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The audio-visual benefit in speech perception—where congruent visual input 
enhances auditory processing—is well-documented across age groups, particularly 
in challenging listening conditions and among individuals with varying hearing 
abilities. However, most studies rely on highly controlled laboratory environments 
with scripted stimuli. Here, we examine the audio-visual benefit using unscripted, 
natural speech from untrained speakers within a virtual acoustic environment. 
Using electroencephalography (EEG) and cortical speech tracking, we assessed 
neural responses across audio-visual, audio-only, visual-only, and masked-lip 
conditions to isolate the role of lip movements. Additionally, we analysed individual 
differences in acoustic and visual features of the speakers, including pitch, jitter, 
and lip-openness, to explore their influence on the audio-visual speech tracking 
benefit. Results showed a significant audio-visual enhancement in speech tracking 
with background noise, with the masked-lip condition performing similarly to the 
audio-only condition, emphasizing the importance of lip movements in adverse 
listening situations. Our findings reveal the feasibility of cortical speech tracking with 
naturalistic stimuli and underscore the impact of individual speaker characteristics 
on audio-visual integration in real-world listening contexts.
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1 Introduction

Auditory attention decoding (AAD) has traditionally aimed to distinguish between target 
and non-target speakers in environments with competing voices, capturing selective attention 
mechanisms in complex auditory scenes. Significant strides have been made in this field by 
decoding the speaker to whom a listener is attending, based on the brain’s response to multiple 
simultaneous speakers (Ding and Simon, 2014; Luo and Poeppel, 2007; Mirkovic et al., 2015). 
AAD studies typically rely on controlled, multi-speaker environments, often using professional 
speakers and scripted speech for consistency and precision (Holtze et al., 2023; Jaeger et al., 
2020; Mirkovic et al., 2016). Although these studies have been foundational, their reliance on 
controlled settings presents challenges for generalizing findings to more naturalistic 
auditory environments.

The AAD approach has been extended to explore the impact of visual cues—such as lip 
movements and facial expressions—on selective attention, especially in noisy settings 
(Chandrasekaran et  al., 2009; Fu et  al., 2019). Visual input can enhance speech 
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comprehension by providing congruent cues that aid auditory 
processing, particularly when auditory signals are degraded. 
Conversely, incongruent visual cues can create perceptual illusions, 
demonstrated by the McGurk effect, where mismatched audio and 
visual inputs can lead to the perception of a novel sound (Jiang and 
Bernstein, 2011; Mcgurk and Macdonald, 1976; Stropahl and 
Debener, 2017). This phenomenon underscores the intricate 
interplay between auditory and visual processing. However, audio-
visual fusion seems to vary strongly between different speakers, 
different audio-visual stimulus combinations, and between 
participants (Mallick et al., 2015; Stropahl et al., 2017; Stropahl and 
Debener, 2017).

Most AAD studies are based on neural tracking procedures, 
which can be used to study how well brain activity captures continuous 
speech stream fluctuations (Crosse et al., 2015; Luo and Poeppel, 2007; 
Puschmann et al., 2019). Neural tracking is especially valuable for 
studying the neural dynamics of speech processing in naturalistic 
environments, where congruent multi-modal cues, such as lip 
movements, enhance speech comprehension without the complexity 
of competing voices. However, the ecological validity, i.e., the extent 
to which findings generalize to real-world communication, depends 
on how closely experimental conditions reflect real-world listening 
situations (Keidser et al., 2020). Traditional AAD and neural speech 
tracking studies often rely on highly controlled stimuli, limiting their 
ecological validity and leaving open the question of how neural 
tracking operates in more variable, real-life auditory settings.

Traditional context factors such as background noise, speaker 
position or varying hearing abilities have been thoroughly investigated 
in AAD and neural speech tracking studies (Geirnaert et al., 2021; 
Rosenkranz et al., 2021; Wang et al., 2023; Zion Golumbic et al., 2012). 
However, other factors, such as the likeability of the speaker or specific 
speech features of the speaking person, may contribute to how well a 
speech signal is followed by a listener (Wiedenmann et al., 2023). 
Research findings in the context of advertising or expert testimony 
suggest that likeability drives attention, meaning that more likeable 
people capture greater attention independent of their actions (Fam 
and Waller, 2006; Younan and Martire, 2021). Likeability, as a socio-
emotional factor, may influence listener engagement and attention, 
potentially modulating speech tracking (Farley, 2008; Li et al., 2023).

Similarly, characteristics like articulation clarity, pitch range, or 
speech rhythm could contribute to individual differences in neural 
tracking efficacy. These rather unexplored context factors are particularly 
relevant for understanding real-world communication, where socio-
emotional dynamics and individual speaker traits naturally interact with 
auditory processing (Bachmann et al., 2021; Etard and Reichenbach, 
2019; Peelle and Davis, 2012). Ensuring ecological validity in speech 
tracking research requires considering such factors, as real-world 
listening situations rarely involve highly controlled, professional speech 
but rather a diverse range of speakers with varying vocal characteristics. 
While ecological validity is often cited as a justification for using more 
naturalistic stimuli, its definition and application in psychological 
research remain debated (Holleman et  al., 2020). Beyond simply 
increasing external realism, ecological validity requires systematically 
considering the cognitive and environmental constraints that shape 
processing in real-world settings. In this study, we enhance ecological 
validity not only by incorporating spontaneous speech but also by 
systematically examining speaker-specific characteristics that influence 
neural tracking.

