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An acoustic model of speech
dysprosody in patients with
Parkinson’s disease

Fredrik Nylén*

Department of Clinical Science, Faculty of Medicine, Umeå University, Umeå, Västerbotten, Sweden

Purpose: This study aimed to determine the acoustic properties most indicative
of dysprosody severity in patients with Parkinson’s disease using an automated
acoustic assessment procedure.

Method: A total of 108 read speech recordings of 68 speakers with PD (45 male,
23 female, aged 65.0 ± 9.8 years) were made with active levodopa treatment. A
total of 40 of the patients were additionally recordedwithout levodopa treatment
to increase the range of dysprosody severity in the sample. Four human clinical
experts independently assessed the patients’ recordings in terms of dysprosody
severity. Separately, a speech processing pipeline extracted the acoustic
properties of prosodic relevance fromautomatically identified portions of speech
used as utterance proxies. Five machine learning models were trained on 75%
of speech portions and the perceptual evaluations of the speaker’s dysprosody
severity in a 10-fold cross-validation procedure. They were evaluated regarding
their ability to predict the perceptual assessments of recordings excluded during
training. The models’ performances were assessed by their ability to accurately
predict clinical experts’ dysprosody severity assessments.

Results: The acoustic predictors of importance spanned several acoustic
domains of prosodic relevance, with the variability in fo change between
intonational turning points and the average first Mel-frequency cepstral
coe�cient at these points being the two top predictors. While predominant
in the literature, variability in utterance-wide fo was found to be only the fifth
strongest predictor.

Conclusion: Human expert raters’ assessments of dysprosody can be
approximated by the automated procedure, a�ording application in clinical
settings where an experienced expert is unavailable. Variability in pitch does not
adequately describe the level of dysprosody due to Parkinson’s disease.
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1 Introduction

Dysprosody is a well-attested symptom of Parkinson’s disease (Schlenck et al., 1993)
and is discussed in the literature as an “impaired melody of speech”, speaking monotony
in pitch or loudness (“monopitch” and “monoloudness”, respectively), “hypophonia”,
or an “altered rate of speech” (Sidtis et al., 2006). Dysprosody is an early-onset
symptom of the disease (Schlenck et al., 1993) and a prominent factor behind reduced
speech intelligibility (Watson and Schlauch, 2008; Klopfenstein, 2009; Feenaughty et al.,
2014; Martens et al., 2015) and communicative efficiency (Martens et al., 2011).
Dysprosody is most often discussed in connection with dysarthrias and predominately
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in connection with Parkinson’s disease (PD) and Huntington’s
disease (Rusz et al., 2014). Effects on expressive dysprosody have,
however, also been observed following lesions in the caudate
nucleus, the globus pallidus, and the putamen (Sidtis and Sidtis,
2003), in case reports of left hemiparesis and right hemisphere
tumors (Sidtis, 1984), and in ∼2.7% of patients with epileptic
seizures (Peters et al., 2011). When occurring as a component
of apraxia of speech (Ballard et al., 2016), symptoms have been
observed to be alleviated by neurobehavioral treatment (Ballard
et al., 2010). There is, therefore, a great need to further our
understanding of dysprosody-causing symptoms of diseases and
develop a robust assessment method to guide diagnosis and
management of treatments across several neurological conditions.
However, while widely attested and often discussed in reports
of speech effects of PD and other neurological diseases, there is
currently no objective measure of dysprosody by which the impact
of treatment may be assessed (Steurer et al., 2022).

