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Introduction: Sudden road conditions can trigger drivers’ psychological stress,

increasing the risk of traffic accidents. Music, as an emotion regulation tool,

effectively alleviates stress and enhances psychological health. However, the

effects of different genres of music on drivers’ stress remain understudied.

Methods: To address this, the present study collected 120 EEG recordings from

60 drivers in a standardized simulated driving environment and developed a

classification model based on EEG signals to recognize emotions. By integrating

time-frequency domain features (mean, variance, skewness, kurtosis, and power

spectral density) with classification algorithms, the model accurately identified

slight, moderate, and severe stress states in drivers, achieving an accuracy of

90%.

Results: Furthermore, the study evaluated the intervention effects of four

types of music (joyful, sorrowful, exhilarating, and gentle) on stress using EEG

signals and subjective stress ratings. The results showed that gentle music

had the best stress-relieving effect in both slight and severe stress states,

reducing stress by 41.67% and 45%, respectively, whereas joyful music was

most effective in relieving moderate stress, reducing moderate stress by 50%. In

contrast, exhilarating and sorrowful music had weaker effects. Additionally, the

asymmetry of frontal pole EEG signals was found to be significantly negatively

correlated with stress levels.

Discussion: This finding further supports the accuracy of the emotion

recognition model and the potential effectiveness of the music intervention

strategy. The study demonstrates that personalized music intervention strategies

can help alleviate drivers’ stress, thereby improving psychological health,

enhancing driving safety, and increasing driving comfort.

KEYWORDS

music intervention, emotion, brain, driving stress, driving behavior, driving safety

1 Introduction

The occurrence of traffic accidents has been shown to correlate with drivers’ emotional
states, particularly in complex or unexpected road conditions, where driver stress is
recognized as a major risk factor for accidents (Ringhand and Vollrath, 2019; Wang et al.,
2022). Research indicates that emotional stress not only impairs drivers’ cognitive and
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reaction abilities but also leads to decision-making errors and
abnormal driving behaviors, significantly increasing the risk of
traffic accidents (Rastgoo et al., 2019; Guo et al., 2021; Retallack and
Ostendorf, 2019). Consequently, developing effective emotional
regulation strategies to alleviate driver stress has become a critical
approach to enhancing traffic safety.

Emotional intervention methods primarily focus on
psychological regulation and environmental optimization
(Hawkins et al., 2023). Music, as a widely recognized emotional
regulation tool, has been applied in various contexts to improve
individuals’ emotional states (Cook et al., 2019), particularly
demonstrating notable effects in alleviating negative emotions,
such as stress and anxiety (Hu et al., 2020). In clinical psychology,
music therapy has been widely used to treat emotional disorders
such as depression, anxiety, and post-traumatic stress disorder
(PTSD) (Tang et al., 2020; Lu et al., 2021; Gooding and Langston,
2019). Ueda et al. (2013) found through a meta-analysis that music
therapy has a significant effect on alleviating anxiety symptoms.
Carr et al. (2012) assessed the feasibility and effectiveness of
group music therapy for individuals with PTSD who did not
respond sufficiently to cognitive behavioral therapy (CBT). The
results indicated that group music therapy had a statistically
significant therapeutic effect in alleviating PTSD symptoms
and co-occurring depression, and patients provided positive
feedback regarding their therapeutic experience. In the treatment
of sleep disorders, music therapy has demonstrated potential
benefits. Wang et al. (2024) found that an intervention combining
a melatonin receptor (MT2) agonist and music therapy had
significant therapeutic effects on nurses with circadian rhythm
sleep disorders. It improved sleep quality, alleviated anxiety and
depression, and continues to hold promising prospects for clinical
application. Although existing studies have confirmed that music
can effectively regulate emotions, research on the specific role of
music in alleviating drivers’ stress, particularly studies combining
music with electroencephalographic (EEG) signal analysis, remains
relatively scarce.

Electroencephalographic (EEG) signals, as important
physiological indicators of brain activity, are widely utilized in
emotion monitoring and recognition (Rahman et al., 2021). Due to
its high temporal resolution, EEG can capture real-time emotional
fluctuations, making it a valuable tool for studying emotional
states (Li et al., 2022). In recent years, with advancements in
emotion recognition technology, EEG has garnered attention
for its potential applications in traffic safety (Halim and Rehan,
2020). Schaaff and Schultz (2009) extracted features, including
the power spectrum and peak frequency of α waves from EEG
signals, and employed a support vector machine (SVM) classifier
to categorize emotions into happy, neutral, or unhappy categories,
achieving an identification accuracy of 66.7%. Wu et al. (2017)
introduced an emotion recognition method using only two frontal
pole EEG channels, Fp1 and Fp2, leveraging the spatial, frequency,
and asymmetry characteristics of EEG signals. The method was
validated experimentally with a Gradient Boosting Decision Tree
(GBDT) classifier, achieving a maximum accuracy of 76.34% and
an average accuracy of 75.18% on the test dataset. Jackson et al.
(2003) suggested that asymmetry in the frontal pole region may
serve as a significant predictor of emotional regulation, with
α wave activation in the left frontal pole region linked to the
ability to suppress negative emotions. However, existing research

has predominantly focused on the optimization of algorithms
and the improvement of emotion recognition models, while
studies integrating EEG signals with different types of music
remain limited. This limitation is particularly evident in driving
environments, where comprehensive investigations into the impact
of music on driver emotions are still lacking.