To date, it remains poorly understood which speaker 
characteristics contribute to effective neural tracking. Most studies in 
the field utilize professional speakers with precise articulation, creating 
a controlled foundation for understanding neural tracking 
mechanisms (Crosse et  al., 2015; Jaeger et  al., 2020). Real-world 
listening, however, typically involves understanding untrained 
speakers, whose articulation, pitch, and spontaneity can vary widely, 
thus limiting the ecological validity of such studies. The influence of 
individual differences in vocal characteristics on neural tracking 
efficacy may be of particular relevance when audio-visual cues come 
into play (Vanthornhout et al., 2018). For example, the emotional 
expressiveness, facial dynamics, and speech fluency of individual 
speakers may interact with neural tracking and comprehension in 
ways that are not yet fully understood (Scherer et al., 2019; Tomar 
et al., 2024).

Previous studies have integrated visual cues into neural speech 
tracking to determine how congruent visual information, like lip 
movements, enhances comprehension in dynamic, noisy contexts 
(Crosse et al., 2016b; Park et al., 2016). These results underscore the 
powerful role of visual–auditory integration in enhancing speech 
comprehension under challenging listening conditions. However, the 
interplay between speech content, speaker characteristics, and listener 
preferences or biases warrants further exploration.

In this study, we examined how speaker-specific characteristics, 
such as articulation, pitch, and visual expressiveness, influence 
neural speech tracking in single-speaker, naturalistic audio-visual 
scenarios. By incorporating diverse speaker profiles and realistic 
listening contexts, we aim to improve ecological validity and shed 
light on the interplay of individual speaker traits and contextual 
factors in shaping speech processing. We hypothesized that audio-
visual (AV) conditions would yield a benefit in neural speech 
tracking, reflected by larger envelope tracking in AV compared to 
audio-only (A) stimuli across individual speakers. Additionally, 
we  explored whether individual differences between speakers, 
characterized by various speech features, would influence the 
magnitude of A and AV speech tracking and the AV benefit. By 
linking these speaker-specific traits to neural responses, this study 
aims to address the gap in understanding how individual speaker 
characteristics modulate speech processing in naturalistic, single-
speaker scenarios.

2 Methods

2.1 Participants

The sample size for this study was determined using a formal 
GPower analysis (Faul et  al., 2007) for a repeated-measures 
ANOVA. Assuming a small effect size (f = 0.2; Cohen, 2013), an alpha 
level of 0.05, a power of 0.8, a correlation of 0.5 among repeated 
measures, and a nonsphericity correction of 0.8, the analysis indicated 
a required total sample size of 18. Thus, twenty normal hearing 
participants were recruited for the study. Data from two participants 
were incomplete owing to technical difficulties and were therefore 
excluded from further processing. Participants’ ages ranged from 22 
to 35 years (M:26 years; 13 f, 5 m). The inclusion criteria were self-
reported normal hearing, normal or corrected-to-normal vision, no 
previous or current neurological or psychological disorders, and 
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native German skills. Participants completed questionnaires covering 
demographic information and general health assessments and gave 
written informed consent. The study protocol was approved by the 
Commission for Research Impact Assessment and Ethics of the 
University of Oldenburg.

2.2 Apparatus

Participants were seated in the centre of a cylindrical projection 
screen, which had a radius of 1.74 m and a height of 2 m (Hohmann 
et  al., 2020). A circular array of 16 active loudspeakers (Genelec 
8020C) was positioned behind a screen. Behind the loudspeakers, 
which were positioned at ear level, was a heavy black curtain to reduce 
reflections and ambient light, and to provide acoustic treatment at mid 
and high frequencies. The video image was projected with a single 
ultra-short throw projector (NEC U321H) at a resolution of 
1,920 × 1,080 pixels at 60 fps. The screen warping was processed in the 
graphics card (Nvidia Quadro M5000), and the field of view was 120 
degrees. Due to the screen warping, the effective pixel density varied 
across the projection and was lowest in the centre, so the projected 
video was shifted to one side to achieve the highest possible pixel 
density. The Toolbox for Acoustic Scene Creation and Rendering 
(TASCAR) (Grimm et al., 2019) was used for audio playback, control 
of the virtual acoustic environment in the lab, data logging of all 
sensors, and experimental control. The videos were embedded in a 
simple 2D virtual visual environment rendered using the Blender 
game engine (version 2.79c). The content of the game engine (selection 
of videos, timing of video playback, position of virtual objects) was 
controlled by the acoustic engine TASCAR.

2.3 Stimuli

For this study, 18 videos, each comprising one of six different 
speakers (2 m; 1d; 3f) were taken from a set of pre-recorded audio-
visual stimuli (Wiedenmann et al., 2023)1 . Speakers sat in front of a 
dark grey background, showing their head and upper body up to their 
shoulders centered in frame. Speakers talked continuously at their 
natural pace in standard German about self-selected content right into 
the camera, but with natural movements and glances wandering 
occasionally. Each of the videos contained an enclosed story, e.g., 
about travel reports or daily life anecdotes about their student and 
work life. The duration of the videos varied between 180 s and 600 s, 
cut down from longer recording sessions. The videos were recorded 
using a Canon EOS 700D with a resolution of 1,920 × 1,080 pixels at 
25 fps. The corresponding audio was recorded with a cardioid 
microphone (Neuman KM184) at approximately 0.7 m, using an RME 
Micstasy preamplifier and AD-converter with 48 kHz sampling rate. 
Speakers wore open earphones,2 in which half of the recordings played 
babble background noise at a sound pressure level (SPL) of 65 dB 
unweighted. Video editing and audio and video synchronization were 

1 https://zenodo.org/records/8082844

2 https://batandcat.com/portable-hearing-laboratory-phl.html

performed using DavinciResolve (Version17). Videos and audio were 
processed using FFMPEG.3

