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Introduction: Obsessive-Compulsive Personality Disorder (OCPD) is a complex 
mental condition marked by excessive perfectionism, orderliness, and rigidity, 
often starting in adolescence or early adulthood; it affects 1.9% to 7.8% of the 
population. The disorder differs from Obsessive-Compulsive Disorder (OCD) 
in an apparent compromise of personality, distorted self-representation, and 
altered perception of others. Although the two disorders present evident 
differences, unlike OCD, the neural bases of OCPD are understudied. The few 
studies conducted so far have identified gray matter alterations in brain regions 
such as the striatum and prefrontal cortex. However, a comprehensive model 
of its neurobiology and the eventual contribution of white matter abnormalities 
are still unclear. One intriguing hypothesis is that regions ascribed to the Default 
Mode Network are involved in OCPD, similar to what has been shown for OCD 
and other anxiety disorders.

Methods: To test this hypothesis, the gray and white matter images of 30 
individuals diagnosed with OCPD (73% female, mean age=29.300), and 34 
non-OCPD controls (82% female, mean age = 25.599) were analyzed for the 
first time with a data fusion unsupervised machine learning method known as 
Parallel Independent Component Analysis (pICA) to detect the joint contribution 
of these modalities to the OCPD diagnosis.

Results: Results indicated that two gray matter networks (GM-05 and GM-23) 
and one white matter network (WM-25) differed between the OCPD and the 
control group. GM-05 included brain regions belonging to the Default Mode 
Network and the Salience Network and was significantly correlated with anxiety; 
GM-23 included portions of the cerebellum, the precuneus, and the fusiform 
gyrus; WM-25 included white matter portions adjacent to Default Mode Network 
regions.

Discussion: These findings shed new light on the gray and white matter 
contributions to OCPD and may pave the way to developing objective markers 
of this disorder.
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Introduction

Obsessive-Compulsive Personality Disorder (OCPD) is a complex 
mental disorder characterized by a pervasive pattern of perfectionism, 
excessive orderliness, and rigid conformity to rules and procedures at 
the expense of psychological flexibility and efficiency, typically 
emerging in adolescence or early adulthood (American Psychiatric 
Association, 2013; Marincowitz et al., 2022). Individuals with OCPD 
exhibit preoccupations with details that lead to missing the major 
point of the activity, extreme perfectionism that is often the cause of 
delay, with tasks not being completed, and excessive rigidity that can 
interfere with leisure and interpersonal relationships (American 
Psychiatric Association, 2022; Pinto et al., 2022). These characteristics 
contribute to significant distress and a reduced quality of life. This 
disorder affects approximately 1.9% to 7.8% of the general population 
(Grant et al., 2004; Nestadt et al., 1991), with individuals frequently 
seeking for treatment in mental health and primary care services 
(Bender et  al., 2001; Sansone et  al., 2003). Despite its prevalence, 
OCPD remains understudied (Diedrich and Voderholzer, 2015; Pinto 
et  al., 2022), especially when compared to Obsessive-Compulsive 
disorder (OCD), which has been extensively investigated (Maia et al., 
2008; Mataix-Cols and van den Heuvel, 2006; Nakao et  al., 2014; 
Robbins et al., 2024; Stein et al., 2019). Neuroimaging studies on OCD 
have consistently highlighted the involvement of the orbitofrontal 
cortex, the cingulate cortex—a hub of the Default Mode Network 
(DMN)—and the head of the caudate nucleus, whose hyperactivation 
appears to contribute to compulsive behaviors typical of OCD (Del 
Casale et al., 2015; Maia et al., 2008; Rasgon et al., 2017; Stein et al., 
2019). Additionally, OCD is often associated with altered functional 
activation and reduced morphometric properties in regions implicated 
in cognitive control, such as the dorsomedial prefrontal cortex, a key 
node in the Central Executive Network (De Wit et al., 2014; Pujol 
et  al., 2004; Radua and Mataix-Cols, 2009; Rasgon et  al., 2017). 
Structural abnormalities have also been observed in the insulo-
opercular region, anterior cerebellum, and bilateral ventral putamen, 
with volumetric reductions in OCD patients compared to healthy 
controls (Pujol et al., 2004). Furthermore, altered brain connectivity 
patterns, such as hyperconnectivity between the lateral parietal lobe 
and clusters extending into the precuneus and superior lateral 
occipital cortex, have been reported in OCD (Geffen et al., 2022). It is 
plausible to hypothesize that OCPD might exhibit neural alterations 
similar to those observed in OCD. Indeed, some studies have 
highlighted commonalities, such as alterations in the dorsolateral 
prefrontal cortex (DLPFC) in OCPD (Atmaca et al., 2019b). However, 
distinct neural patterns have also been reported: while OCD is 
predominantly associated with orbitofrontal cortex dysfunction (Pauls 
et al., 2014), OCPD may involve hyperactivity in the anterior cingulate 
cortex (Fineberg et al., 2018). Importantly, unlike OCD, OCPD is not 
necessarily characterized by overt compulsions but rather by 
personality-level traits, such as rigid self-representation and altered 
perceptions of others. Neuroimaging evidence suggests both shared 
and distinct mechanisms underlying these disorders (Marincowitz 
et al., 2022).

For instance, resting state functional magnetic resonance (fMRI) 
has revealed increased functional connectivity in the precuneus, the 
posterior hub of the DMN, of individuals with OCPD when compared 
to healthy controls (Coutinho et al., 2016). Another study by Lei et al. 
(2020) found increased amplitudes of low-frequency fluctuation 

(ALFF) inside the caudate, the precuneus, the insula, and the medial 
superior frontal gyrus in individuals with OCPD, while decreased 
ALFF was detected inside the fusiform and lingual gyri. Structural 
alterations have also been reported: individuals with OCPD exhibit 
reduced hippocampal and amygdala volumes compared to healthy 
controls (Atmaca et al., 2019a; Gurok et al., 2019). While changes in 
the insula, caudate, and amygdala have been observed in both OCPD 
and OCD, precuneus and hippocampus alterations may be  more 
specific to OCPD (Marincowitz et al., 2022). Alterations of the caudate 
tail, ventral striatum, and prefrontal cortex have been reported to 
be probably associated with the disorder, but the main focus of the 
study that supports this hypothesis is on Cluster C personality 
disorders in general (Payer et al., 2015). More specificity is needed to 
clearly define the exact contribution of these areas to OCPD. The 
primary aim of this study is to detect GM abnormalities in OCPD 
compared to controls to specifically test the hypothesis that the regions 
ascribed to the DMN are affected.

