_L

3 98 330.75 9, 34, 22 Cingulum_Ant_R

2, 36, 26 Cingulum_Ant_R

4 9 30.375 −36, 14, 2 Insula_L

5 3 10.125 −8, 34, 18 Cingulum_Ant_L

6 15 50.625 −32, −54, −30 Cerebelum_6_L

7 4 13.5 −4, 34, 20 Cingulum_Ant_L

8 3 10.125 −4, 38, 11 Cingulum_Ant_L

Successful IC-related activity = IC contrast (NoGocorrect BOLD—RareGocorrect BOLD). MNI, Montreal Neurological Institute. In the anatomical area of peak voxel column, the specific area
label taken from the automated anatomical labeling (AAL) atlas is presented. Activation volume = cluster size (# voxels) × voxel size (1.5 mm3). In cases with multiple peak voxels per cluster,
peak voxels were significantly different from each other at pFWE < 0.05. Full sample N = 32.

FIGURE 2

Group × alcohol craving frequency effects on IC-related activity in left dorsal anterior cingulate. (Panel A) Images (scale: 80 mm × 80 mm;
clockwise: sagittal, coronal, axial views) showing clusters of significant IC contrast (NoGocorrect BOLD—RareGocorrect BOLD) in the dorsal anterior
cingulate cortex (dACC) across the full sample (N = 32). Blue crosshair in each image shows the approximate location of an IC-related activity peak
at voxel x = –8, y = 34, z = 18 in the left dACC. Color bar shows T-scores. (Panel B) Successful IC-related activity = IC contrast. Alcohol Craving
Frequency = ACEQ-F subscale scores. Person-level average IC contrast beta coefficients across a 5-mm radius sphere centered on voxel x = –8,
y = 34, z = 18 are shown for the High Alcohol Sensitivity (n = 16; HS) and Low Alcohol Sensitivity (n = 16; LS) groups are shown as red-filled circles
and teal-filled triangles, respectively. Multiple linear regression (MLR) model predicted IC activity values (means) across ACEQ-F scores are shown for
group HS and LS as a red solid line and dashed teal line, respectively, with color-matched areas around them showing ± 1 SE. Results were robust to
removal of statistical outliers. ACEQ-F score was entered into the MLR model as a grand-mean centered predictor. The grand-mean ACEQ-F score
is shown as a solid black vertical line intersecting the x-axis.

experiences, albeit in different directions depending on alcohol
sensitivity. Specifically, for group LS, this R-dACC activity
increased as the strength of alcohol craving experiences increased,
but this tendency was not statistically robust (simple slope
b ± SE = 0.074 ± 0.032, 95% CI: [0.009, 0.140], p = 0.028,
Bonferroni-corrected p = 0.056). In contrast, for group HS,
R-dACC activity decreased as the strength of alcohol craving
experiences increased, and this tendency was statistically robust
(simple slope b ± SE = −0.121 ± 0.039, 95% CI: [−0.201, −0.041],
p = 0.004, Bonferroni-corrected p = 0.009).

3.2.2.2 Group × sex

There was significantly less IC-related activity at this R-dACC
site for group HS males compared to group HS females
(MD ± SED = 1.40 ± 0.45, t[25] = 3.12, p = 0.004,
Bonferroni-corrected p = 0.018). Additionally, this R-dACC activity
was numerically lower for males in group HS than LS, but the
difference was not statistically robust (MD ± SED = 1.08 ± 0.46,
t[25] = 2.33, p = 0.028, Bonferroni-corrected p = 0.112).
In contrast, no sex difference in R-dACC activity level was
detected in group LS (MD ± SED = 0.68 ± 0.39, t[25] = 0.17,
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FIGURE 3