Each video was cut into consecutive 30-s segments, and the 
following conditions were prepared: audio-visual (AV), audio-only 
(A), visual-only (V) and masked-lips (ML). In the AV conditions the 
speaker was presented with the corresponding audio; in the audio-
only conditions, the audio was presented alongside a video of a grey-
background; in the V-conditions, only the video of the real speaker 
was shown while the audio was muted; for the ML conditions, the lips 
of the speaker were overlaid with a light blue horizontal bar, while the 
corresponding audio was played unaltered. The order of these 
conditions was pseudo-randomized within the 18 videos but kept 
constant across participants, changing every 30 s (Figure 1). While all 
participants experienced the same condition sequences, order of 
presentation of the 18 videos was randomized across participants. The 
design prevented immediate condition repetitions and minimized 
potential adaptation effects or prediction biases. Half of the conditions 
were block wise presented with background noise (65 dB SPL), while 
the other half was presented in quiet conditions. Participants were 
instructed to pay attention to the speakers and the content of the 
stories. After each experimental session, the participants were asked 
to rate the likeability of the speakers and how well they were able to 
follow their stories on a five-point Likert scale. Additionally, questions 
about the story content were asked in a multiple-choice format. Due 
to the total duration of 85 min of story content, the experiment was 
split into two sessions to avoid exhausting participants and potentially 
distorting neural speech tracking. The period between both sessions 
varied between one and 14 days.

2.4 EEG data acquisition and preprocessing

EEG data were acquired using a wireless, head-mounted 
24-channel EEG system (SMARTING, mBrainTrain, Belgrade, 
Serbia). The system features a sampling rate of 500 Hz, a resolution of 
24 bits, and a bandwidth from DC to 250 Hz. EEG data were collected 
from 24 scalp sites using sintered Ag/AgCl electrodes with FCz as the 
ground and AFz as the reference (Easycap, Herrsching, Germany). 
The electrode sites were prepared using 70% alcohol and an abrasive 
electrolyte gel (Abralyt HiCI, Easycap GmbH, Germany). The 
electrode impedances were maintained below 10 kΩ and tested before 
data acquisition. The EEG signal as well as other data (i.e., eye 
tracking, head movements; not investigated here) were wirelessly 
transmitted to a PC via Bluetooth and synchronized and recorded 
using the lab streaming layer protocol (Kothe et al., 2024) and saved 
into an .xdf file. Additional data recording was performed using 
TASCAR to .mat files (eye and head tracking, not analysed here).

For offline analysis, EEGLAB (Delorme and Makeig, 2004) and 
MATLAB (R2024a, MathWorks Inc., Marick, MA, United States) were 
used. Identification of improbable channels was conducted using the 
EEGLAB extension trimOutlier with an upper and lower boundary of 
two standard deviations of the mean standard deviation across all 
channels. Channels that exceeded this threshold were excluded. A copy 
of the EEG data was first low-pass filtered at 40 Hz (finite impulse 

3 http://www.ffmpeg.org
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response (FIR), Hamming window, filter order 166), downsampled to 
250 Hz, and subsequently high-pass filtered at 1 Hz (FIR, Hamming 
window, filter order 414; filters integrated into EEGLAB, version 1.6.2). 
Afterwards, data were segmented into consecutive 1-s epochs and 
segments containing artifacts were removed (EEGLAB functions pop 
eegthresh.m, +-80uV; pop rejkurt.m, SD = 3). The remaining data were 
submitted to extended Infomax ICA. The unmixing matrix obtained 
from this procedure was applied to the original unfiltered EEG dataset 
to select and reject components representing stereotypical artifacts. 
Components reflecting eye, muscle, and heart activity were identified 
using ICLabel (Pion-Tonachini et al., 2019). Components flagged and 
identified as artifacts were removed from further analysis. Artifact-
corrected EEG data were low-pass filtered with a FIR filter and a cut-off 
frequency of 30 Hz (hann window, filter order 220, Fs = 500 Hz), and 
subsequently high-pass filtered with a FIR filter and a cut-off frequency 
of 0.3 Hz (hann window, filter order 500, Fs = 500 Hz). After the data 
were re-referenced to the common average and corrupted channels 
were replaced by spherical interpolation, the data were resampled to 
64 Hz (to reduce the computational demand for the envelope 
reconstruction) and cut into 30-s epochs (matching the presentation 
of conditions in the experiment). Pre-processed EEG data were further 
processed using the mTRF toolbox (Crosse et al., 2016a).

2.5 Audio pre-processing and speech 
envelope reconstruction

A broadband audio envelope was extracted as follows: Each audio 
track was z-normalized and bandpass filtered into 128 

logarithmically-spaced frequency bands between 100 and 6,500 Hz, 
using a gamma tone filter bank (Herzke and Hohmann, 2007; Hohmann, 
2002). The 100–6,500 Hz range was chosen based on previous research 
suggesting a high temporal coherence between visual features and 
speech envelope within this frequency range (Chandrasekaran et al., 
2009; Crosse et al., 2015). Hilbert transformation was used to compute 
the signal envelope within each of 128 frequency bands. The broadband 
envelope was then obtained by averaging the absolute Hilbert values 
across all bands. The broadband envelope was low-pass filtered at 30 Hz 
using a 3rd-order Butterworth filter and subsequently down-sampled to 
64 Hz for further processing. The mTRF toolbox (Crosse et al., 2016a), 
was used to reconstruct the broadband envelope utilizing the presented 
speech signals and the EEG data. This approach is based on multivariate 
linear regression to obtain a linear mapping between the EEG sensor 
data and the broadband speech envelope. The determination of the ridge 
parameter λ was achieved through an optimization process involving a 
search grid and a leave-one-out cross-validation procedure to minimize 
the mean-squared error associated with the regression. The range of 
values within the search grid encompassed magnitudes such as 10−2, 
10−1,…, 104, 5 × 104, 105, …, 109. To ensure the generalizability of the 
relationship between speech input and neural response, we employed a 
leave-one-trial-out cross-validation strategy on subject level. For each 
trial, the speech envelope was reconstructed using the mean regression 
weights derived from all other trials for one subject within the same 
experimental condition and at the same temporal lag, excluding only the 
trial being reconstructed. This approach ensured that the reconstruction 
was based solely on independent data, preventing circularity and 
overfitting. The reliability of the reconstruction was quantified by 
computing Pearson’s correlation coefficient between the reconstructed 