In sum, the evidence reviewed so far indicates that both common 
and distinct mechanisms are present in OCPD and OCD, but a reliable 
and comprehensive model of the neurobiology of OCPD is still 
lacking in literature (Marincowitz et al., 2022). Research on white 
matter contributions to OCPD remains sparse. The only study 
explicitly investigating this found no significant white matter 
alterations in OCPD patients (Atmaca et al., 2019a). However, a study 
conducted by Grazioplene et al. (2022) found abnormalities in white 
matter to be associated with specific obsessive-compulsive symptoms, 
such as bad thoughts, repetition/checking, and behavioral symmetry, 
particularly in the posterior corpus callosum, dorsal parietal lobe, and 
posterior parietal and occipital lobes. Additionally, Laricchiuta et al. 
(2014) found that cerebellar white matter increment was associated 
with novelty seeking, while a reduction was associated with harm 
avoidance, but again, no evidence specific to OCPD was reported. In 
sum, the evidence relative to white matter contributions to OCPD is 
limited. Thus, the second aim of the study is to detect white matter 
abnormalities in OCPD compared to non-OCPD controls.

It is worth noting that the previous studies on OCPD have some 
methodological limitations. One for all, the use of massive univariate 
methods such as Voxel-based methodology or a priori selected regions 
of interest (ROIs) (Colic et al., 2018; Gurok et al., 2019; Lei et al., 2020; 
Payer et al., 2015), which fail to capture the complex, multivariate 
nature of neural alterations across the whole brain and neglect inter-
voxel relationships (Aguilar-Ortiz et al., 2018; Dadomo et al., 2022). 
Furthermore, they do not account for generalization to new data, 
limiting their predictive value. In other words, they do not have an 
estimation of how those results can be used to predict new unobserved 
cases. To address these issues, recent studies have employed 
multivariate approaches, such as Multivoxel Pattern Analysis (MVPA) 
and machine learning (ML) techniques, which offer increased 
sensitivity in detecting spatially distributed neural patterns (Scarano 
et al., 2024; Norman et al., 2006). Data fusion methods, in particular, 
integrate multiple neuroimaging modalities, allowing for the 
simultaneous analysis of gray and white matter features to identify 
joint neural circuits implicated in psychiatric conditions (Grecucci 
et al., 2016; Lapomarda et al., 2021a, 2021b; Saviola et al., 2020; Sorella 
et al., 2019). These techniques have been applied to other personality 
disorders, such as borderline (Caria and Grecucci, 2023; Dadomo 
et al., 2022; Grecucci et al., 2022, 2023), narcissistic (Jornkokgoud 
et al., 2023, 2024), and antisocial personality disorders (Sorella et al., 
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2022). The joint contribution of GM-WM alterations may reveal a 
more complete picture of the neural alterations in OCPD.

To the best of our knowledge, no previous study has applied a data 
fusion (GM-WM) machine learning approach to investigate 
OCPD. Therefore, our study aims to offer novel and compelling 
insights into the neural bases of OCPD through data fusion and 
unsupervised machine learning techniques. The machine learning 
method employed in this study is a specialized form of Independent 
Component Analysis (ICA) (Lee, 1998) known as Parallel ICA (pICA) 
(Liu et al., 2008; Liu et al., 2009). This approach enables simultaneous 
analysis of two modalities (e.g., gray matter and white matter), 
assessing their interrelationships while decomposing brain data into 
naturally grouped networks with reduced dimensionality (Yang et al., 
2019). This method optimizes the extraction of relevant information 
for analysis. Data fusion, in particular, allows for the integrated 
analysis of gray and white matter without losing the connections 
between the two modalities. This is especially important given the 
likelihood that these modalities are influenced by shared genetic 
factors and that both may play a role in the development of OCPD.

We predict alterations in regions ascribed to the Default Mode 
Network (DMN), such as the precuneus and medial frontal gyrus. These 
regions may be linked to the abnormal self and other representations 
observed in OCPD, as well as anxious rumination. The DMN is a 
network of brain areas that includes the retrosplenial cortex, inferior 
parietal cortex, dorsolateral frontal cortex, inferior frontal cortex, left 
inferior temporal gyrus, medial frontal regions, and amygdala (Alves 
et  al., 2019). It is known to support internally oriented cognitive 
functions (Yeshurun et al., 2021), self-referential processing, and pain 
processing. These functions are often disrupted in personality disorders 
(Kluetsch et al., 2012). We also predict alterations in regions belonging 
to the Salience Network, such as the cingulate gyrus. These changes may 
underlie the heightened processing of anxiety-laden stimuli (Grahn 
et al., 2008; Uddin et al., 2017) that is characteristic of OCPD. The 
hypothesis of DMN involvement in OCD has already been investigated 
by Gonçalves and colleagues, who found no patterns of DMN 
deactivation in subjects with OCD during the presentation of unpleasant 
stimuli, whereas a minor deactivation was observed during the 
presentation of pleasant stimuli (Gonçalves et al., 2017). In that study, 
patients with OCD, relative to non-OCPD controls, exhibited difficulties 
in DMN deactivation. Given this evidence and the functional 
similarities between OCD and OCPD, predicting DMN involvement in 
OCPD seems reasonable and represents a hypothesis worth investigating.

Research on white matter contributions to OCPD remains sparse. 
However, we expect white matter alterations in regions associated with 
the Default Mode Network (DMN), such as the precuneus and medial 
frontal gyrus, which may underlie abnormal self and other 
representations in OCPD, as well as anxious rumination. Additionally, 
alterations are anticipated in regions belonging to the Salience 
Network, such as the cingulate gyrus, potentially contributing to the 
heightened processing of anxiety-laden stimuli characteristic of 
OCPD. These predictions align with evidence of DMN involvement 
in OCD, where difficulties in DMN deactivation have been observed. 
Given the functional similarities between OCD and OCPD, 
investigating DMN alterations in OCPD is a compelling hypothesis 
worth exploring.

Clarifying these neural alterations could advance our 
understanding of the distinct neurobiological mechanisms 
underpinning OCPD and inform targeted therapeutic interventions.