To address these gaps, this study developed an EEG-based
model to classify stress-related emotions and systematically
evaluated the effects of four distinct types of music (joyful,
sorrowful, exhilarating, and gentle) on drivers experiencing
different levels of stress (slight, moderate, and severe). The goal
of this study is to explore the application of music intervention
in improving driving safety. It seeks to provide theoretical support
for personalized music intervention strategies and offer data-driven
insights for traffic safety management, aiming to reduce accidents
and enhance driver comfort.

The main contributions of this work can be summarized as
follows:

(1) This study integrates electroencephalographic (EEG)
signals with music intervention, offering a novel
perspective on traffic safety management by combining
physiological data and personalized emotional regulation.
It provides a foundation for data-driven decisions in
tailoring interventions for driver safety. In the context of
intelligent transportation systems, interventions targeting
the driver’s emotional state can enhance traffic safety and
reduce accident risks associated with emotional instability.

(2) This study classifies the driver’s stress into slight, moderate,
and severe levels using EEG indicators and evaluates the
effects of four distinct types of music (joyful, sorrowful,
exhilarating, and gentle) on these states. This approach
enables more precise and personalized interventions,
providing theoretical support for future strategies tailored
to the driver’s emotional state.

(3) This study evaluated the classification performance
of six models across different brain regions. The
results show that the frontal pole achieved the best
classification performance, with the Genetic Algorithm
Optimized Backpropagation Neural Network (GA-
BPNN) model outperforming both the traditional
Backpropagation Neural Network model and other
commonly used machine learning models in terms of
emotional classification accuracy.

2 Materials and methods

2.1 Screening of materials that stimulate
stress and emotions

To ensure reliable elicitation of targeted emotions and
consistency in experimental data, it is crucial to use pre-validated
emotional stimuli, given the subjective nature of emotional arousal.
This study employs a multi-channel emotion induction approach
by combining video clips with visual and auditory stimuli.
This combination not only enhances emotional arousal but also

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1560920
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1560920 March 14, 2025 Time: 19:15 # 3

Li et al. 10.3389/fnhum.2025.1560920

extends the duration of the emotional experience. The dynamic
characteristics of video clips, which simulate real-life emotional
events, enhance the authenticity of emotional experiences, leading
to more intense subjective responses and pronounced physiological
changes. Unlike previous studies that relied on pre-established
emotion stimulus libraries, this study aims to construct a
customized emotion-induction material library. The materials will
undergo a rigorous screening process to ensure compliance with
the specific requirements of the experimental design.

Emotional stimulus materials will undergo an initial screening
using online platforms. The selection process will take into account
factors such as participants’ cultural background, age range,
educational level, and the specific objectives of the study.

Materials will be chosen based on the following criteria:

(1) The selected videos should be of short duration
to minimize participant fatigue, as this could
impair emotional responses. Prolonged exposure
may cause exhaustion, reducing engagement and
receptivity to stimuli.

(2) The selected videos must be clear and easily
comprehensible to ensure effective emotional induction
within a short period. Ambiguity in the stimuli may
hinder the efficiency of emotional responses.

(3) The selected videos should ensure that emotion induction
is singular and precise. For each stimulus material, the
induced emotion must be clearly defined and free from
contamination by non-targeted emotions, to minimize
experimental errors.

Based on the above criteria, 10 sets of videos were selected from
online platforms for further analysis by the experimenters to assess
the effectiveness of the stimuli and conduct additional screening.

This study will use a five-point Likert scale to evaluate
participants’ subjective emotional responses, a widely adopted
method for assessing emotional reactions to various emotion
regulation strategies (McCullen et al., 2023). Grounded in
established psychological principles, the Likert scale quantifies
individuals’ attitudes or emotions toward specific stimuli, offering
a more objective and reliable method for emotional assessment
(Kusmaryono et al., 2022). Emotional intensity will be measured
using a five-point Likert scale, ranging from Level 1 (calm) to Level
5 (severe stress). The specific scale employed in this study is detailed
in Table 1.

Forty volunteers were recruited for the emotional stimulus
material calibration experiment, and the 10 selected video
clips were numbered for reference. All participants exhibited
normal cognitive function, no history of depression or depressive
tendencies, and the ability to articulate their emotional responses
clearly. The demographic characteristics of participants in the
calibration experiment are summarized in Table 2.