One barrier to developing acoustic assessment methods for
dysprosody originates in the complex nature of prosody itself
(Terken and Hermes, 2000; Sidtis and Sidtis, 2003; Ladd and
Arvaniti, 2022). A recent review by Fumel et al. (2024) highlighted
nine aspects (fo, the variability in fo, intensity, intensity variability,
speech rate, articulation rate, pause duration, and proportion of
pauses during speaking) that have been the focus of previous
research on dysprosody. Utterance-wide variability in fo is the
most often used proxy measure for dysprosody, in which reduced
fo excursions have been a consistent finding in patients with
Parkinson’s disease compared to control speakers (Bocklet et al.,
2011; MacPherson et al., 2011; Skodda, 2011; Feenaughty et al.,
2014; Thies et al., 2019; Frota et al., 2021) across many languages
(Fumel et al., 2024). As noted by Fumel et al. (2024), however,
variability in fo does not afford reliable interpretation in terms
of dysprosody or severity since modulation of fo is also linked
with the perception of liveliness, emotional expressions, or speaker
gender (Traunmüller and Eriksson, 1995; Avery and Liss, 1996;
Martinho et al., 2024; Nylén et al., 2024). Dysprosody as a term
should, however, be used only to describe specifically the effects that
may reduce speech intelligibility, and other indexical properties
should not be considered in the assessment (Fumel et al., 2024).
Utterance-wide variation in speech intensity is the second most
common proxy measure of dysprosody, for which Fumel et al.
noted some evidence of a systematic reduction in patients with
PD compared to control speakers in their review. Still, the effect
was less consistent than the corresponding effect on fo variability.
Some dopaminergic treatments, e.g., levodopa administration or
deep brain stimulation (DBS) in the subthalamic nucleus (STN),
may alleviate the adverse effects of PD on fo variability (Lundgren
et al., 2011; Skodda, 2011; Karlsson et al., 2013; Thies et al., 2024).
Possibly, good alleviation may require elevated treatment levels to
have beneficial effects (Bobin et al., 2024). The beneficial effects are,
however, not universally observed across dopaminergic treatments.
DBS in the posterior subthalamic area may, in contrast, have no
beneficial effect on PD speakers’ ability to modulate fo or intensity
on the global level (Lundgren et al., 2011; Karlsson et al., 2013) or
speech intelligibility (Johansson et al., 2014; Sandström et al., 2015).

Dysprosody can also manifest in speech rhythm through
speech rate and articulation effects. According to the review by

Fumel et al. (2024), these effects are more negligible and are less
systematically observed across languages. As noted by Liss et al.
(2009), speech rhythm deviation can be used to correctly classify
speakers into dysarthria types with 80% prediction accuracy when
quantified using manually annotated syllable nuclei and onset and
coda component relationships (Liss et al., 2009). Retained control
over articulation rate and consonant/vowel relationships in speech
motor tasks can be used to correctly identify speakers with PD
among controls (Karlsson and Hartelius, 2019) and to predict
dysarthria severity (Karlsson et al., 2020), but increasing age of
the speaker also affects these properties (Karlsson and Hartelius,
2021), which makes them challenging to use as markers of disease
progression. A reduced speech rate has only been reliably observed
in American English and Dutch (Fumel et al., 2024). The frequency
and length of pauses in speech were a much more systematic
observation separating PD speakers from healthy controls in the
meta-analysis by Fumel et al. than speech or articulation rate
effects. Dopaminergic treatments using levodopa or DBS in the
STN have been observed to alleviate, but not entirely extinguish, the
speech and articulation rate effects (Ho et al., 2008; Karlsson et al.,
2011; Knowles et al., 2024) and can be further amplified by DBS
stimulation that is adjusted in real-time in response to bioelectrical
signals from the patient (Cernera et al., 2024).