FIGURE 1

Experimental set-up including data logging. Using TASCAR VE, 18 participants were presented audio, visual or congruent combined audio-visual 
scenes comprising one out of six speakers at a time telling unscripted stories. Listening difficulty was manipulated by comparing speech with and 
without babble noise. Data logging was achieved wirelessly via Bluetooth and Wi-Fi. Written informed consent was obtained from all individuals for the 
publication of any potentially identifiable images or data included in this article.
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and original speech envelopes. For statistical treatment, the correlation 
coefficients were subjected to Fisher’s z-transformation to achieve 
normality and were subsequently averaged across trials. For an initial 
exploration of the temporal dynamics of speech envelope tracking, 
individual lag models, characterized by 24 regressors corresponding to 
each EEG channel, were computed for every trial across 33 discrete time 
lags spanning from stimulus presentation to EEG signal acquisition, 
covering a temporal range of 0 to 500 ms. This analysis yielded a time 
course, from which the time lag range of interest was discerned 
(200–325 ms). For further analyses of audio-visual enhancements, 
multi-lag models containing 24 x N(lags) regressors were computed for 
each of these time lag ranges and all trials (Puschmann et al., 2017, 
2019). For further statistical evaluation, r values were normalized using 
MATLAB’s atanh-function (rz).

2.6 Exploratory analyses

2.6.1 Extraction of acoustic features
To analyze oscillatory components in the audio data, the 

frequency spectrum was divided into four bands: envelope-range 
(0.3–30 Hz), low-range (30–300 Hz), mid-range (300–1,000 Hz), and 
high-range (1,000–4,500 Hz). This division allowed for a detailed 
examination of low-frequency elements associated with prosody and 
high-frequency components characteristic of speech. MATLAB and 
the FieldTrip toolbox were employed to implement the multitaper 
method (mtmfft) for frequency-domain analysis, well-suited for the 
relatively short (30-s) audio segments in this study. Each audio 
segment was transformed into a power spectrum under specific 
configurations. Frequency smoothing was set at 0.5 Hz (cfg_
tapsmofrq = 0.5), balancing resolution and noise reduction across 
frequency bands. The analysis was limited to a frequency range of 0.3 
to 4,500 Hz (cfg.foilim) to exclude non-speech-relevant frequencies. 
To isolate oscillatory components in the data a division approach was 
employed. The original power spectrum was normalized by dividing 
it by the fractal component, reducing the influence of non-oscillatory 
noise (cfg.operation = ‘x2/x1’). For each speaker, periodic power within 
each frequency band was summed and normalized by the segment 
duration, resulting in an average periodic power per band, which was 
stored for further analysis, respectively, FreqRsum<30 (envelope-
range), FreqRsum<300 (low-range), FreqRsum<1 k (mid-range), and 
FreqRsum<4.5 k (high-range), indicating the amount of periodic 
proportions for each speaker. Additionally, a set of 16 acoustic features 
was extracted from each 30-s audio segment to capture essential 
elements of vocal dynamics and quality with Praat (Boersma and 
Weenink, 2024) using the in-build voice report metrics. These features 
included Pitch Metrics (meanPitch, medianPitch, sdPitch, minPitch, 
maxPitch), Jitter Metrics (jitter_loc, jitter_loc_abs, jitter_rap, jitter_
ppq5), Shimmer Metrics (shimmer_loc, shimmer_loc_dB, shimmer_
apq3, shimmer_apq5, shimmer_apq11), Noise-to-Harmonic Ratio 
(NHR) (mean_nhr) and Intensity (min_intensity). For each speaker, 
each feature was averaged across segments to reduce inter-segment 
variability, providing a robust profile for inter-speaker comparison.

2.6.2 Extraction of visual features
To consider the multimodal nature of our stimuli, two visual 

features were extracted from each video segment using a custom 

Python-based image processing script. The script specifically 
targeted Lip Openness (representing articulatory movements 
associated with speech) and Lip Brightness (capturing the visual 
clarity and lighting conditions of each video segment). Using 
OpenCV, the Python script processed video data to compute 
average values for each visual feature over the segment duration.

2.6.3 Feature processing
After feature extraction, including frequency-based, acoustic, and 

visual data, features were normalized from 0 to 1 using MATLAB’s 
normalize function, facilitating comparability across features with 
different scales. To refine the feature set and to avoid multicollinearity, 
features that were correlated above an r-value of 0.8 were removed, 
reducing the number of features from 22 to 10. Each of the remaining 
feature’s correlations with the average condition values obtained prior 
(see section 2.5) was assessed.