The experiment was conducted in a quiet and comfortable
laboratory environment, where participants were allowed to
withdraw from the study at any time at their own discretion.
During the experiment, participants were asked to watch the
video materials sequentially and complete a five-point Likert scale
evaluation for each video after viewing. After completing the
evaluation, participants were given a 5 min break to stabilize their

TABLE 1 Likert five-point scale.

Description Level of
stress

Calm: completely stress-free, characterized by a highly
relaxed state.

1

Almost no-stress: experiencing occasional slight unease,
but overall maintaining a calm state of mind.

2

Slight stress: mild discomfort, with occasional awareness of
stress, but still manageable.

3

Moderate stress: a noticeable sense of unease and worry,
accompanied by emotional instability that may affect
cognition or behavior.

4

Severe stress: an intense sense of unease and worry,
accompanied by emotional dysregulation that significantly
impairs cognition and behavior.

5

TABLE 2 Information of participants in the emotional stimuli material
calibration experiment.

Mean Standard
deviation

Median

Gender Female 12
male 28

Age 23.68 2.37 24

Years of driving
experience

4.67 2.43 4.00

emotions before proceeding to the next video. The flowchart of
the emotional stimulus material calibration experiment is shown
in Figure 1.

The emotional induction effect of the stress-provoking stimuli
was evaluated based on participants’ ratings on a five-point Likert
scale after viewing the materials. Stress induction was considered
successful if the rating exceeded Level 3 (slight stress). The
success rate and rating results for the stress-provoking stimuli are
summarized in Table 3.

As shown in Table 3, Video 7 elicited the strongest stress
response, achieving a success rate of 87.5% and the highest average
stress score (4.05) among all induced emotions.

Based on the analysis of the Likert scale results, the
video material that most effectively induced stress was
identified and selected.

2.2 Experimental scenario

Unlike typical work or social stressors, driver stress goes beyond
mere emotional reactions to external pressures. It also encompasses
the physiological and psychological burdens drivers endure during
long drives or in complex traffic scenarios. Compared to other
forms of stress—such as workplace or family stress—driver
stress is characterized by high-stakes decision-making, intense
concentration, and its inherently transient and fluctuating nature.

Due to the distinct nature of driver stress, studying its
effects on emotional regulation and cognitive processes presents
significant challenges. Given that this experiment involved driving
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FIGURE 1

Flowchart of the emotional stimuli material calibration experiment.

TABLE 3 Calibration results of the Likert scale.

Video ID Induction success
rate

Mean score

1 57.5% 2.725

2 70% 3.2

3 55% 2.975

4 60% 2.85

5 62.5% 3.05

6 52.5% 2.575

7 87.5% 4.05

8 60% 3.075

9 67.5% 3.225

10 82.5% 3.675

under stress while recording participants’ EEG signals, real-
world driving in such conditions would be both hazardous and
impractical. In this study, a driving simulation experiment was
employed as an alternative to real-world driving under stressful
conditions. The main advantages of driving simulation experiments
include enhanced safety, a highly controllable environment (e.g.,
temperature, lighting, and audio), and reduced costs. Numerous
studies (Reyner and Horne, 1997) have demonstrated the
physiological similarities between driving simulation and real-
world driving. Therefore, a driving simulator was employed in this
study to investigate the recognition of stress-induced emotions in
drivers.

In this study, the Forza Horizon 5 software, developed on the
EA platform, and the PXN-V99 driving simulator were employed to
create the simulated driving environment. The simulator replicates
real-world road traffic conditions experienced by drivers. It consists
of three main components: the vehicle control system, the visual
display system, and the audio system. The vehicle control system
includes a steering wheel, gear lever, accelerator pedal, brake pedal,
and clutch. The visual display system includes an LCD monitor
that provides a first-person driving perspective, while the audio
system delivers surround sound to enhance the realism of the
driving experience.

The experimental scene is shown in Figure 2. The laboratory is
well-ventilated and has good lighting.

The stress-inducing video was presented using E-Prime,
a human-computer interaction platform (MacWhinney et al.,
2001; Richard and Charbonneau, 2009), integrated with the

EEG signal acquisition module to form a synchronized data
collection system. The electrode positions of the EEG cap were
determined according to the international 10-10 system, with the
CPz and End electrodes serving as the reference and ground,
respectively. The sampling frequency was set at 500 Hz, and the
electrode impedance was maintained below 5 k� throughout the
experiment. Music was delivered through headphones connected
via E-Prime.

2.3 Experimental procedure

A total of 60 participants, representing diverse genders
and age ranges, were recruited for the formal experiment.
All participants possessed a valid Chinese driver’s license
and prior driving experience. Of the 60 participants, 34
were male and 26 were female. The experimental procedures
were approved by the Ethics Committee of Chongqing
University of Arts and Sciences (approval no. CQWL202424).
Comprehensive participant information is provided in
Table 4.