While observed with reasonable consistency, utterance-wide
reductions in acoustic expressiveness due to PD, the effects are
not large enough or observed with sufficient consistency for
assessing dysprosody severity. Well-functional prosody is a well-
explored field of linguistics, and analytical techniques have been
used to provide a more detailed, time-aligned view of how PD
affects speakers’ prosodic ability. The autosegmental-metrical (AM)
analysis, in which the realization and temporal alignment of
language-specific intonational units (tones) and the strength of
breaks (pauses) are categorized, has, in case reports, been used to
observe a reduced concentration of prosodic tonal events due to
PD. In contrast, the repertoire of tones used in communication
has been observed to remain unaltered (Lowit et al., 2014). The
AM framework has substantial descriptive value but does not
provide direct insight that can be transferred to a measure of
dysprosody in the speaker. Frota et al. (2021), however, recently
proposed an extension to AM for Portuguese (P-ToBI) that deduces
a prosodic index from the difference between the pitch accents
and breaks that are produced by the PD patient compared to what
would be expected in unimpaired speech. Thies et al. provided
supporting evidence for this approach by showing that fo peak
in the syllable nuclei (the vowel) is lowered by PD (Thies et al.,
2019). Manual multi-tier annotation of utterance, pitch accents,
and break indices before analysis (Thies et al., 2019; Frota et al.,
2021). The most reliable models of dysprosody severity due to
dysarthria have shown an accuracy of 62.2–73.9%, depending on
the model type, when trained on a set of intonation (fo) and
rhythmic properties extracted after the manual annotation of
the utterance (Hernandez et al., 2020). Automatic segmental and
syllable annotation procedures have been proposed. Still, they are
challenged by syllable boundaries, to which tonal events are aligned,
being more readily perceived as a cognitive construct with varying
definitions (Vitale et al., 2024) than units that can unequivocally
be segmented in recordings of fluent speech (Warren et al., 1996;
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Reetzke et al., 2021). Therefore, the manual work required to
perform the analysis offers a barrier to adoption beyond use in
research for these analytical techniques. A less laborious work is
required to find the stress pattern index (Tykalová et al., 2013),

defined as 1 + ln( fomax
fomin

)
∑

E ) and the syllabic prosody index (Tavi

andWerner, 2020) defined as fo
√
d√

Ef<1kHz
(where fo is the fundamental

frequency, E the speech signal energy, and d is the duration) of
words and syllables, respectively. These measures have, however,
been evaluated in small samples of participants only (36 PD patients
and controls) and only in terms of their ability to separate speaker
groups. An evaluation of the affordance to accurately predict levels
of dysprosody based on these metrics has not been attempted.

It should be observed that the properties discussed concerning
dysprosody assessment in PD and other neurological diseases
are only a subset of the features supporting appropriate prosody
perception. Recent studies (Roessig et al., 2022; Arvaniti et al.,
2024; Hu and Arvaniti, 2024) have highlighted additional cues
that warrant renewed attention concerning the perception of
prosodic entities. Vowels’ spectral balance (spectral tilt) has long
been attested to contribute to the perception of prominence in
many languages (Sluijter and van Heuven, 1996; Heldner, 2003;
Crosswhite, 2003) with a relative predictive strength rivaling the
strongest cue (duration) (Sluijter and van Heuven, 1996; Heldner,
2003). Several proposals of how spectral tilt or spectral balance
should be quantified have been proposed, and the Spectral Energy
Ratio (SER) between a lower frequency band (0–1 kHz) and a
higher frequency band (1–5 kHz) (Murphy et al., 2008) provides an
intuitive base approximation of the tilt of the spectrum. However,
the first Mel frequency cepstral coefficient (C1) and components of
a first or sixth-order polynomial fitted to the logarithmicmagnitude
spectrum (SLF and SLF6D) have been shown to provide more
robust quantifications (Kakouros et al., 2018). The level relation of
the first and second, or first and third (Okobi, 2006), harmonic,
both directly measured from the speech signal (L2-L1 and L3-L1)
(Kakouros et al., 2018) and with correction (Iseli et al., 2007) for
the effect of neighboring formants (corrected L2-L1 and L3-L1) (Hu
and Arvaniti, 2024), have also been proposed to be potent cues.

A structure hinged on acoustic parameters is required to
achieve an automatized framework for assessing dysprosody. Here,
the outcome of observations from two different developments
is fused to explore ways to circumvent the barrier to automatic
assessment of dysprosody introduced by requirements for reliable
syllable or segment isolation. First, it is observed that rhythmic
structure can efficiently be extracted from the overall modulation
of the speech signal (Leong et al., 2014) and that this information
can be used to separate dysarthria types (LeGendre et al., 2009;
Liss et al., 2010). While previous studies have explored envelope
modulation to deduce rhythmic structure, it is proposed here that
the timing of prosodically significant tonal events may provide an
indirect cue to rhythmic properties by hinting at the approximate
timing of the associated syllable.