Materials and methods

Participants

Participants included in the sample were 64 right-handed adults 
(22% male and 78% female, aged 18 to 56 years, average = 28.37 
Sd = 10.716) residents in Tenerife (Canary Island, Spain). Neither sex 
nor age were normally distributed, according to the Shapiro–Wilk test 
for normality (Sex: w = 0.790, p-value < 0.001 Age: w = 0.510, p-value 
< 0.001). The participants were originally recruited for studying small 
animal phobias and their relations with Cluster C personalities (see 
also Grecucci et al., 2023). In the present study, as our focus was on 
OCPD, we  divided participants into two groups according to the 
diagnosis of OCPD. This was done according to a cut-off criteria of 
the International Personality Disorder Examination (IPDE) (Loranger, 
1994). The resulting sample was of 34 controls without OCPD (CTRL, 
Mage = 27.559, SDage = 10.810) and 30 participants with OCPD (OCPD, 
Mage = 29.300, SDage = 10.710), matched for sex (χ2 = −0.759, p = 0.384) 
and age (W = −580.500, p = 0.342) (Mann–Whitney test). Of note, the 
presence of phobias was similarly distributed within OCPD and 
non-OCPD controls (χ2 = 2.259, p = 0.133). Refer to Table 1 for a more 
detailed understanding of the participants’ demographics. The 
exclusion criteria considered the following characteristics for both 
groups: impediments to undergoing magnetic resonance imaging, 
such as metallic implants, braces, non-removable piercings, tattoos, 
pregnancy, claustrophobia, tinnitus, or any surgical operation in the 
past 3 months. This study adhered to the ethical standards of the 
Declaration of Helsinki and was approved by the Ethics Committee 
for Research and Animal Welfare of the University of La Laguna, 
Spain (CEIBA2013-0086).

Questionnaires

The participants completed questionnaires to assess various 
psychological and physiological characteristics. The Hamilton 
Anxiety Rating Scale (HARS) (Hamilton, 1959; Bruss et al., 1994) is 

TABLE 1 For participants’ demographics, the p-value is calculated using 
the chi-squared test for the sex and phobia variables, and the Mann–
Whitney test for all other variables.

Measurement OCPD CTRL p-value

N. 30 34

Sex 8 M, 22 F 6 M, 28 F 0.384

Age 29.3 (±10.7) 25.5 (±10.8) 0.342

Phobia group 18 phobics, 12 

non-phobics

14 phobics, 20 

non-phobics

0.133

Average IPDE score 3.967 1.176 <0.001

Average S-R score 25.667 19.941 0.290

Average HAD anxiety 7.233 4.588 0.009

Average HAD depression 4.522 2.912 0.167

Average BAI 13.633 8.647 0.045

Average HARS 12.900 7.824 0.027

The table also includes data related to psychological scales that are better explained in the 
questionnaire section.
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a 14-item clinician-administered tool used to assess the severity of 
anxiety symptoms. Each item is rated on a 5-point Likert scale 
ranging from 0 (not present) to 4 (very severe). The scale demonstrates 
good inter-rater reliability, with intraclass correlation coefficients 
ranging from 0.74 to 0.96 (Bruss et al., 1994; Thompson, 2015). The 
S–R (Situation–Response) Inventory of Anxiousness (Endler et al., 
1962) was administered to participants in both groups (with and 
without phobia). This 14-item inventory uses a 5-point Likert scale to 
evaluate the most common physiological, cognitive, and behavioral 
symptoms associated with responses to anxiogenic stimuli, such as 
cockroaches, spiders, lizards, or mice. It has demonstrated high 
internal consistency (Cronbach’s alpha = 0.95) and adequate 
convergent validity (Kameoka and Tanaka-Matsumi, 1981). The 
Edinburgh Handedness Inventory (Oldfield, 1971) was used to 
confirm that all participants were right-handed. This 10-item 
inventory employs a forced-choice format, with scores above 0 
indicating a right-hand preference and scores below 0 indicating a 
left-hand preference. The Beck Anxiety Inventory (BAI) (Beck et al., 
1988) is a 21-item self-report questionnaire used to discriminate 
anxiety disorders from depressive disorders in psychiatric patients. 
The items are 4-point scales that consist of the perceived rate of how 
much the patient has been bothered by each symptom over the past 
week. The BAI showed high internal consistency (alpha = 0.92) and 
test–retest reliability over 1 week, r(81) = 0.75. The Hospital Anxiety 
and depression scale (HADS) (Zigmond and Snaith, 1983) is a scale 
used to evaluate the presence of anxiety and depression caseness in 
the subjects. This 14-item inventory consists of 4-point items ranging 
from 1 to 4. The scale has good internal consistency (mean Cronbach 
alpha = 0.83 for Depression and 0.82 for Anxiety, Bjelland et  al., 
2002). Finally, the International Personality Disorder Examination 
(IPDE, Loranger, 1997) is an inventory designed to assess the nine 
personality disorders using a true/false response format. In this study, 
8 of the 20 items related to cluster C (avoidant, dependent, and 
obsessive-compulsive personality disorders) were used to assess 
obsessive-compulsive personality disorder (OCPD). A cut-off of ≥3 
was used to identify participants with OCPD, while controls scored 
below this threshold. Anxiety scores, measured by HARS, BAI, and 
HAD, were statistically different between the two groups (see Table 1).

Data acquisition

High-resolution, three-dimensional, T1-weighted, whole-brain 
resting state structural MRI images were acquired on a 3.0 T MR 
scanner with a 12-channel head coil (GE 3.0 T Sigma Excite HD). The 
subject was instructed to keep their eyes closed, relax, and lie as still 
as possible. Repetition time (TR)/echo time (TE) = 8,852 ms/1,756 ms, 
flip angle = 10°, 172 sagittal slices, slice thickness = 1 mm, field of view 
(FOV) = 256 × 256 mm2, data matrix = 256 × 256 × 172, the voxel size 
was 1 × 1 × 1 mm and TI = 650 ms.

Preprocessing

After a quality check conducted by an experienced 
neuroradiologist to rule out visible movement artifacts and gross 
structural abnormalities, all data were pre-processed using the 
segmentation routines provided by the Computational Anatomy 

Toolbox (CAT12),1 a toolbox available for the Statistical Parametric 
Mapping software (SPM12),2 for the MATLAB environment. The 
segmentation was registered using Diffeomorphic Anatomical 
Registration through Exponential Lie algebra tools (DARTEL) 
(Ashburner, 2007), a potential alternative to SPM’s traditional 
registration approaches that operates using a whole-brain approach 
(Grecucci et al., 2016; Pappaianni et al., 2018; Yassa and Stark, 2009). 
Also, surface and Thickness were estimated. Finally, Dartel files were 
normalized to MNI space using a Spatial Gaussian Smoothing 
of 8 mm.