To minimize potential interference with EEG signal accuracy,
participants were instructed to abstain from alcohol, caffeine,
nicotine, and other substances for 48 h prior to the experiment and
to ensure adequate sleep. Informed consent was obtained from all
participants prior to the study, detailing the experiment’s objectives
and specific tasks.

At the beginning of the experiment, participants were
instructed to relax for 30 s, during which their EEG signals
were recorded in a calm state. Subsequently, participants were
instructed to watch a stress-inducing video on the driving
simulator, lasting approximately 200 s. After experiencing induced
stress, participants underwent a 30 s marking period, during
which the experiment assistant recorded their stress levels using
the Likert five-point scale. Finally, a 30 s music regulation stage
was conducted to facilitate stress recovery. The 60 participants
were divided into five groups, each consisting of 12 participants.
Among them, 48 participants with a stress level of three
or above were subjected to music regulation using joyful,
sorrowful, exhilarating, and gentle music. The remaining 12
participants, whose stress level reached level two (almost no-
stress), had their EEG signals recorded without further regulation.
During the regulation stage, the stress-inducing video continued
to play. After the regulation was completed, the stress level
was recorded again.

The experimental process is illustrated in Figure 3.
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FIGURE 2

Scene setup and equipment connection diagram.

TABLE 4 Participant information.

Scene Male Female Age Years of driving experience

Expressway 34 26 20–27
(Mean = 23.32, std = 2.30)

1–9
(Mean = 4.98, std = 2.86)

2.4 Data processing and analysis

The process of classifying stress-related EEG signals based
on EEG data is illustrated in Figure 4 and primarily involves
data preprocessing, feature extraction, and model training (Alazrai
et al., 2019). Feature extraction primarily focuses on the time-
domain and frequency-domain characteristics. Finally, the selected
features are processed using a classification algorithm to produce
the classification results.

2.4.1 Data preprocessing
The data exported from the EEG signal acquisition and

analysis software are recorded directly from the scalp and
often contain various types of noise and artifacts, requiring
preprocessing and denoising. EEG artifacts are classified into
two categories: physiological and non-physiological. Physiological
artifacts are EEG signals generated by physiological activities
such as blinking, eye movements, respiration, and muscle activity
(Islam et al., 2016). Non-physiological artifacts primarily arise
from environmental interference, with electrical noise being the
most common source. Common preprocessing methods for EEG
signals include filtering, re-referencing, ICA-based artifact removal,
and segmentation (Pedroni et al., 2019). The preprocessing
workflow for EEG signals used in this study is shown in
Figure 5.

2.4.2 Feature extraction
(1) Time-domain Features: Time-domain features of EEG

signals play a crucial role in the feature extraction module. EEG
signals are time-series signals, and the EEG time-series waveform
contains a wealth of time-domain information. Extracting
time-domain features of EEG signals is common in brain
fatigue detection. Due to their simple calculation and ease of
understanding, they are often used to analyze the state of the brain
(Oh et al., 2014).

1) Mean Value: The mean value of all sampled values in the EEG
signal, reflecting the overall level of the signal.

X =
1
N

N∑
i = 1

xi (1)

2) Variance: The average of the squares of the differences
between all sampled values of the EEG signal and their mean,
reflecting the degree of fluctuation in the signal.

σ2
=

1
n

n∑
i = 1

(xi−µ)2 (2)

3) Skewness: This feature is used to measure the asymmetry
of the statistical data distribution. Skewness is defined
using the third central moment and the second central
moment (variance), with the calculation formula as follows:
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FIGURE 3

Experimental process.

FIGURE 4

Classification algorithm flow based on electroencephalographic (EEG) signals.

FIGURE 5

Electroencephalographic (EEG) signal preprocessing process.
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Skew =
k3

k2
3
2

(3)

k3 =
1
n

n∑
i = 1

(xi−µ)2 (4)

In the formula, k3and k2 I represent the third central moment
and the second central moment, respectively. The skewness
can be positive, negative, or undefined. A positive skewness
indicates a right-skewed distribution, a skewness of 0 indicates a
symmetrical distribution, and a negative skewness indicates a left-
skewed distribution. In general, skewness can be used to test the
normality of the data.

4) Kurtosis: It is used to describe the steepness or flatness of the
distribution of all values, and its definition is as follows

Kurt =
1
n
∑n

i = 1 (xi−µ)4

( 1
n
∑n

i = 1 (xi−µ)4)
2−3 (5)

(2) Frequency-domain Features: These refer to the distribution
of energy of the EEG signal at different frequencies. Changes in
the signal can be obtained from changes in frequency bands, which
is the main advantage of frequency-domain analysis compared to
time-domain analysis.