Second, some previous studies have been directed toward
stylizing a computed fo curve into a more efficient and appropriate
representation of the intonational structure, with microvariations
removed. Taylor (1994) applied a rise, fall, and connection element

classification scheme to a two-step median smoothed fo and

associated assigned elements with time and amplitude scaling
factors (parameters) to deduce a representation of intonation that
could replace the AM annotation in an automatic procedure. The
degree of change in fo was observed to provide a cue to the
presence of a pitch accent. The subsequent Tilt model (Taylor,
2000) expanded the analysis by associating a rise amplitude, rise
duration, fall amplitude, and fall duration with each element to
derive a representation that could relatively faithfully reproduce
manual annotations in analyzing a smoothed fo curve in synthesis
(Taylor, 2000). The reliance on a precomputed fo with manual
adjustments made to the speaker is a disadvantage to this approach
when attempting automatic modeling.

In an alternative approach Modeling melody (Momel)
algorithm (Hirst, 2005) extracts, the fo contour in a two-step
procedure, where the first quartile (q1) of the distribution of fo
values obtained using very wide search space (typically 60–750Hz)
is used to derive the fo curve forming the basis for subsequent
computations within the search space of 0.75q1 Hz to 1.5 octaves
above q1. This two-step process is proposed to reduce the need
for age and sex adjustment of parameters when deriving the fo
curve. The fo curve is then separated into one quadratic spline
function representation aimed at capturing the macro prosodic
representation and a similar micro prosodic representation, which
is not considered further here. The target points (Momel target
points, MTPs) in the macro prosodic quadratic spline function are
defined as (time, frequency) points that define significant tonal
events in the utterance. The International Transcription System
for Intonation (INTSINT) establishes a series of annotations of
an intonational curve into (T)op, (H)igher (local maximum),
(U)ppstepped, (S)ame, (M)id, (D)ownstepped, (L)ower (local
minimum), and (B)ottom level. A parameter key is obtained by
stepwise search originating from themean fo, and a range parameter
is obtained in the 0.5–2.5 octave range. After defining the predicted
fo as an MTP by their INTSINT label as T = key

√
2span,M = key,

B = key√
2span

. The local maximum/minimum levels (H and L) model

an fo at the (log scaled) midpoint between the preceding MTPs and
the T and B levels, respectively. Similarly, the up and downstepped
levels (U and D) represent a point a quarter of the log-scaled
distance between the previous MTPs and the T and B levels,
respectively (Hirst, 2011). See Figure 1 for an illustration of the
Momel and INTSINT automatic annotation output. The Momel
and INTSINT annotation procedures have been given a canonical
computer implementation (Hirst, 2007) and have been applied
to describe intonation in relation to temporal events in several
languages (Hirst and di Cristo, 1998; Véronis et al., 1998; Hirst
et al., 2007; Chentir, 2009; Hirst, 2013; Celeste and Reis, 2021). The
procedure has further been shown to reproduce human perception
of tonal events with high accuracy (Hirst, 2011). If perceptually
reliable, the MTPs could also serve as hints to prosodically relevant
syllables and the rhythmic structure of speech. As the MTPs are
defined in time and frequency, it is possible to associate intensity
and spectral tilt measures with a time window surrounding the
MPT to provide an augmented representation of prosody. Recent
developments in vocal activity detection (Yin et al., 2018; Bredin
et al., 2020; Bullock et al., 2020; Cristia et al., 2021) further
suggest that units of speech approximating utterances could be
automatically extracted from a speech recording prior to prosodic
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FIGURE 1

Example automatic INTSINT annotation (bottom panel) along with the audio waveform (middle panel) and computed fo curve (top panel, green).
The approximation of the macro-prosodic structure of the utterance estimated by the Momel algorithm is visualized is overlayed on the original fo
curve (top panel, red). Momel target points (MPTs) are marked with circles.

analysis in an unsupervised manner. When automatic assessments
of all approximate utterances are combined, an assessment of
dysprosody severity in the speaker may likely be deduced, and the
combination of procedures into an analytical pipeline suggests a
path toward a fully automated dysprosody assessment procedure.