3 Results

3.1 Neural speech tracking across 
conditions

The AV condition exhibits the highest correlation in the 
presence of noise, peaking around 250 ms, whereas the ML and 
A conditions yield lower, thus comparable correlations. The V 
condition correlates lowest, but in most time lags above the 
chance level. The lower panels display topographic maps showing 
the decoder weight distribution of neural responses across the 
scalp for each condition in both no-noise and noise contexts. 
Each map represents the condition specific decoder weights, with 
color gradients indicating the strength and direction of the 
weighting. In the noise condition, AV and A show distinct 
patterns in frontal and temporal regions, suggesting enhanced 
neural tracking when both audio and visual cues are present. In 
the no-noise condition, the spatial response patterns are more 
evenly distributed, with AV and A conditions still demonstrating 
more pronounced activations than V or ML.

Figure 2 depicts the speech envelope reconstruction accuracy rz 
for each listening condition as a function of the relative time lag 
between auditory input and EEG response. The time lag range of 
interest (i.e., 200–325 ms; indicated in grey) was defined based on the 
group-level peaks of envelope reconstruction accuracy in all 
conditions. To establish a data-driven chance level, we performed a 
permutation test across all conditions by randomly shuffling the trial 
labels 1,000 times. This approach provides a stable estimate of the null 
distribution while ensuring comparability across conditions. Since the 
classification framework remains identical for all conditions, we opted 
for a single permutation-derived chance level rather than condition-
specific estimates.

To investigate expected differences in rz between conditions, 
we performed a 2×4 repeated measures ANOVA with rz as the 
dependent variable and two within-subject factors: background 
noise (two levels: noise, no-noise) and audio-visual effect (four 
levels: congruent audio-visual, visual-only, audio-only and 
masked-lips). To ensure that our data met the assumptions for 
parametric statistical tests, we conducted normality tests for each 
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condition using the Kolmogorov–Smirnov. The results revealed 
that the assumption of normal distribution was not violated 
(p > 0.05 for all conditions). Greenhouse–Geisser correction was 
applied when Mauchly’s test indicated a violation of sphericity. 
ANOVA results indicated a significant main effect for audio-
visual effect (F1.72,29.3 = 16.95, p = < 0.001, η2 = 0.36), and a 
significant interaction effect for background noise x audio-visual 
effect (F3,51 = 3.2, p = 0.03, η2 = 0.03) but no significant main 
effect for background noise (F1,17 = 0.06, p = 0.8, η2 = 0.003).

Planned post hoc paired t-tests revealed significant differences 
between AV and A in noise (t (17) = 3.91, p = 0.001, d = 0.87) and AV 
and ML in noise (t (17) = 3.71, p = 0.002, d = 0.92), with AV being more 
pronounced then A or ML, but not between A and ML in noise (t 
(17) = −0.37, p = 0.72, d = 0.09). Further, for the no-noise conditions, 
no significant differences between AV and A (t (17) = 0.38, p = 0.071, 
d = 0.09), AV and ML (t (17) = −1.01, p = 0.33, d = −0.24), and A and 
ML (t (17) = −1.11, p = 0.28, d = −0.26). Additionally, AV in noise was 
significantly higher than AV no-noise (t (17) = 2.99, p = 0.008, d = 0.7). 
p-values were corrected for multiple comparisons over seven tests 
using Holm-Bonferroni (Holm, 1979). Figure 3 displays boxplots of 
the obtained contrasts.

To confirm that possible differences in pause durations between 
speakers and conditions did not systematically influence our results, 
we conducted a Bayesian repeated-measures ANOVA (default prior) 
with background (noise/no-noise) and condition (AV, A, V, ML) as 
factors. The analysis revealed no substantial interaction effect 
(BF₁₀ = 0.105, error = 2.89%), indicating that pause durations were 
comparable across conditions and unlikely to confound the 
decoding results.

3.2 Exploratory results

3.2.1 Cortical speech tracking for conditions AV, a 
and ML for each speaker

Unlike in the previous section, conditions were not separated for 
noise and no-noise conditions due to the limited number of trials for 
each individual speaker. Therefore, all analyses in this section were 
conducted across both noise and no-noise conditions combined. 
Pictures of all speakers as well as their individual neural time courses 
averaged over conditions AV, A, and ML are depicted in Figure 4 along 
with the respective time course averaged across speakers. Time 
courses show similar patterns across speakers over later time lags 
(234–296 ms) but are more diverging in earlier time lags (140–187 ms).

3.2.2 Individual speaker’s auditory and visual 
features

Highly intercorrelated features (correlated above an r-value of 0.8; 
see section 2.6.3) were removed from the initial set of features 
(medianPitch, sdPitch, jitter_loc, jitter_rap, jitter_ppq5, all shimmer 
metrics, NHR and min_Intensity), resulting in 10 features for further 
investigation (cf. Figure 5).

Summed power within predefined frequency bands (freqRsum<30, 
freqRsum<300, freqRsum<1 k, freqRsum<4.5 k) demonstrated variability 
across speakers. Notably, speaker2 showed the highest summed power in 
the lower frequencies, speaker4  in the low-range, speaker5  in the 
mid-range and speaker6  in the high-range, respectively. MaxPitch is 
highest for speaker1, whereas speaker3 and speaker5 share lowest 
minPitch. MeanPitch is comparably high for speakers 2, 4, and 6. 
JitterLocAbs (reflecing the absolute average cycle-to-cycle variation in 

FIGURE 2

Temporal dynamics of cortical speech tracking across different audio-visual conditions in noise and no-noise environments and decoder weight 
topographies. In the upper panels, line plots display the time-lagged correlation (R) between the neural response and the speech envelope for four 
conditions: audio-visual (AV) in blue, audio-only (A) in green, visual-only (V) in red, and masked-lips in orange, in both noise (right) and no-noise (left) 
conditions. The shaded areas around each line indicate the standard error of the mean (SEM) across participants. The chance level (ChL), computed via 
random permutation between EEG and audio data, is depicted in black. The x-axis represents the time lag (in ms) relative to the trial onset, with 
positive values indicating the delayed neural response, while the y-axis shows the correlation coefficient (r). The lower panels display topographic 
maps of decoder weights averaged across participants, corresponding to the highlighted grey time lag range in the upper plots.
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FIGURE 3