1) Power Spectral Density (PSD): It represents the signal power
per unit frequency band and is used to describe the distribution
pattern of a signal as it varies with frequency within a certain
region. It is a way to study signals from an energy perspective.
Generally, the Fourier transform is used to convert EEG signals
into frequency-domain signals within a specified frequency band.
Power Spectral Density is the most common frequency-domain
feature of signals.

The Welch algorithm is used to calculate the Power
Spectral Density (PSD).

First, the EEG signal sequence of length N, First, the EEG signal
sequence of length N, {x_i, i= 1, 2,...,N}, is divided into L segments,
each with M data points. The representation of the i_th segment
of data is as follows: is divided into L segments, each with M data
points. The representation of the i_th segment of data is as follows:

xi (n) = x (n+iM−M) , 0 5 n 5 M, 1 5 i 5 L (6)

Then, a window function w(n) Tis applied to each data segment
to obtain the period ogram for each segment:

Ii (ω) =
1
U

∣∣∣∣∣∣
M−1∑
n = 0

xi (n) w (n) e−jωn

∣∣∣∣∣
2

, i = 1, 2, · · · ,M−1 (7)

U =
1
M

M−1∑
n0

ω2(n) (8)

In the formula, U is a normalization factor. Under the
assumption that each period ogram segment is approximately
uncorrelated, the power spectral density can be expressed as
follows:

PSD
(
ejw)

=
1
L

L∑
i = 1

Ii(ω) (9)

Time-domain features can capture the dynamic changes and
fluctuations of the signal, while frequency-domain features reveal

the energy distribution of brain signals across different frequencies.
During stressful emotional states, both the temporal variations and
frequency components of brain signals are affected. The combined
use of time-domain and frequency-domain features allows for
a more comprehensive capture of emotional changes, thereby
improving the accuracy of classification models.

2.4.3 Establishment of a classification model
based on EEG signals

The dataset in this study consists of 60 samples in a calm state
(completely relaxed), 12 samples in an almost no-stress state, and
16 samples each for slight stress, moderate stress, and severe stress,
totaling 120 samples.

Electroencephalographic data were collected using 31 channels:
Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C5, C3,
Cz, C4, C6, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4,
O1, and O2. All channels were categorized into five brain regions
based on their positions: Fp (frontal pole), F (frontal), C (central),
P (parietal), and O (occipital) (Wu et al., 2023).

This study extracted multiple features from five brain regions,
including mean, variance, skewness, kurtosis, and power spectral
density, as time-frequency domain features to serve as inputs
for machine learning models. A comprehensive comparison and
analysis of common machine learning classification methods
and neural network prediction models was performed. The
models included the traditional Backpropagation Neural Network
(BPNN), the Genetic Algorithm Optimized Backpropagation
Neural Network (GA-BPNN), as well as k-nearest neighbors
(KNN), support vector machine (SVM), naive Bayes (NB), and
logistic regression (LR). All models were implemented and
simulated using MATLAB 2023a. To prevent overfitting, the leave-
one-out cross-validation method was employed to evaluate model
performance, with 70% of the dataset randomly selected as the
training set and the remaining 30% as the test set. Classification
models were constructed for each of the five brain regions: frontal
pole, frontal, central, parietal, and occipital.

Organize the information as shown in Table 5.

2.4.4 Model evaluation
The performance of the olfactory preference prediction model

was evaluated in this study, and the model with the highest overall
score was selected as the final model. Four evaluation metrics
were considered: accuracy, precision, recall, and F1-score. The
calculation processes for these metrics are detailed as follows.

Accuracy =
TP+TN

TP+TN+FP+FN
(10)

Precision =
TP

TP+FP
(11)

Recall =
TP

TP+FN
(12)

F1−score =
2·Precision·Recall
Precision+Recall

(13)

Here, TP denotes the number of true positives, TN the number
of true negatives, FP the number of false positives, and FN the
number of false negatives.
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TABLE 5 Overview of stress classification model based on electroencephalographic (EEG) features.

Level of stress Number of
samples

Extracted features EEG feature channels Algorithms used

Calm 60

Mean, variance, skewness, kurtosis,
power spectral density

Frontal pole, frontal, central, parietal,
occipital

GA-BPNN, BPNN, KNN, SVM,
NB, LR

Almost no-stress 12

Slight stress 16

Moderate stress 16

Severe stress 16

FIGURE 6

Classification results of six models across five different brain regions. (A) Accuracy; (B) Precision; (C) Recall; (D) F1-score.

3 Result

3.1 Model evaluation results

Figure 6 summarizes the performance of various models across
different brain regions based on accuracy, precision, recall, and F1-
score. The results indicate that the GA-BPNN model outperforms

the other models across all brain regions, particularly in the
frontal pole, with higher classification accuracy, precision, recall,
and F1-score. Therefore, the GA-BPNN model based on the
frontal pole is identified as the optimal model for driver stress
recognition.