Data fusion unsupervised machine learning

Independent Component Analysis is a blind source separation 
method that allows the finding of latent and independent components 
in a data set. ICA, in its forms of joint ICA and parallel ICA, is also 
used to provide a multivariate data fusion approach, capable of 
maintaining the latent association within data. Parallel ICA is 
particularly useful when data are assumed to be mixed in similar 
patterns (Mohammed et al., 2014), making the method particularly 
suitable for correlation among similar but independent components 
and across different modalities. For example, it is recognized that gray 
and white matter, even if different modalities, are probably correlated 
and share some genetic and biological common origins (Spalletta 
et al., 2018). We opted to respect this correlation between two different 
modalities and use a parallel ICA approach for the dimensional 
decomposition of brain data. The parallel ICA was applied to GM and 
WM data using the Fusion ICA Toolbox (FIT)3 (Calhoun et al., 2006) 
in MATLAB 2018a environment.4 ICA works by converting every 
structural image into a one-dimensional vector, then using these 
vectors to build a data matrix. This matrix is then decomposed into a 
mixing matrix, which indicates the relationship between subjects and 
the degree to which each component contributes to a given subject, as 
well as a source matrix. Then, the scores are used to correlate each 
network with the psychological variable of interest. For more 
information, see the work of Xu et al. (2009). Parallel ICA conducts 
an individual ICA for each modality, maximizing independence 
within each modality and optimizing the correlation between the 
same modalities. The decomposition of the brain in different 
components has been conducted in steps: In the first step, an 
estimation of the number of components for both modalities was 
conducted with information theoretical criteria (Wax and Kailath, 
1985). Then, the ICA was performed using the ICASSO algorithm 
(Himberg and Hyvarinen, 2003; Himberg et al., 2004) to assess the 
consistency of each modality. To ensure the reliability of our findings 
and mitigate the risk of false discoveries due to overfitting, 
we employed a leave-one-out assessment (Liu et al., 2009). With these 
settings, the ICASSO algorithm was conducted 100 times with 
identical parameter settings, excluding one subject in each run, 
allowing us to assess consistency by examining the results from the 
100 repetitions. The software was then used to convert the components 

1 http://www.neuro.uni-jena.de/cat/

2 https://www.fil.ion.ucl.ac.uk/spm/software

3 http://mialab.mrn.org/software/fit

4 https://it.mathworks.com/products/matlab.html

https://doi.org/10.3389/fnhum.2025.1559760
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
http://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/software
http://mialab.mrn.org/software/fit
https://it.mathworks.com/products/matlab.html


Arena et al. 10.3389/fnhum.2025.1559760

Frontiers in Human Neuroscience 05 frontiersin.org

into Talairach coordinates, a process necessary to define the brain 
areas included in each component. The data were then considered in 
their positive values and plotted in Surf Ice for visualization (Rorden).5

Statistical analysis

A Backward stepwise regression model was run for white and gray 
matter separately to determine the components with the highest 
association with OCPD. The decision to run one analysis for each feature 
was determined to avoid redundancy in the model, given the assumption 
of correlation between GM and WM (an assumption we could make 
given the peculiarity of the data fusion approach). We used the loading 
coefficients from each independent network derived through p-ICA as 
covariates, keeping the OCPD assessment as the dependent variable.

5 https://www.nitrc.org/projects/surfice/

Results

Network decomposition

The information-theoretic criteria estimated 28 independent 
within-subjects covarying gray (GM) and 28 white (WM) matter 
networks (see Figure 1 and Table 2), but after a visual inspection of the 
components, the GM03 component was rejected because it appeared 
to be an artifact or at least too noisy.

Stepwise regression on loading coefficients

A Spearman Rank correlation analysis was conducted to 
examine the impact age and gender have on the construct of 
OCPD. The findings revealed that neither age (rho = 0.121, 
p = 0.342) nor gender (rho = −0.109, p = 0.392) exhibited any 
significant correlation with OCPD. In order to detect the 
components associated with OCPD, a stepwise backward 
regression was conducted on the loading coefficients found by 
the ICA. A significant winning model was found for each of the 
two modalities (GM: R = 0.517, R2 = 0.267, Adjusted R2 = 0.243, 
RMSE = 0.437; WM: R = 0.386, R2 = 0.149, Adjusted R2 = 0.121, 
RMSE = 0.472; for more in-depth information about the models, 
check the Supplementary material). The components significantly 
associated with OCPD were two gray matter components 
(GM-05: t = 3.584, p < 0.001 and GM-23: t = −3.091, p = 0,003) 
and one white matter component (WM-25: t = 2.816, p = 0.007). 
From further analysis, WM-25 did not correlate with any of the 
gray matter components. Interestingly, GM05 correlated 
significantly with both the anxiety scales used in the study. In 
particular, it correlated with BAI (t = 3.079; p = 0.003) and with 
the Anxiety subscale of HAD (t = 3.369, p = 0.001), but not the 
depression one. The two scales do not correlate significantly with 
any of the other components. GM05 component mainly included 
the medial frontal gyrus, superior frontal gyrus and anterior 
cingulate, lingual gyrus, supramarginal gyrus, insula, and 
precuneus (see Table 3; Figure 2). GM-23 component consisted, 
among the others, of portions of precuneus, fusiform gyrus, 
medial frontal gyrus, cingulate areas, and temporal gyrus (see 
Supplementary Table 3; Figure 3). Finally, WM-25 partially covered 
the cingulate, post central, and precentral gyrus, inferior parietal 
lobule, fusiform gyrus, cuneus and precuneus, and middle frontal 
gyrus (see Table 3; Figure 4). In the figures, warm colors represent 
an increase in volume compared to an average brain, with yellow 
indicating the greatest increase and red representing a smaller 
increase, similar to Figure 1.

Discussion

The primary goal of our study was to detect joint GM−WM 
differences between individuals diagnosed with OCPD and matched 
non-OCPD controls. To achieve these objectives, we employed, for the 
first time, a data fusion unsupervised ML algorithm to analyze the 
structural MRI images of 64 individuals (30 OCPD). This approach 
enabled the decomposition of the brain into independent networks 
characterized by the covariation of GM and WM networks. The 

TABLE 2 Correlations between the linked components.