Boxplots of neural speech tracking correlations (rz) across different conditions in noise and no-noise environments. The left panel represents no-noise 
conditions, while the right panel represents noise conditions. Each boxplot displays the distribution of correlation values across participants for four 
conditions: audio-visual (AV) in blue, audio-only (A) in green, visual-only (V) in red, and masked-lips (ML) in orange. The central line in each box 
represents the median, the box edges represent the interquartile range (IQR), and the whiskers extend to 1.5 times the IQR. Outliers are shown as 
individual circles. Asterisks (*) indicate statistically significant differences between conditions.

FIGURE 4

Cortical speech tracking for AV, A and ML conditions for all six speakers. The top row illustrates the time-lagged correlations (rz) between audio 
envelopes and neural responses for each of the six speakers (speaker1, speaker3, speaker4, speaker2, speaker5, speaker6). Conditions include audio-
visual (AV) on the left, auditory-only (A) in the centre, and masked-lips (ML) on the right. Individual speaker data are represented as colored solid lines, 
with colors corresponding to each speaker (speaker1: purple, speaker3: red, speaker4: yellow-green, speaker2: brown, speaker5: teal, speaker6: 
yellow). The black dashed line represents the average envelope across speakers. Grey areas represent an early (140–187 ms) and a later (234–296 ms) 
time lag range of interest. The bottom row displays photographs of each speaker, bordered in colors corresponding to their respective line plots in the 
top row. Conditions are not separated for noise and no-noise conditions due to the limited number of trials for each individual speaker. Written 
informed consent was obtained from the individuals for the publication of any potentially identifiable images or data included in this article.
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fundamental frequency (F₀) in seconds as a measure of voice stability) is 
highest for speaker3. Visual features derived from lip brightness 
(avgLipBright) and openness (avgLipOpen) show further notable 
differences. All speakers, except for speaker1, exhibited higher values for 
these visual features. Radar plot representations further illustrate the 
unique multimodal profiles, capturing variability across frequency sums, 
pitch, jitter measures, and visual parameters (cf. Figure 5). Following the 
individual speaker’s time-lagged correlations (rz) between audio envelopes 
and neural responses, the bar plots in Figure 5 display respective averages 
across these time lags for conditions AV and A and the audio-visual 
benefit (AV-A; Δ). In early time lags (140–187 ms) four out of six speakers 
show the expected pattern, while in later time lags (234–296 ms) five out 
of six speakers show higher correlations in AV compared to A conditions.

3.2.3 Influence of likeability ratings on individual 
speaker’s cortical speech tracking

On average, participants rated all six speakers comparably high in 
likeability on a scale from 0–5 (Mean: 3.79 ± 0.02, range: 3.47–3.94).

To investigate the relationship between likeability ratings and neural 
speech tracking, we fitted a Generalized Linear Mixed Model (GLMM) 
with speech tracking correlations as the dependent variable and 
likeability, time lags (early, late), and their interaction as fixed effects. 
Subject and speaker were included as random effects to account for 
repeated measures. The model included 204 observations, with 4 fixed 

effects coefficients and 119 random effects coefficients. The model was 
fitted using the Laplace approximation, assuming a normal distribution 
and an identity link function. The results showed a significant interaction 
between likeability and time lags (β = 0.003, t(200) = 2.13, p = 0.034), 
indicating that the relationship between likeability and speech tracking 
differed across time lags. The main effect of likeability was not significant 
(β = −0.002, t(200) = − 1.43, p = 0.156), nor was the main effect of time 
lags (β = −0.002, t(200) = − 0.36, p = 0.72). The intercept was significant 
(β = 0.0233, t(200) = 4.13, p < 0.001), suggesting a positive baseline 
correlation between speech tracking and the presented stimuli.

The variance in speech tracking was accounted for by random 
effects at the Subject level (σ = 0.01) and at the Speaker level nested 
within Subject (σ = 0.003), indicating individual differences in speech 
tracking ability and speaker variability (see Figure 6).

4 Discussion

This study investigated whether young, normal-hearing individuals 
benefit from congruent facial cues of speakers, when listening to 
unscripted, natural speech in both quiet and noisy environments. Our 
results demonstrate that congruent audio-visual input enhances neural 
speech tracking in noise, with significantly higher correlations (rz) in 
the audio-visual condition compared to audio-only and masked-lips 

FIGURE 5

Illustration of individual speaker’s auditory and visual features. (Top Row): The bar plots illustrate the mean correlations (rz) across two different time 
lags (left: 140–187 ms; right: 234–296 ms) for audiovisual (AV), audio-only (A), and audiovisual benefit (AV-A; Δ) conditions for each speaker (speaker1, 
speaker3, speaker4, speaker2, speaker5, speaker6). Error bars represent the standard error of the mean. (Middle Row): Radar plots depict acoustic 
feature distributions per speaker, including frequency range sums (freqRsum <30 Hz, <300 Hz, <1 k Hz, <4.5 k Hz), pitch features (mean, min, max), 
jitter (jitterLocAbs), and lip-based brightness and openness averages (avgLipBright, avgLipOpen). Each radar plot highlights inter-speaker variability 
across the selected features. (Bottom Row): Portraits of the six speakers visually align with their corresponding radar plots and bar plots, facilitating a 
direct comparison of individual acoustic feature profiles. Written informed consent was obtained from the individuals for the publication of any 
potentially identifiable images or data included in this article.
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conditions. These findings support the well-established notion that 
visual input facilitates speech perception, particularly in challenging 
listening environments (Peelle and Sommers, 2015; Sumby and Pollack, 
2005), even in participants with (self-reported) normal hearing abilities.