Figure 7 presents the confusion matrix of the GA-BPNN-based
stress emotion recognition model for the frontal pole.
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FIGURE 7

Confusion matrix of the Genetic Algorithm Optimized
Backpropagation Neural Network (GA-BPNN)-based stress emotion
recognition model. ANS represents “Almost No-Stress,” SS
represents “Slight Stress,” MS represents “Moderate Stress,” and HS
represents “High Stress.”

In this study, the input layer of the network consists of five
neurons, each corresponding to one of the five features: mean,
variance, skewness, kurtosis, and power spectral density. The
output layer contains five neurons, each corresponding to one of
the five classification labels: Calm, Almost No-Stress, Slight Stress,
Moderate Stress, and High Stress. The hidden layer also consists of
five neurons, and the network was trained over 36 iterations.

3.2 Music regulation results

The EEG features of various types of music after regulation
were fed into the pre-trained stress emotion recognition model
to obtain objective EEG-based regulation scores. Additionally,
the subjective evaluation scores collected during the experiment

were statistically analyzed. The results were then presented as
percentages, as shown in Figure 8.

As shown in Figure 8, the subjective ratings of participants on
the music’s stress-regulating ability align with the objective EEG-
based scores. In a slight stress state, gentle music was the most
effective; in a moderate stress state, joyful music was the most
effective; and in a high stress state, gentle music again yielded
the best results. Overall, gentle music was identified as the most
effective in stress regulation. In contrast, sorrowful and exhilarating
music exhibited relatively weaker effects, particularly in high-
stress states, where they failed to significantly reduce emotional
fluctuations.

3.3 Verification of EEG asymmetric value
analysis

The EEG Asymmetry Index (AI) refers to the difference in
electrical activity between the left and right hemispheres of the
brain and is commonly used to study brain laterality, emotions,
and cognitive states (Mouri et al., 2023). It can be calculated by
measuring the electrical activity in different regions of the cerebral
cortex, such as α and β waves. The power subtraction method is
widely recognized as a quantitative analysis technique commonly
used for calculating EEG asymmetry (Bonacci et al., 2024). This
method identifies functional differences between the two brain
hemispheres by comparing the electrical activity, typically the
power in the α or β frequency bands, between the left and right
brain regions.

In this study, the frequency-domain power spectrum features
of α waves were extracted, and the power law method with an
exponent of two was used to calculate EEG asymmetry values
for the frontal pole regions FP1 and FP2 (Harmon-Jones and
Allen, 1998). Table 6 presents the EEG asymmetry values for each
emotional state.

In a calm state, the EEG asymmetry value is 0.1340, reflecting
a slight positive asymmetry. This indicates that brain activity

FIGURE 8

Score of subjective and objective regulation effect.
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TABLE 6 Asymmetric electroencephalographic (EEG) values for various emotional state.

Calm Almost no-stress Slight stress Moderate stress High stress

EEG asymmetry value 0.1340 −0.2367 −1.9866 −2.9117 −5.0518

TABLE 7 Verification of the correlation analysis between stress level and electroencephalographic (EEG) asymmetry value.

Level of stress EEG asymmetry value

Spearman rho

Level of stress

Correlation coefficient 1.000 −1.000∗∗∗

Significance (two-tailed) 0.000 0.0000

N 5 5

EEG asymmetry value

Correlation coefficient 1.000∗∗∗ −1.000

Significance (two-tailed) 0.000 0.0000

N 5 5

*** Indicates significant correlation.

between the two hemispheres is nearly balanced, with no significant
asymmetry observed (Mouri et al., 2023). In an almost no-stress
state, the EEG asymmetry value is −0.2367. Although close to
zero, this slight negative value suggests a minor increase in right
hemisphere activity.

In a slight stress state, the EEG asymmetry value decreases to
−1.9866, indicating a marked shift toward negative asymmetry.
This suggests that as slight stress intensifies, right hemisphere
activity increases significantly, leading to a notable enhancement
in EEG asymmetry. At this stage, stress begins to exert a more
pronounced effect on brain activity.

In a moderate stress state, the EEG asymmetry value further
decreases to−2.9117, reflecting an intensified negative asymmetry.
This indicates that with increasing stress levels, the right
hemisphere’s activity becomes more dominant. Emotional and
physiological changes under moderate stress begin to have a greater
impact on brain activity patterns.

Finally, in a severe stress state, the EEG asymmetry value
drops to −5.0518, exhibiting a significant negative shift. This
demonstrates that under high stress, right hemisphere activity
is strongly enhanced. At this stage, the relationship between
emotional stress and EEG activity becomes highly pronounced,
reflecting emotional responses such as anxiety and heightened
stress (Lee et al., 2020).