Group × alcohol craving strength effects on IC-related activity in right dorsal anterior cingulate. (Panel A) Images (scale: 80 mm × 80 mm;
clockwise: sagittal, coronal, axial views) showing clusters of significant IC contrast (NoGocorrect BOLD—RareGocorrect BOLD) in the dorsal anterior
cingulate cortex (dACC) across the full sample (N = 32). Blue crosshair in each image shows the approximate location of an IC-related activity peak
at voxel x = 2, y = 36, z = 26 in right dACC. Color bar shows T-scores. (Panel B) Successful IC-related activity = IC contrast. Alcohol Craving
Strength = ACEQ-S subscale scores. Person-level average IC contrast beta coefficients across a 5-mm radius sphere centered on voxel x = 2, y = 36,
z = 26 are shown for the High Alcohol Sensitivity (n = 16; HS) and Low Alcohol Sensitivity (n = 16; LS) groups are shown as red-filled circles and
teal-filled triangles, respectively. Multiple linear regression (MLR) model predicted IC activity values (means) across ACEQ-S scores are shown for
group HS and LS as a red solid line and dashed teal line, respectively, with color-matched areas around them showing ± 1 SE. Results were robust to
removal of statistical outliers. ACEQ-S score was entered into the MLR model as a grand-mean centered predictor. The grand-mean ACEQ-S score
is shown as a solid black vertical line intersecting the x-axis.

p = 0.863, Bonferroni-corrected p = 1), and R-dACC activity levels
were similar for females in group HS compared to group LS
(MD ± SED = 0.24 ± 0.37, t[25] = 0.655, p = 0.519, Bonferroni-
corrected p = 1).

4 Discussion

The present study found that groups LS and HS were similarly
successful at IC task performance, and that at most “hotspots”
of IC-related activity detected across the whole brain in the full
sample, which implicated the indirect rather than hyperdirect
IC pathway, groups LS and HS exhibited similar levels of IC-
related activity. There were only two exceptions to the latter
finding, both dependent upon accounting for lived experiences of
alcohol craving, which can contribute to AUD symptomatology.
First, the frequency of alcohol cravings experienced outside the
lab was associated with IC-related activity at a site in the left
anterior cingulate; this association was positive for group LS but
negative for group HS. Second, and similarly, as the strength of
alcohol cravings experienced outside the lab increased, IC-related
activity at a site in the right anterior cingulate tended to increase
for group LS but to decrease for group HS. The similarity of
these association patterns in the dACC across both hemispheres,
and across frequency vs. strength dimensions of alcohol craving,
suggests a more general link between alcohol craving and anterior
cingulate activity, and that this more general link may differ by
alcohol sensitivity phenotype. There also appeared to be a sex
difference (females > males) in the level of IC-related activity in
the right dACC for group HS but not LS. Together, the present
findings indicate that, despite a similar capacity to exert control
over prepotent responses in the sober state, there may be covert
neurofunctional differences in the implementation of IC as a

function of alcohol sensitivity phenotype and potential nuances as
a function of biological sex.

The present study replicates and extends the one prior
fMRI study (to our knowledge) that reported on domain-general
IC performance and its neural substrates among LS and HS
young adults (Schuckit et al., 2012). Findings from that study
indicated similar IC task performance between LS and HS groups
but higher activity in left superior frontal gyrus and anterior
cingulate during successful IC in group LS compared to group
HS. Despite different methods across studies (e.g., recruitment and
screening, alcohol sensitivity assessment, IC task, MRI scanner and
head coil, and fMRI acquisition parameters), the present study’s
findings converge with those reported by Schuckit et al. (2012) in
suggesting differential recruitment of, or activation thresholds for,
the frontocortical neural substrates of IC in the sober state as a
function of alcohol sensitivity phenotype. Although the extent of
overlap is unclear, both studies detected this difference at a site in
the left anterior cingulate. Furthermore, the present study detected
a potential group difference at a site in the right anterior cingulate.
This convergence of potential differences being localized bilaterally
to anterior cingulate is consistent with the anterior cingulate’s
proposed role in IC, which is based on its ability to detect conflict
and broadcast cognitive control demand (Botvinick et al., 2004;
Shenhav et al., 2016).