The current study aimed to describe and evaluate a fully
automated pipeline for the evaluation of dysprosody. Previous
efforts to assess dysprosody have not had a solid base obtained
from the perception of humans for evaluating the prediction
accuracy of methods available to them, which is essential for a
machine learning approach. Perceptual evaluations of dysprosody
made by four speech and language pathologists with extensive
experience in perceptual dysarthria assessment were used as
ground truth for model training and evaluation. Four different
machine learning model types with differing strengths and primary
design aims were used to ensure that substantial contributions
to our understanding of the perception of dysprosody could be
represented regardless of the model’s characteristics. Furthermore,
the possibility of concentrating each model’s strengths into
an overall best-performing ensemble model was explored. The
secondary aim was to describe the acoustic properties most
indicative of increased dysprosody severity. A comparison of the
predictive accuracy of the best-performing model with one with
only one predictor, variability in fo across an utterance, is alsomade.

2 Method

2.1 Perceptual evaluation of dysprosody

Audio recordings of 68 speakers with PD (45 male and 23
female) aged 65.0 ± 9.8 years, and with an average Hoehn &
Yahr (H&Y) (Hoehn and Yahr, 1967) rating of 2.42 ± 0.57, and

an average Unified Parkinson’s Disease Rating Scale motor score
[UPDRS part III (Goetz et al., 2008)] of 33 ± 12 were included in
this study. The participants were asked to read an 89-word text, in
which statements, interrogations, assertions, and instances of role
changes are included and is the standard text used in dysarthria
assessment in which dysprosody is an assessed component [“Ett
svårt fall” (“A difficult case”); Eklund et al. (2014)]. The included
recordings were made while on L-dopa medication. To increase
the range of speech impairment levels in the study, recordings
where the patient was off levodopa medication were also included
when available (n = 40). Consequently, the total set of read speech
recordings analyzed was 108. All recorded speeches were made
in a quiet room at either a 48 kHz (n = 79) or 44.1 kHz (n =
29) sampling rate using either a Sennheiser HSp 4 and an MZA
900 P phantom adapter or a Marantz PMD 660 digital audio
flash recorder.

Four expert speech-language pathologists (SLPs) with extensive
(>20 years) experience in the assessment of dysarthria assessed
all (108) readings of the standard text individually in four
domains (“Articulation”, “Voice”, “Resonance”, “Prosody”, and
“Overall impression”). A perceptual rating scale with four levels
of deviant production (“No deviation”, “Mild”, “Moderate”, or
“Severe” deviation) was used in the perceptual assessment. As
previously described (Karlsson et al., 2020), the moderate and
severe categories were subsequently merged into a “Moderate to
severe” category to support model training due to too few ratings
of severe deviation. Spearman’s correlations between the perceived
level of deviation in prosody compared with other rated dimensions
were strong for “Overall impression” (rs = 0.73) and “Articulation”
(rs = 0.65), moderate for “Voice” (rs = 0.55), and weak for
“Resonance” (rs = 0.25). An initial consensus training session in
which four readings were rated and discussed for consensus was
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TABLE 1 Descriptions of quantifications of each automatically extracted

utterance.

Domain Description of measure Number of
predictors per
utterance

Time (s) The time points relative to the start of
the utterance associated with MTPs
(in s)y

6

The time distance from the previous
MTPs (in s)

6

The duration of the utterance (in s) 1

The concentration of MTPs in an
utterance (MTP/s)

1

Duration of the utterance 1

fo (Hz) The Momel fo associated with the
MTPsy

6

The change in Momel fo from the
previous MTPsy

6

The fo key of the utterance 1

The range of the Momel fo within the
utterance

1

The minimum of the Momel fo within
the utterance

1

The maximum of the Momel fo within
the utterance

1

Intensity
(dB)

The speech signal intensity associated
with the MTPsy

6

The change in speech signal intensity
from the previous MTPsy

6

The fo key of the utterance 1

The range of speech signal intensities
within the utterance

1

The minimum speech signal intensity
within the utterance

1

The maximum speech signal intensity
within the utterance

1

Spectral tilt The spectral energy ratio (in dB)
between 0–1 kHz and 1–5 kHz at the
MTPs

7

The spectral energy ratio (in dB)
between 0–1 kHz and 1–5 kHz from
the previous MTPsy