Subsequently, IBM SPSS Statistics was employed to conduct
a correlation analysis between stress levels and EEG asymmetry
values (Cheng et al., 2020). Correlation analysis is a statistical
method used to examine the relationships between two or more
variables of equal importance. It enables researchers to identify
relationships between variables within the data, facilitating an
understanding of the degree of correlation between them. As stress
level is not a strictly continuous variable but an ordinal categorical
variable, the Spearman rank correlation coefficient was employed
for the correlation analysis. The results are presented in Table 7.

As shown in the table, the correlation coefficient is −1, with
P < 0.001, indicating a significant negative correlation between
stress levels and EEG asymmetry. As stress levels increase, the EEG
asymmetry value decreases. The FP1 and FP2 electrodes are located
in the frontal pole, indicating that this region is highly sensitive to
stress-related emotions. This further validates the accuracy of stress
emotion recognition models based on the frontal pole.

TABLE 8 Asymmetric electroencephalographic (EEG) values of different
music intervention under different levels of stress.

Calm Almost
no-stress

Slight
stress

Joyful −0.2209 −0.3856 −2.1829

Sorrowful −0.2142 −1.3467 −2.6464

Exhilarating −0.2080 −1.6220 −2.3529

Gentle −0.1560 −1.1064 −2.1337

Subsequently, EEG asymmetry values were extracted following
different types of music therapy under varying stress states, and
their characteristics are summarized in Table 8.

To facilitate observation, EEG asymmetry values under
different emotional states were used as a baseline, and a bar chart
was created, as shown in Figure 9. This provides a more intuitive
view of the changes in EEG asymmetry values following different
types of music therapy across various stress states.

Regardless of whether in a slight, moderate, or severe stress
state, both gentle and joyful music are more effective in bringing
EEG asymmetry values closer to those observed in calm or almost
no-stress states. Both types of music effectively relax emotions,
reduce stress, and promote balance in brain activity. In contrast, the
effects of exhilarating and sorrowful music are less significant under
stress. Overall, the EEG asymmetry values following gentle music
interventions are closest to those observed in a calm or almost
no-stress state. Gentle music demonstrates the most effective
regulation, consistent with previous findings.

The correlation between frontal pole EEG asymmetry values
and stress-related emotions further validates the accuracy of
the BPNN-based frontal pole stress recognition model and the
reliability of the emotion regulation assessment system.

4 Discuss

This study integrated EEG signals with music interventions
to evaluate the effectiveness of an EEG-based stress emotion
recognition model and to explore the impact of different music
genres on alleviating driver stress. The results indicate that
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FIGURE 9

Effect diagram of stress emotion regulation based on objective electroencephalographic (EEG) data.

the GA-BPNN model outperforms the traditional BPNN and
other commonly used machine learning models in emotion
classification accuracy. Additionally, the frontal pole exhibits
superior performance compared to other brain regions in
classification tasks. Gentle music is the most effective in both slight
and severe stress states, whereas joyful music is the most effective
in moderate stress states.

4.1 Discussion on model prediction
results

In this study, the GA-BPNN model based on the frontal pole
region achieved the best performance in emotion recognition tasks,
excelling in accuracy, precision, recall, and F1-score.

Among all brain regions, the frontal pole demonstrated the
most outstanding performance. The frontal pole region is pivotal
in emotion regulation and decision-making (Lindquist et al., 2012).
As the most anterior part of the cerebral cortex, the frontal
pole is commonly associated with higher cognitive functions,
emotional processing, decision-making, and self-regulation. Due
to its role in the recognition and regulation of emotions, its
electroencephalographic signals can reliably reflect the driver’s
emotional state. When confronted with sudden traffic situations,
frontal pole activity exhibits significant fluctuations in response
to changes in the driver’s emotional state (Souche-Le Corvec and
Zhao, 2020).

Among all models, the GA-BPNN demonstrated superior
classification performance. Unlike the standard BPNN model,
which is often trapped in local optima during training and suffers
from suboptimal parameter settings and reduced prediction
accuracy, GA-BPNN leverages a genetic algorithm to optimize
network parameters. This method effectively addresses these
issues, significantly enhancing classification accuracy and stability,
particularly in scenarios involving pronounced emotional
fluctuations (Zhang et al., 2022).

Moreover, compared to traditional machine learning
algorithms, GA-BPNN exhibits a clear advantage in multi-class
emotion recognition tasks. Traditional machine learning methods
are less effective in handling complex non-linear relationships,
which are a key feature of EEG signal variations. In contrast,
GA-BPNN, with its complex neural network structure, effectively
captures these non-linear relationships, thereby achieving higher
accuracy (Rodriguez-Bermudez and Garcia-Laencina, 2015).