More broadly, our convergent fMRI findings with respect
to the IC facet of EF reinforce Schuckit et al.’ proposal (2012)
that, to perform EF tasks while sober at the same level as HS
peers, LS individuals may “over-recruit” the frontocortical nodes
of the relevant neural circuits. Additional support for this proposal
comes from Schuckit and colleagues’ prior fMRI studies of a
different facet of EF: working memory. These studies uncovered
greater working memory load-related activation of frontocortical
nodes such as anterior cingulate, dorsolateral prefrontal cortex,
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and inferior frontal gyrus (ventrolateral prefrontal cortex) in
the sober state among LS youth compared to HS peers despite
similar task performance (Paulus et al., 2006; Tapert et al.,
2004; Trim et al., 2010). These sober-state differences between
LS and HS individuals in task-related frontocortical activation
may even extend from the cognitive to affective task domain
(Paulus et al., 2012).

4.1 Implications for prevention and
treatment of AUD

The present study’s findings have implications for prevention
and treatment of AUD. Specifically, the findings suggest that
emerging adults reporting LS to alcohol may expend more neural
effort or resources to exert control over prepotent responses (in
general) than do their peers reporting HS. Prior studies suggest
that, compared to their HS peers, LS individuals exhibit amplified
approach responses to alcohol cues (Cofresí et al., 2022a; Fleming
and Bartholow, 2014) and increased internal conflict or difficulty
with IC in alcohol cue-saturated contexts (Bailey and Bartholow,
2016; Cofresí et al., 2022a; Fleming and Bartholow, 2014). Thus,
LS persons may be at a disadvantage in the sustainability of their
intentions to abstain or moderate alcohol use via deliberate acts of
self-control in-the-moment. Supporting abstinence or moderation
goals in clients or patients reporting LS to alcohol could involve
fostering skills or strategies that minimize the need for deliberate
acts of control, or training countervailing prepotent responses to
personally relevant alcohol cues. Alternatively, it could involve
repeated non-invasive stimulation of the neural circuits supporting
self-control, which has been shown to have short- and long-term
benefits in AUD and other SUDs (Mehta et al., 2024; Song et al.,
2019; Upton et al., 2023a; Upton et al., 2023b). With respect
to the latter, the present study suggests that LS individuals may
need higher doses or longer courses of treatment than HS peers.
Additionally, the present study suggests that LS individuals may
derive more benefit from stimulation of the anterior cingulate
than from stimulation of other frontocortical sites implicated
in self-control that are more common treatment targets, such
as the dorsolateral prefrontal cortex (Vanderhasselt et al., 2020;
Wietschorke et al., 2016). Alcohol sensitivity phenotype differences
also could help explain some of the inconsistency in treatment
response thought to underlie inconsistent clinical trial results for
non-invasive stimulation of the more common treatment targets
(den Uyl et al., 2017, 2018). Non-invasive stimulation targeting
the anterior cingulate may bolster LS individuals’ ability to inhibit
attentional, approach, or craving responses to alcohol cues, as
it has been shown to do generally in certain clinical trials (De
Ridder et al., 2011; Kearney-Ramos et al., 2018), potentially by
decreasing functional connectivity between anterior cingulate and
dorsal striatum (Harel et al., 2022), both of which were found to be
activated during successful IC in the present study.

4.2 Limitations

The present study’s findings need to be considered in light
of the study’s limitations. First and foremost, this study was

designed as a preliminary exploration, and therefore its sample
size was small. However, individuals with relatively extreme LS
and HS phenotypes were recruited to capitalize on phenotypic
differences in neurocognitive processes of interest, and yet, the
resulting groups also differed on aspects of alcohol craving,
consumption, and consequences. The analytic approach provided
an efficient means by which to test alcohol sensitivity phenotype-
based differences across sites in the brain exhibiting significant
IC-related activation while statistically accounting for phenotype-
linked covariates indexing AUD risk, such as craving, consumption,
and consequences. Nonetheless, future studies seeking to isolate
alcohol sensitivity phenotype effects from chronic alcohol use
effects (Karoly et al., 2024; Pérez-García et al., 2022) would benefit
from stratifying the study sample for alcohol sensitivity and
alcohol use levels. Larger studies are necessary to obtain uniform
representation across the alcohol use and sensitivity phenotype
spectra. As a proposed AUD risk-conferring endophenotype,
it is also important to determine which neurocognitive or
neurofunctional vulnerabilities associated with LS to alcohol are
causes or consequences of alcohol use. Cross-sectional observations
like the present study cannot speak to the cause/consequence
conundrum. Longitudinal observations are necessary to parse cause
from consequence. Furthermore, future studies should consider
the extent to which LS to alcohol is associated with specific
neuroanatomical variations (e.g., gray matter density in frontal
cortices, integrity of white matter tracts linking cortical regions
or subcortical nuclei) and their overlap with neuroanatomical
variations associated with problematic alcohol use (for review, see
Honarvar et al., 2023).