4.1 Audio-visual benefit for neural speech 
tracking with unscripted speech stimuli

Our findings reveal a clear audio-visual benefit for speech envelope 
tracking, particularly in noisy environments. This aligns with previous 
studies showing that visual cues enhance auditory processing when the 
speech signal is degraded (Peelle and Sommers, 2015; Zion Golumbic 
et  al., 2013). In our results, the AV condition consistently induced 
higher correlation values compared to both the audio-only and masked-
lips conditions in noise. Importantly, AV tracking peaked at around 
250 ms, representing time lags consistent with cortical auditory–visual 
integration processes. This supports the idea that visible lip movements 
help align auditory cortical oscillations with the speech envelope (Arnal 
and Giraud, 2012; Schroeder et  al., 2008). The lack of significant 
differences between AV and A in the no-noise condition suggests that 
visual cues primarily become beneficial when the auditory input is 
compromised, as noted in earlier work (Sumby and Pollack, 2005). In 
contrast, the absence of a significant difference between ML and A in 
noise highlights the specific role of visible lip movements in driving the 
AV benefit. This finding underscores that visual articulation cues are 
central to the AV advantage in neural speech tracking models.

Interestingly, in the no-noise condition, the masked-lips condition 
showed, on a descriptive level, even higher neural tracking than the 
audio-visual condition. Several studies (Rahne et al., 2021; Sönnichsen 
et al., 2022) conclude that face masks reduce speech perception and 
increase listening effort in different noise signals even in normal 
hearing participants. A relevant contribution to this effect, 

masked-induced auditory deterioration, was not included in our 
study. We speculate that listeners may have adapted to auditory-only 
communication during the COVID-19 pandemic, when face masks 
frequently obscured visual cues like lip movements and caused 
auditory degradation. Research suggests that prolonged exposure to 
masked faces can lead to increased reliance on auditory processing 
and reduced dependence on visual input (Saunders et al., 2021). In the 
no-noise condition, where the auditory signal was clear and unaltered, 
participants may have defaulted to auditory-only strategies, ignoring 
the incongruent or incomplete visual cues in the ML condition. This 
could have reduced cognitive load, allowing for more efficient speech 
envelope tracking compared to AV, where lip movements might 
introduce redundant or misaligned visual information (Yi et al., 2021).

Our study’s focus on unscripted, naturally told stories adds 
ecological validity by resembling real-world listening conditions, 
where continuous speech provides contextual richness. This approach 
more effectively enhances neural speech tracking compared to isolated 
words or sentences, as previously demonstrated (Gross et al., 2013). 
By contrast, studies relying on highly controlled stimuli may miss the 
natural dynamics of conversation. While our findings broadly align 
with prior research, they diverge from a study reporting no AV benefit 
in single-speaker contexts (O’Sullivan et al., 2013). This discrepancy 
could arise from differences in stimulus duration or the specific 
envelope tracking methods used.

4.2 Speaker-specific differences in neural 
speech tracking

We observed considerable variability in neural speech tracking 
across speakers, especially in the A and AV conditions. For example, 
speaker2 exhibited the highest overall tracking correlations in both 
conditions but had the smallest audio-visual benefit. In contrast, 

FIGURE 6

Distribution of speech tracking correlations across likeability ratings and time lags. Boxplots showing the distribution of speech tracking correlations (rz) 
across different likeability ratings for two distinct time lag ranges. The left panel represents correlations within the early time lags (140–187 ms), while 
the right panel depicts correlations within the later time lags (234–296 ms). The blue boxes represent the interquartile range (IQR), with the central red 
line indicating the median correlation value for each likeability rating. The whiskers extend to 1.5 times the IQR, and outliers beyond this range are 
marked as red crosses.
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speakers like speaker4 and speaker5 demonstrated pronounced AV 
benefits, suggesting that individual speaker characteristics influence 
how effectively visual and auditory inputs integrate. Specific acoustic 
traits, such as speaker3’s stronger mid-range spectral power or 
speaker6’s higher-range power, may influence their ability to engage 
neural tracking. Pitch variability also may play a role: speaker6’s 
higher mean pitch and speaker3’s wider pitch range likely contributed 
to distinct neural representations that aid speaker differentiation 
(Bidelman and Howell, 2016). Brodbeck and Simon (2022) 
demonstrated that voice pitch variability significantly modulates 
cortical neural tracking, particularly under conditions requiring 
selective attention to distinct speakers. These results highlight that 
speaker-specific traits—including frequency content and articulation 
variability—shape the dynamics of neural speech tracking.

Crucially, our results indicate that likeability ratings were not 
uniform across speakers but instead modulated neural speech 
tracking, particularly in the later time lags (234–296 ms). This suggests 
that subjective evaluations of a speaker’s voice and articulation may 
influence how effectively their speech is processed. Prior research has 
linked speaker likeability to perceptual and cognitive factors such as 
voice clarity, prosody, and familiarity (Zuckerman and Driver, 1989). 
The observed speaker-specific differences emphasize the importance 
of accounting for individual multimodal profiles when studying 
neural speech tracking. This variability is particularly relevant for real-
world scenarios where listeners engage with speakers of diverse 
expressiveness and acoustic profiles. Future studies should further 
examine how subjective factors such as speaker preference and 
familiarity dynamically shape audiovisual speech integration.