4.2 Discussion on the intervention effect
of music on emotions

Different music genres exert varying effects on emotional
intervention for drivers. Gentle music demonstrated significant
effectiveness in alleviating stress, reducing stress levels by 41.67%
and 45% under slight and severe stress conditions, respectively.
This result aligns with numerous studies on emotion regulation
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and music intervention. Research by Darmadi and Armiyati (2019),
Teckenberg-Jansson et al. (2019) indicates that gentle, relaxing
music effectively reduces autonomic nervous system excitability,
alleviating negative emotional responses such as anxiety and
stress. Gentle music may enhance alpha wave activity, promoting
a relaxed brain state that helps drivers manage stress more
effectively. Particularly in severe stress driving situations, it may
regulate neural electrical activity in the brain, helping drivers
restore psychological balance and reduce stress-induced attention
dispersion and delayed reactions.

Joyful music demonstrated the most significant effect in
moderate stress states, reducing stress levels by 50%. Joyful music
often features a strong rhythm and a pleasant emotional tone,
which can help drivers alleviate stress and promote positive
emotional responses (Harada et al., 2017). This facilitates more
effective coping with complex situations and improves cognitive
control.

However, the effects of exhilarating and sorrowful music were
less pronounced, particularly in severe stress states, where they
failed to significantly alleviate emotional fluctuations. In severe
stress situations, exhilarating music may induce excessive arousal,
exacerbating stress (Lu et al., 2005), whereas sorrowful music may
emotionally resonate with the driver’s stress, failing to effectively
transform negative emotions (Sachs et al., 2021). The research
highlights the personalized and situational dependence of music
interventions, indicating that their emotional regulation effects are
dynamic and closely tied to the music’s emotional content, the
driver’s emotional state, and the specific context. Therefore, it is
essential to select the most appropriate type of music based on
an individual’s emotional sensitivity, preferences, and psychological
state.

This study evaluated the effects of different music genres
on participants under varying stress states from both subjective
and objective perspectives, thereby enhancing the credibility
and scientific rigor of its findings. Subjective data (Likert
scale) reflects individuals’ internal experiences, whereas objective
data (EEG signals) provides external validation. The mutual
corroboration of these two data types enhances the robustness of
the study’s conclusions.

4.3 The relationship between EEG
asymmetry and emotions

The study further analyzed the relationship between EEG
signals and drivers’ emotional states, finding a significant negative
correlation between the EEG asymmetry value of alpha waves
(FP1-FP2) in the frontal pole and the driver’s level of stress.
This conclusion is consistent with the findings of Zhao et al.
(2018). EEG asymmetry typically reflects differences in activity
between the brain’s left and right hemispheres. In emotion
regulation, left hemisphere activity is generally associated with
positive emotions and relaxed states, whereas the right hemisphere
is linked to negative emotions such as stress and anxiety, with more
pronounced activation observed in the right hemisphere during
negative emotional states (Harmon-Jones and Allen, 1998). As
emotions gradually stabilize or shift toward a more positive state,
left hemisphere activity increases, and the EEG asymmetry value

approaches a balanced state. Gentle music can serve as an effective
tool for emotional recovery by facilitating the rapid regulation of
brain activity and the restoration of emotional balance.

4.4 Limitations and future jobs

Although this study produced several meaningful findings, it
has certain limitations. First, the sample size is relatively small,
which may limit the generalizability and robustness of the results.
However, it is important to note that the current study represents a
preliminary investigation in this field. Second, the study considered
only four music genres and three stress states, without exploring
the interactions between a broader range of music genres and
emotional states. Moreover, although EEG provides a direct
measurement of brain activity, emotion is inherently complex and
multidimensional. Combining other physiological indicators (such
as heart rate variability) with behavioral data may be necessary
to comprehensively assess the effects of music and explore the
predictive power of different signal combinations. Finally, future
work will focus on exploring improved model frameworks and
optimization methods to enhance prediction accuracy.

5 Conclusion

In summary, this study developed a driver stress recognition
model capable of accurately identifying specific stress levels by
utilizing both time-domain features (mean, variance, skewness,
kurtosis) and frequency-domain features (power spectral density)
derived from drivers’ EEG signals. The model was applied to
evaluate the intervention effects of four music genres (joyful,
sorrowful, exhilarating, and gentle) on drivers under varying
stress levels (slight, moderate, and severe), proposing a novel
music intervention strategy that integrates EEG signal features
with personalized music to regulate emotional states and alleviate
stress. Building on this strategy, future systems could monitor
drivers’ emotional fluctuations in real time and play tailored music,
harnessing the therapeutic potential of music to maintain positive
emotional states, thereby improving psychological well-being,
driving safety, and overall comfort. Furthermore, the findings of
this study could inform the development of portable emotion
regulation devices, enabling seamless integration of real-time
emotion recognition and music intervention technologies, paving
the way for innovative applications in intelligent transportation,
psychological health, and human-computer interaction, while
offering new solutions to enhance music-based interventions and
improve quality of life.
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