GM WM Correlation T-value p-value

22 6 −0.95726 −26.061 4.159e − 35

4 5 −0.91634 −18.02 2.4892e − 26

1 4 0.88822 15.223 1.2916e − 22

3 1 −0.75384 −9.0339 6.5017e − 13

10 13 −0.7109 −7.9591 4.6591e − 11

12 3 −0.67979 −7.2984 6.5372e − 10

8 26 0.6512 6.7566 5.6632e − 09

11 14 −0.62404 −6.2884 3.6025e − 08

13 11 0.59347 5.806 2.3627e − 07

27 19 0.58998 5.7535 2.8936e − 07

9 25 0.57793 5.5761 5.7171e − 07

26 18 −0.53573 −4.9957 5.073e − 06

17 16 −0.5079 −4.6426 1.8352e − 05

21 7 −0.49643 −4.5029 3.0198e − 05

5 17 0.48894 4.4134 4.1416e − 05

7 24 0.46849 4.1754 9.4553e − 05

18 23 −0.44604 −3.9241 0.00022078

20 12 −0.44297 −3.8905 0.00024685

25 18 0.44065 3.8652 0.00026834

6 9 −0.43831 −3.8397 0.00029179

16 21 0.43322 3.7847 0.00034933

14 20 −0.40744 −3.513 0.00083311

23 1 −0.39909 −3.4272 0.0010881

15 1 0.37687 3.2037 0.0021439

2 17 0.34769 2.9198 0.0048767

24 23 −0.33679 −2.8164 0.0065042

28 12 0.32745 2.7288 0.0082604

19 8 −0.31226 −2.5881 0.012005
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ICA-based approach was specifically used to identify brain networks 
known to approximate resting-state macro-networks. This was 
necessary to explore the specific role of the DMN but preserving the 

normal individual differences in how this network may be expressed 
in each individual, without over imposing a predetermined mask 
(Scarano et al., 2024; Sorella et al., 2025). Following this, we used 

FIGURE 1

Parallel ICA results. GM ICs are reported in the top panel, WM ICs in the bottom panel. Positive values (in hot colors) indicate increased GM or WM 
density, while negative values (blue areas) indicate decreased density. See Table 2 for the correlations between modalities.
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TABLE 3 Talairach tables of the components significantly correlated with OCPD.

Area Broadmann area Left/right volume (cc) Random effects max value (x, y, z)

GM-05

Medial frontal gyrus 6, 8, 9, 10 1.5/1.8 6.4 (−3, 62, 16)/6.1 (3, 57, 5)

Sub-Gyral 6 0.8/1.2 4.1 (−30, −35, 38)/6.3 (37, 20, 20)

Superior frontal gyrus 8, 9, 10 0.9/1.0 4.9 (−3, 54, 25)/5.3 (3, 48, 31)

Superior temporal gyrus 22, 38, 42 0.9/0.6 4.6 (−67, −40, 16)/5.3 (49, 17, −7)

Middle frontal gyrus 8, 9, 10 0.5/0.6 4.3 (−21, 34, 38)/5.0 (36, 53, 21)

Anterior cingulate 10, 32 0.4/0.4 4.6 (−3, 47, 3)/4.5 (3, 47, 6)

Inferior frontal gyrus 45, 47 0.2/0.9 3.4 (−42, 15, −11)/4.5 (43, 15, −13)

Postcentral gyrus 40 0.1/0.0 3.2 (−65, −22, 18)/−999.0 (0, 0, 0)

Middle temporal gyrus 21, 39 0.1/0.1 3.1 (−65, −31, −4)/3.1 (36, −61, 27)

Supramarginal gyrus * 0.0/0.1 −999.0 (0, 0, 0)/3.0 (50, −36, 34)

GM-23

Culmen * 4.5/6.7 5.6 (−1, −45, −4)/8.3 (10, −36, −15)

Fourth ventricle * 0.2/0.2 4.0 (−1, −40, −22)/6.4 (1, −40, −19)

Cerebellar Lingual * 0.3/0.6 5.2 (0, −44, −8)/6.1 (6, −44, −8)

Sub-Gyral * 1.0/1.9 4.7 (−27, −46, 33)/5.7 (31, −36, 35)

Declive * 0.3/2.0 3.5 (−9, −57, −11)/4.9 (9, −56, −11)

Culmen of vermis * 0.2/0.0 4.6 (0, −64, −7)/−999.0 (0, 0, 0)

Precentral gyrus * 0.1/0.1 4.1 (−34, 16, 35)/3.7 (37, 1, 28)

Fastigium * 0.0/0.2 −999.0 (0, 0, 0)/4.0 (10, −49, −19)

Precuneus 7 0.3/0.0 4.0 (−33, −64, 36)/−999.0 (0, 0, 0)

Inferior occipital gyrus * 0.1/0.2 3.3 (−30, −82, −5)/4.0 (36, −76, −5)

Supramarginal gyrus * 0.0/0.1 −999.0 (0, 0, 0)/3.8 (50, −43, 34)

Medial frontal gyrus * 0.1/0.0 3.8 (−19, 39, 19)/−999.0 (0, 0, 0)

Fusiform gyrus 37 0.1/0.3 3.7 (−36, −52, −11)/3.5 (40, −43, −13)

Cerebellar tonsil * 0.1/0.1 3.7 (0, −51, −35)/3.4 (6, −51, −37)

Nodule * 0.0/0.1 −999.0 (0, 0, 0)/3.5 (3, −48, −29)

Superior frontal gyrus 8 0.2/0.1 3.4 (−22, 42, 19)/3.4 (30, 30, 51)

Inferior parietal lobule * 0.1/0.1 3.3 (−34, −52, 39)/3.4 (49, −29, 22)

Middle occipital gyrus * 0.1/0.0 3.4 (−37, −77, 9)/−999.0 (0, 0, 0)

Cingulate gyrus * 0.1/0.1 3.0 (−12, −44, 28)/3.3 (15, −39, 31)

Lingual gyrus * 0.0/0.1 −999.0 (0, 0, 0)/3.3 (10, −85, −2)

Middle frontal gyrus 6 0.4/0.0 3.3 (−31, 48, 2)/−999.0 (0, 0, 0)

Uvula * 0.0/0.1 −999.0 (0, 0, 0)/3.1 (25, −80, −23)

Insula * 0.0/0.1 −999.0 (0, 0, 0)/3.1 (46, −31, 20)

Inferior frontal gyrus * 0.0/0.1 −999.0 (0, 0, 0)/3.1 (37, 3, 32)

Inferior parietal lobule 40 0.2/0.0 4.4 (−45, −39, 39)/−999.0 (0, 0, 0)

Angular gyrus * 0.1/0.0 4.3 (−40, −66, 30)/−999.0 (0, 0, 0)