7

The L2-L1 (in dB) associated with the
MTPs, both with and without
correctionz for the effect of nearby
formantsy

12

The L3-L1 (in dB) associated with the
MTPs, both with and without
correctionz for the effect of nearby
formantsy

12

The change in L2-L1 (in dB) from the
previous MTPs, both with and
without correctionz for the effect of
nearby formantsy

12

The L3-L1 (in dB) associated with the
MTPsy , both with and without
correctionz for the effect of nearby
formants

12

(Continued)

TABLE 1 (Continued)

Domain Description of measure Number of
predictors per
utterance

The first Mel-frequency cepstral
coefficient at the MTPsy

6

The change in the first Mel-frequency
cepstral coefficient from the previous
MTPsy

6

The slope of a first order polynomial
to the short-term logarithmic
magnitude spectrum at the MTPsy

6

The change in slope of a first order
polynomial to the short-term
logarithmic magnitude spectrum from
the previous MTPsy

6

The coefficients of a sixth order
polynomial to the short-term
logarithmic magnitude spectrum at
the MTPsy

36

The change in coefficients of a sixth
order polynomial to the short-term
logarithmic magnitude spectrum from
the previous MTPsy

36

Total number of predictors extracted per utterance 205

ySummary statistics extracted for each utterance: minimum, maximum, mean, standard

deviation, coefficient of variability, and inter-quartal range.
zThe correction was computed using the method presented by Iseli et al. (2006) and with

formant bandwidths estimated using the method proposed by Hawks and Miller (1995).

performed before the perceptual assessment to strengthen inter-
rater reliability. Laptops and Sennheiser HD 212Pro headsets were
used in the perceptual evaluation.

2.2 Speech signal processing

The audio recordings were segmented into vocal activities
approximating read speech sentences using overlap-aware speech
detection (Bredin et al., 2020; Bullock et al., 2020). The identified
portions of speech acts were then submitted to Momel & INTSINT
processing, in which the fo tracks (using a 10ms analysis window),
utterance fo key, and fo range were automatically identified, and
MTPs were derived from the fo track. INTSINT annotations were
then assigned to each MPT on the macro-prosodic intonational
structure. The entire utterance and each MPT were then provided
with acoustic quantifications presented in Table 1 using the analysis
procedure presented in Supplementary material A.

2.3 Machine learning

The ability of the quantifications of the prosody in the
automatically extracted utterances to serve as predictors of
human experts’ ratings of dysprosody (“No deviation,” “Mild,”
and “Moderate to Severe deviation”) was evaluated in a cross-
validation procedure. Five classification models with varying
properties were selected for evaluation to explore their combined
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use in support of the study’s aims to (1) develop and evaluate
a model and analysis pipeline that could facilitate an automatic
assessment of dysprosody and (2) determine which acoustic
properties provide the best support for classifying dysprosody
severity. The polynomial support vector machine (SVM) model
maximizes the distance between classes in a multidimensional
space and has been used to identify both neurological diseases
(Haq et al., 2019; Lahmiri and Shmuel, 2019; Arora and Tsanas,
2021) and other diseases based on voice samples (Vouzouneraki
et al., 2024). While primarily considered for binary classification
tasks, it has been extended to predict multiple classes and has
been applied, for instance, to the prediction of vocal expression of
emotion (Shahbakhi et al., 2014).

The penalized ordinal regression optimizes the error with a
tuned balance between penalty terms based on the summed squares
and the norms of the coefficients, and it has been previously used
in models of detailed motor deterioration of speech performance
due to Parkinson’s disease (Karlsson and Hartelius, 2019; Karlsson
et al., 2020). Elastic-net regularization of the ordinal regression was
chosen here as it has been shown to perform well in speech data
with multicollinearity among predictors (Tomaschek et al., 2018).
The Random Forest is an ensemble model-building procedure in
which multiple decision trees are trained on random subsets of
predictors and training data. Combined tomake a single prediction,
they are well-documented to provide good prediction accuracy
(Noroozi et al., 2017; Arora and Tsanas, 2021; Vouzouneraki et al.,
2024). The k nearest neighbors is a non-parametric model-building
technique that considers proximity between samples and has been
shown to perform very well in classification tasks for the speech
of individuals with Parkinson’s disease (Amato et al., 2021) and
specifically for dysprosody (Majda-Zdancewicz et al., 2024) in a
small sample of speakers with PD.