Future studies also should assess other proposed and often
related AUD risk-conferring phenotypes (e.g., positive family
history, trait disinhibition/impulsivity) and disentangle their
contributions from those of alcohol sensitivity phenotype. This is
especially important with respect to positive family history (FHP)
of AUD because: (i) LS to alcohol was first proposed as a sub-
mechanism of FHP-based risk for AUD (Eng et al., 2005; Schuckit,
1980), and (ii) LS to alcohol is a highly heritable source of risk
for AUD (Heath et al., 1999; Heath and Martin, 1991; Viken
et al., 2003). Prospective studies of AUD onset in large samples
indicate that FHP and LS operate as distinct contributors of risk
for AUD (Schuckit et al., 2006; Schuckit and Smith, 2000, 2001),
which suggests distinct genetic bases. Nonetheless, to the extent
that FHP-based risk for AUD and LS-based risk for AUD share
common genetic bases (Schuckit, 2018), the present study’s findings
also converge with prior fMRI studies of IC as a function of
family history of AUD. These prior studies found elevated IC-
related activity in anterior cingulate as well as middle and inferior
frontal gyri among FHP individuals compared to peers with no
family history of AUD [(Heitzeg et al., 2010; Jamadar et al., 2012;
Kareken et al., 2013), but also see (Schweinsburg et al., 2004)].
Given that these and other important constructs are being assessed
alongside structural and functional neuroimaging repeatedly across
development for a nationally representative and extremely large
sample [e.g., the NIH Adolescent Brain Cognitive Development
(ABCD) Study (Brown S. A. et al., 2023)], a more comprehensive
picture of the inter-relatedness or uniqueness of endophenotypic
risk factors for AUD onset may soon emerge. These large-scale
neuroimaging studies also stand to illuminate the inter-relatedness
or uniqueness of AUD risk conferred by neurofunctional (Morales
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et al., 2024) vs. neuroanatomical characteristics across development
(Honarvar et al., 2023; Jones et al., 2023; Miller et al., 2024).

Finally, the present study involved healthy, predominantly
White, highly educated participants (university students,
presumably from higher socioeconomic status backgrounds)
in either late adolescence or early emerging adulthood, which
limits generalizability of its findings regarding IC performance and
its neural substrates. This limitation also applies to prior fMRI
studies of alcohol sensitivity phenotype-based group differences in
mental functions (Paulus et al., 2006, 2012; Schuckit et al., 2012;
Tapert et al., 2004; Trim et al., 2010). Data from an extremely large
and nationally representative sample like the ABCD Study can be
leveraged to examine measurement invariance across ethnic, racial,
and socioeconomic status groups for alcohol sensitivity and AUD
risk as well as for IC performance and its neural substrates.

5 Conclusion

Preliminary findings from the present fMRI pilot study suggest
that the ability to implement IC over prepotent responses to
cues (broadly) among individuals with LS to alcohol may depend
on compensatory over-activation of the anterior cingulate cortex,
and that this compensatory activation tracks dimensions of their
alcohol craving experiences in daily life. Prior fMRI studies of
IC as a function of LS to alcohol or positive family history
of AUD using different samples, assessments, and tasks also
point to compensatory over-activation of anterior cingulate cortex
or functionally related frontocortical regions. Longitudinal fMRI
studies with larger and more demographically diverse samples are
needed to examine the extent to which covert functional differences
in the neural substrates of IC can account for differential AUD onset
or progression risk as a function of alcohol sensitivity phenotype.
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