Precentral gyrus * 0.0/0.1 −999.0 (0, 0, 0)/4.2 (40, 19, 35)

Postcentral gyrus 5 0.0/0.2 −999.0 (0, 0, 0)/4.0 (39, −42, 60)

Inferior frontal gyrus * 0.0/0.1 −999.0 (0, 0, 0)/4.0 (43, 37, 4)

Declive * 0.2/0.1 3.7 (−45, −68, −21)/3.9 (45, −67, −22)

Pyramis * 0.1/0.0 3.7 (−40, −66, −33)/−999.0 (0, 0, 0)

Inferior temporal gyrus * 0.1/0.0 3.6 (−59, −12, −16)/−999.0 (0, 0, 0)

(Continued)

https://doi.org/10.3389/fnhum.2025.1559760
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Arena et al. 10.3389/fnhum.2025.1559760

Frontiers in Human Neuroscience 08 frontiersin.org

stepwise regression to identify the GM-WM network associated with 
OCPD diagnosis. The data fusion revealed 28 covarying GM-WM 
brain networks, but only three components (GM-05, GM-23, and 
WM-25) were significantly associated with OCPD. GM-05 and 
WM-25 were more expressed (increased matter concentration) in 
OCPD subjects compared to controls, while GM-23 showed the 
opposite trend.

GM-05 encompasses portions of the medial frontal gyrus, 
sub-gyral, superior frontal gyrus, superior temporal gyrus, middle 
frontal gyrus, anterior cingulate and inferior frontal gyrus, post 
central gyrus, middle temporal gyrus, and supramarginal gyrus. All 
these areas exhibited higher density in the OCPD group relative to 
controls. Previous studies have identified various alterations in some 
of the regions comprising GM05 in OCPD: both the superior and 
medial frontal gyri have shown increased activity fluctuation in 
individuals with OCPD (Lei et al., 2020), while other studies underline 
the role of cingulate cortex alterations in explaining some OCPD’s 
typical traits, such as harm avoidance and anxiety-related traits 
(Tuominen et al., 2012; Colic et al., 2018). Additionally, our analysis 
revealed a correlation between GM05 and two of the three anxiety 
subscales (BAI, r = 0.371, p = 0.003; HAD, r = 0.411, p < 0.001). This 
correlation aligns with the differences observed between OCPD and 

control groups in anxiety scores and can be interpreted as evidence of 
the influence that alterations in GM05 regions may have on the 
anxious traits characteristic of OCPD. Notably, this hypothesis is 
supported by the absence of any significant correlation between GM05 
and the diagnosis of the other two Cluster C personality disorders 
assessed in this study. For further details, see Figure 5.

GM-23 includes cerebellar regions (such as the Culmen, 
cerebellar Tonsil, Nodule, uvula, declive, and pyramis), as well as 
the sub-gyral area, precentral gyrus, precuneus, occipital gyrus, 
supramarginal gyrus, fusiform gyrus, superior frontal gyrus, 
inferior parietal lobule, middle occipital gyrus, cingulate gyrus, 
lingual gyrus, middle frontal gyrus, insula, inferior frontal gyrus, 
angular gyrus, precentral and postcentral gyrus, inferior temporal 
gyrus, anterior cingulate cortex, and superior parietal lobule. Of 
particular interest is the presence of the precuneus in this 
component, as this area is associated with significant traits of 
Obsessive-Compulsive Personality Disorder (OCPD), such as 
perfectionism and rumination (Coutinho et al., 2016). Alterations 
in gray matter density in regions such as the culmen, cerebellar 
lingual, cerebellar tonsil, and declive suggest an involvement of 
the cerebellum in individuals with OCPD. This hypothesis is 
further supported by previous studies (Laricchiuta et al., 2014; 

TABLE 3 (Continued)

Area Broadmann area Left/right volume (cc) Random effects max value (x, y, z)

Anterior cingulate 32 0.1/0.0 3.5 (−9, 32, −7)/−999.0 (0, 0, 0)

Superior parietal lobule 7 0.0/0.1 −999.0 (0, 0, 0)/3.5 (30, −64, 54)

WM-25

Middle temporal gyrus 19, 20, 21, 37, 39 1.7/3.3 8.2 (−58, −34, −12)/10.4 (56, −33, −14)

Inferior temporal gyrus 20, 21 0.9/1.2 6.7 (−58, −31, −15)/7.4 (56, −30, −16)

Precuneus 7 0.2/1.0 4.9 (−22, −57, 50)/6.2 (25, −54, 52)

Sub-Gyral * 0.2/1.2 3.8 (−21, −57, 54)/6.1 (52, −33, −10)

Superior parietal lobule 7 0.4/1.0 4.2 (−24, −60, 53)/5.9 (28, −55, 44)

Middle frontal gyrus 8, 9, 10 0.7/1.1 5.6 (−42, 50, 3)/5.5 (25, 41, 37)

Medial frontal gyrus 6, 10 0.3/0.6 4.9 (−7, −12, 60)/4.7 (13, 57, −5)

Inferior parietal lobule 40 0.3/0.4 3.7 (−58, −38, 36)/4.9 (39, −48, 52)

Superior frontal gyrus 6, 8, 9 0.3/1.3 3.7 (−10, 54, 26)/4.8 (10, 24, 51)

Superior temporal gyrus 39 0.5/0.6 4.2 (−50, −32, 8)/4.8 (46, −57, 29)

Inferior frontal gyrus 9, 46 0.3/0.2 4.2 (−45, 50, 0)/3.5 (52, 12, 30)

Fusiform gyrus * 0.0/0.1 −999.0 (0, 0, 0)/4.2 (56, −33, −19)

Middle occipital gyrus 18 0.2/0.0 4.1 (−13, −88, 15)/−999.0 (0, 0, 0)

Postcentral gyrus 3 0.1/0.1 3.9 (−59, −20, 37)/3.3 (52, −29, 40)

Parahippocampal gyrus * 0.0/0.1 −999.0 (0, 0, 0)/3.9 (36, −16, −23)

Precentral gyrus * 0.0/0.3 −999.0 (0, 0, 0)/3.7 (53, −11, 36)

Cuneus 18, 19 0.3/0.1 3.7 (−10, −88, 18)/3.4 (22, −81, 33)

Supramarginal gyrus 40 0.3/0.0 3.5 (−56, −42, 30)/−999.0 (0, 0, 0)

Paracentral lobule 5 0.1/0.0 3.4 (−9, −35, 54)/−999.0 (0, 0, 0)