4.3 Speech features, neural speech tracking 
and likeability ratings

On a descriptive level, low-frequency spectral power 
(freqRsum<30) was highest in speakers who also showed greater 
audiovisual benefit, aligning with previous research emphasizing the 
importance of low-frequency energy for neural speech tracking (Ding 
and Simon, 2014; Luo and Poeppel, 2007). Jitter measures, such as 
jitter_loc_abs, varied across speakers, with some exhibiting higher 
levels of vocal irregularity than others. While we did not directly assess 
the perceptual impact of these variations, previous research suggests 
that increased jitter may enhance speech salience in noisy conditions 
by introducing subtle acoustic cues that aid in distinguishing the 
speech signal (Eadie and Doyle, 2005; Oganian et al., 2023). In our 
data, speakers with greater jitter values did not consistently show 
higher audiovisual benefit, but given the known role of vocal 
perturbations like jitter and shimmer in modulating speech clarity 
(Smiljanic and Gilbert, 2017), it is possible that these micro-level 
irregularities interact with other acoustic and visual features in 
shaping neural speech tracking responses. Future work could explore 
whether specific jitter characteristics contribute to enhanced auditory–
visual integration under degraded listening conditions.

In the visual domain, speakers differed in articulatory 
expressiveness, as measured by lip openness and brightness. Speakers 
with more pronounced articulation also exhibited higher audiovisual 
benefit. This is in line with previous work showing that clear visual 
articulation can aid in integrating auditory and visual speech cues. 
Overall, these observations highlight individual differences in both 

acoustic and visual speech features, suggesting that audiovisual benefit 
may emerge from a combination of speaker-specific characteristics 
and perceptual integration processes (Campbell, 2007; Munhall 
et al., 2004).

Beyond acoustic and articulatory properties, our GLMM analysis 
further revealed that likeability may influence neural speech 
tracking, but this effect is time-dependent. While there was no 
significant main effect of likeability, we  observed a significant 
likeability × time. It is indicated that likeability-related differences in 
speech tracking emerge at later latencies (234–296 ms). This suggests 
that while early speech tracking might primarily reflect basic 
auditory encoding processes (e.g., envelope tracking in auditory 
cortex; Ding and Simon, 2014), later time lags may be more sensitive 
to higher-order social or cognitive influences (e.g., speaker 
familiarity, attention allocation, or affective salience). One possible 
explanation for the delayed effect of likeability on neural tracking is 
that social and affective processing mechanisms require additional 
integration time. Previous studies suggest that listener expectations 
and speaker attributes can modulate cortical speech tracking, 
particularly when top-down mechanisms (e.g., attention, predictive 
coding) come into play (Liao et al., 2023; Vanthornhout et al., 2018). 
If likeability reflects a socially relevant signal, it could shape attention 
allocation and thus enhance neural tracking at later processing 
stages. Alternatively, the observed effect might reflect differences in 
speech comprehension, as previous work has shown that more 
engaging or socially preferred voices tend to facilitate speech 
perception (Schmälzle et  al., 2015). Crucially, these findings 
underscore that neural speech tracking is not purely an acoustic-
driven process but is modulated by social factors. While classic 
models of speech tracking emphasize the role of low-frequency 
auditory information, our results suggest that social and cognitive 
factors—such as likeability—may influence speech tracking in later, 
more integrative processing stages. Future research should explore 
whether these effects generalize to real-world conversational settings, 
where speaker identity, emotional prosody, and interaction dynamics 
further shape neural tracking responses.

4.4 Implications for multimodal speech 
processing

Our findings have significant implications for understanding 
how the brain integrates auditory and visual cues during natural, 
unscripted speech. In addition to studies using controlled or scripted 
stimuli, we show that neural speech tracking is also robust in more 
ecologically valid listening conditions. The enhanced tracking 
observed in noisy AV conditions highlights the critical role of visible 
lip movements in compensating for degraded auditory signals, 
emphasizing the importance of cross-modal integration in real-
world communication. From an application perspective, these 
results can inform technologies like hearing aids and brain-
computer interfaces. Incorporating speaker-specific acoustic and 
visual profiles could improve auditory attention decoding models, 
optimizing neural tracking performance in naturalistic settings 
(Geirnaert et al., 2021). Understanding how individual speaker traits 
influence audiovisual integration—and attention—is crucial for 
developing personalized solutions to enhance real-world 
speech perception.
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5 Limitations

Several limitations should be noted. First, we included only a the 
relatively small number of speakers (N = 6), which limits the 
informative value of our exploratory analyses. While our 
investigations provide valuable insights, larger datasets including 
more speaker variability are needed to further explore the role of 
specific acoustic and visual features in audiovisual benefit. Second, 
we were not able to fully investigate differences across time lags and 
conditions due to a limited amount of data. In the main analyses, 
we  focused on one distinct time lag range because no consistent 
effects were observed across multiple lags and conditions. Similarly, 
at the speaker level, differences between silent and noise conditions 
could not be explored due to trial constraints. This limits our ability 
to determine how speaker traits interact with background noise in 
shaping neural speech tracking. Future studies should consider 
expanding the dataset to allow for a more fine-grained analysis of 
temporal and condition-dependent effects, as well as incorporating 
subjective biases and emotional expressiveness as additional  
covariates.

6 Summary

In summary, this study highlights the interplay between speaker-
specific acoustic and visual attributes and their effect on audio-visual 
integration and neural speech tracking. These insights have 
implications for personalized auditory attention models and assistive 
technologies, emphasizing the need to account for individual 
variability in natural, unscripted multi-speaker environments. Future 
research should extend these findings by exploring multimodal 
integration in diverse populations, including those with hearing 
impairments, to further enhance predictive models of 
auditory attention.
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