Cingulate gyrus 32 0.1/0.0 3.3 (−12, 25, 32)/−999.0 (0, 0, 0)

Angular gyrus * 0.0/0.1 −999.0 (0, 0, 0)/3.2 (46, −60, 32)

Inferior semi-lunar lobule * 0.1/0.0 3.1 (−15, −69, −37)/−999.0 (0, 0, 0)

Please note that WM nomenclature is identified in terms of adjacency to GM regions. *The symbol appears for areas that are not reported to be Broadmann areas.
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Petrosini et al., 2017) that link cerebellar volumes to personality 
traits relevant to OCPD, such as novelty seeking and harm 
avoidance. Specifically, novelty seeking is positively correlated 
with cerebellar volumes, while harm avoidance is negatively 
correlated with the same measure. The presence of areas 
associated with these traits in the reported significant 
components highlights a possible unique relationship between 

OCPD and harm avoidance. This connection is supported by 
previous studies (Lee and Wu, 2019; Ettelt et al., 2008; Samuels 
et al., 2000), which suggest a link between this trait and both 
OCPD and OCD. In contrast, regarding novelty seeking, no other 
relevant studies, to our knowledge, have identified a specific 
relationship with OCPD. Furthermore, this study does not 
directly investigate novelty seeking, so the reported results are 

FIGURE 2

Brain plots of GM-05. Graphical representation of the gray matter areas that differ between individuals with OCPD and non-OCPD controls. Individuals 
with OCPD show higher gray matter density in this network compared to non-OCPD controls. A raincloud plot of the loading coefficients is also 
represented.

FIGURE 3

Brain plots of GM-23. Graphical representation of the gray matter areas that differ between OCPD individuals vs. non-OCPD controls. This network 
shows that OCPD individuals display lower GM density in this network compared to non-OCPD controls. A raincloud plot of the loading coefficients is 
also represented.
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insufficient to support a distinct connection between the two 
constructs. The component GM-23 also includes portions of 
insula, an area associated with characteristics altered in OCD and 
OCPD, such as empathy, cognitive flexibility (Gogolla, 2017), and 
that has been found to be  altered in precedent studies 
investigating OCPD (Lei et  al., 2020). Most importantly, 
including portions of insula and anterior cingulate cortex, the 
component appears to be related to the Salience Network (Seeley, 
2019). The Salience Network is an important brain network that 
functions as a dynamic switch between concentration on self 

(mediated by DMN) and task-related and directed attention 
(Schimmelpfennig et al., 2023). Its involvement in OCPD may 
indicate a difficulty in the dynamic switching process among 
individuals with the condition.

Lastly, the WM-25 positive component consists of white matter 
regions adjacent to the middle temporal gyrus, inferior temporal gyrus, 
precuneus, sub-gyral area, superior parietal lobule, middle frontal gyrus, 
medial frontal gyrus, inferior parietal lobule, fusiform gyrus, middle 
occipital gyrus, postcentral and precentral gyrus, parahippocampal gyrus, 
cuneus, supramarginal gyrus, paracentral lobule, cingulate gyrus, angular 
gyrus, and inferior semi-lunar lobule. Increased white matter density in 
the precuneus has been previously observed in a resting-state functional 
MRI study (Coutinho et al., 2016), where the increase was linked to self-
reflection, as well as accessing past events for problem-solving and future 
planning. While our study does not explicitly measure these constructs, 
our results further support the involvement of precuneus connectivity in 
OCPD. Interestingly, the WM-25 network also includes increased WM 
volume in frontal areas, such as the medial and middle frontal gyrus, 
coherently with what we  observed for GM-05. The presence of 
parahippocampal gyrus suggests a limbic alteration in subjects with 
OCPD, supporting the results of previous studies that link this system to 
OCPD (Kyeong et al., 2014; Millon and Davis, 1996). The relationship 
between these three components and the psychological scales used for the 
assessment are reported in Table 4.

As expected, the resulting networks overlap with parts of the 
Default Mode Network (DMN). The Default Mode Network is the 
name given to a network of distributed and interconnected brain 
areas that are typically suppressed when an individual is focused 
on external stimuli and are, instead, mainly activated for 
internally focused thought processes (Menon, 2023), such as self-
referential processing, future planning, cues evaluation and 
emotional regulation (Raichle, 2015). The network includes the 
medial prefrontal cortex, posterior cingulate cortex with the 
adjacent precuneus, the bilateral inferior parietal cortex, and the 

FIGURE 4

WM-25. Graphical representation of the white matter portions (mesh reconstruction) that differ between OCPD individuals vs. non-OCPD controls. 
OCPD individuals display higher WM density in this network compared to non-OCPD controls. A raincloud plot of the loading coefficients is also 
represented.

FIGURE 5

Heatmap representing the Pearson correlation values among the 
anxiety scales and components significant for OCPD. More 
information about the relation with these subscales is reported in 
Table 4.
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medial temporal cortex (Buckner et al., 2008; Fox and Raichle, 
2007; Raichle, 2015). The link between DMN and personality 
disorders is well documented in literature (see, for example, 
Coutinho et al., 2016, for OCPD; Yang et al., 2016, Langerbeck 
et al., 2023 for borderline personality disorder, and Zhang et al., 
2014 for Schizotypal personality disorder). Thus, a result that 
includes it was expected. Regarding OCPD specifically, the DMN 
is responsible for several psychological processes relevant to its 
pathophysiology (Coutinho et al., 2016), including reflective self-
awareness, introspection (Buckner and Carroll, 2007), 
retrospective memory, and prospective thinking (Delamillieure 
et  al., 2010). The propensity for self-referential thoughts, 
rethinking recent past events, and future planning are all 
processes dependent on the DMN and are altered in OCPD. The 
involvement of the DMN in symptoms and the development of 
anxious states has been observed previously in Obsessive-
Compulsive Disorder (Gonçalves et al., 2017). Our study further 
extends previous evidence supporting the hypothesis of DMN 
involvement in OCPD. Of the areas showing increased volume in 
OCPD patients, GM-5 includes the medial frontal gyrus, superior 
temporal gyrus, anterior cingulate, and inferior frontal gyrus. 
The medial frontal gyrus and superior temporal gyrus have been 
linked to the DMN (Menon, 2023; Uddin et  al., 2009). The 
anterior cingulate is not only considered part of the DMN 
(Buckner and DiNicola, 2019) but is also recognized as a key 
component of the Salience Network (Seeley et al., 2007), which is 
involved in DMN suppression. The presence of the insula and 
anterior cingulate cortex in GM-23 further supports the 
involvement of the Salience Network. Finally, the inferior frontal 
gyrus is directly involved in the network (Menon, 2023; Uddin 
et  al., 2009). GM-23 includes the precuneus, an area that is 
considered a part of the DMN; WM-25 confirm a white matter 
involvement adjacent to the precuneus, the medial frontal gyrus 
and inferior temporal gyrus, already discussed for the gray matter 
component were included, but also includes cingulate gyrus and 
inferior parietal lobule, two areas that are part of DMN (Buckner 
and DiNicola, 2019). In conclusion, GM-05 and WM-25 are two 
components that include portions of DMN associated with 
OCPD. In contrast, GM-23 includes mainly areas (except for 
Precuneus) that have never been reported to be  related to 
DMN. This result can be  interpreted in the direction of an 
increase of Default Mode Network volume for patients with 
OCPD, while GM-23, which is little if not associated with DMN, 
is more expressed in controls; thus, a volume decrement in areas 

included in GM-23 is associated with OCPD, while for what 
concerns GM-05 and WM-25 (the circuits that include areas 
associated with DMN) is instead an increment in volume to 
be related to OCPD.

Of note, GM-05 and GM-23 do not correlate with WM-25. This 
means that although OCPD is characterized by alterations in both 
modalities (GM and WM), these networks are not joint.

These results could enhance our understanding of OCPD traits, 
particularly in relation to the similar disorder OCD, briefly discussed 
in this study. OCPD has been associated with emotional overcontrol 
and reduced affective expression, potentially linked to altered 
connectivity in the insula and amygdala (Grant et al., 2012).

Interestingly, the present study did not find evidence of striatal or 
orbitofrontal cortex involvement in OCPD among the participants. 
Instead, alterations in the ACC, but not in the dorsal prefrontal network, 
were observed. This finding partially aligns with existing literature while 
also suggesting the need for a more in-depth investigation into these 
regions, focusing on their functional roles in OCPD.

Moreover, a correlation emerged between GM-05, a component 
associated with OCPD, and anxiety subscales. This could be interpreted 
as preliminary evidence of a relationship between OCPD and anxiety, 
possibly hinting at a link between OCPD and OCD. However, this 
study does not provide sufficient evidence to support such a hypothesis 
fully, underscoring the need for further research.

Despite its merits, this study is not without limitations. First, while the 
sample size is comparable to or larger than that of some previous studies, 
it remains relatively modest. Increasing the sample size would enhance 
the robustness of these findings and allow for more nuanced subgroup 
analyses. Second, although control subjects were selected based on their 
IPDE-OCPD scores, other clinical dimensions were not assessed in the 
control group. Future studies may want to use multiple assessment tools 
or conduct a more thorough investigation of comorbidities. Moreover, 
our study exclusively focused on structural MRI data, specifically 
examining gray and white matter concentrations. Although this approach 
provided valuable insights into the structural abnormalities associated 
with OCPD, it does not address the functional aspects of brain activity. 
Incorporating functional neuroimaging data, such as resting-state or task-
based fMRI, could offer a more comprehensive understanding of OCPD 
neural mechanisms by functional connectivity patterns and dynamic 
brain activity related to its typical behaviors. While we identified specific 
brain regions and networks associated with OCPD, it remains unclear 
whether these findings are specific to this personality disorder or extend 
to other personalities, especially cluster C. Comparative studies involving 
different types of personalities could help clarify the specificity and shared 

TABLE 4 Association within the significant components for OCPD and psychological scales.

Variable GM-05 GM-23 WM-25

Pearson’s r p-value Pearson’s r p-value Pearson’s r p-value

HARS −0.043 0.743 0.107 0.399 −0.007 0.959

HAD anxiety 0.411 <0.01 0.073 0.564 0.182 0.151

HAD depression 0.244 0.052 0.044 0.729 0.031 0.809

EAG −0.227 0.072 0.006 0.954 −0.045 0.725

S-R 0.136 0.285 0.254 0.051 0.005 0.972

BAI 0.371 0.003 0.171 0.177 0.086 0.497

IPDE OCPD 0.381 0.002 −0.286 0.022 0.364 0.003
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neural mechanisms underlying these disorders. A similar reflection could 
be drawn regarding OCD; as it has been explained before, OCD and 
OCPD share some common characteristics. We  suggest that further 
studies directly compare the two disorders to further and directly 
underline the similarities and the differences between the two disorders. 
In our study, we did not find significant gender differences in the OCPD 
group, despite past epidemiological findings suggesting gender 
imbalances. However, more recent evidence from a comprehensive meta-
analysis and meta-regression of the global prevalence of obsessive-
compulsive personality disorder (Clemente et  al., 2022) found no 
significant gender-related effect. This challenges the notion that gender 
differences are a clear and consistent factor in OCPD, particularly at the 
neural level. Moreover, the relatively small sample size of our study may 
have limited our ability to detect subtle neural differences between 
genders. A larger sample may be  needed to capture small but 
meaningful variations.

Finally, although the approach we proposed in this study is based 
on Parallel ICA, other data fusion approaches could be implemented 
(in the form, for example, of Joint ICA or tIVA).

Conclusion

This study aimed to understand better the GM and WM 
alterations in individuals diagnosed with OCPD. In particular, 
we tested the hypothesis that OCPD’s regions ascribed to the DMN 
were altered. We used Parallel ICA, a data fusion machine learning 
method, to extract GM and WM networks that approximate macro-
resting state networks. Results indicate a contribution of many brain 
regions overlapping with the DMN. These results may pave the way 
for future OCPD biomarkers and neurostimulation methods to target 
dysfunctional brain regions.

Disruptions in the DMN can affect how emotions are processed 
and regulated, potentially interfering with the therapeutic mechanisms 
of interventions like Cognitive-Behavior Therapy. For instance, when 
the DMN is hyperactive or dysregulated, it may impair the cognitive 
flexibility necessary for effective emotion regulation, which could 
undermine the success of interventions focused on emotional 
processing. These findings highlight the importance of the DMN in 
emotional regulation and have significant implications for the 
development of biomarkers for disorders such as OCPD. Furthermore, 
they suggest potential pathways for neurostimulation approaches 
aimed at modulating dysfunctional brain regions. By targeting these 
disrupted areas, it may be possible to enhance the effectiveness of 
existing therapies and open new avenues for treating psychological 
conditions associated with maladaptive brain network activity.
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