The five models were trained on a training data set consisting
of acoustic predictors extracted from 75% of the recorded readings,
matched with all expert raters’ assessments of dysprosody in the
patients’ speech. The data were randomly divided into training
(75%) and evaluation (25%) data sets, and the data were stratified
to ensure a similar distribution of dysprosody severity in the two
data sets.

The model parameters were tuned in a 10-fold cross-validation
procedure. The models were optimized based on their ability to
predict the perceptual assessments of utterances in the training
data’s 10th (holdout) fold. The model-tuning procedure used the
mean logarithmic loss function to measure classification error.
Highly correlated predictors (Spearman’s r > 0.9; 43 predictors)
were substituted for the predictor with the highest correlation with
the outcome variable (the rating of dysprosody severity) before
model training to produce better conditions for model training.
Themodel tuning was performed using 1,000 parameter candidates
for each hyperparameter (Table 2) that were spaced to maximize
entropy in the distribution (Dupuy et al., 2015) with a variogram
range of 2. The tuning procedure was repeated 10 times, each time
with a different holdout portion of the data, and the final models
were then constructed by averaging all 10 computed models of
each type (support vector machines, penalized ordinal regression, k
nearest neighbors, and Random Forest) to derive the final models.

TABLE 2 Hyper-parameters tuned for each model in the 10-fold

cross-validation procedure and the maximum and minimum

hyper-parameter ranges in the tuning grid.

Model name Hyperparameter Min Max

Polynomial support
vector machines

The cost of predicting
a sample inside of or
on the wrong side of
the margin

9.96× 10−4 31.6

Penalized ordinal
regression

The total amount of
regularization

0.0 9.98× 10−1

The proportion of L1
and L2 penalization

6.7× 10−4 9.99× 10−1

Random forest The number of trees 1 2,000

The number of
predictors sampled at
each split

1 74

The minimal number
of data points at a node
required for node split

2 40

k Nearest
Neighbors

The number of
neighbors considered

1 15

The kernel function is
used for weighing
differences

Rectangular. Triangular.
Epanechnikov. Bi-weight.
Tri-weight. Cosine. Inverse.
Gaussian. and Rank

The parameter used
for calculating distance

Furthermore, the models were combined into an ensemble model
by model stacking and by weighing the predictions of each model
relative to its strengths and weaknesses in prediction within the
training data.

The importance of each variable in the most accurate model
was computed using the feature importance ranking measure
(FIRM) (Zien et al., 2009) procedure, which has the attractive
property that it generalizes to the sum of the squared change
in model output and, therefore, has a transparent interpretation
independent of the model type investigated. The model training
used a substantial set of acoustic predictors, 205 in total (Table 1).
To reduce the risk of reporting a highly specialized ability of
models to predict the data they were trained on and ensure
generalizability, all model evaluations were performed on 25% of
the data that were not part of model training but were set aside for
model evaluation.

The final models were evaluated for their accuracy in predicting
human raters’ assessments of dysprosody in 25% of utterances
not included during the training of the models. Similarly, the
agreement among human raters on the most common assessment
of the reading (consensus rating) was calculated. The consensus
rating was chosen over assessment based on the level of inter-rater
agreement to enhance the robustness of dysprosody assessment
by collaborating clinical colleagues. Both human raters and
computational models were tested on recordings for which they
had not been informed of the actual outcome. The human raters
were assessed using the same classification metrics as the trained
machine learning models.
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TABLE 3 Agreement between the assessment of an individual rater, human expert, or acoustic model, and the true assessment of unobserved (testing) data.

Truth Prediction Human raters Acoustic models

Rater
1

Rater
2

Rater
3

Rater
4

Across all
raters

Support
vector

machines

Penalized
ordinal

regression

k nearest
neighbors

Random
forest

Ensemble Model using
variability in fo
as the only
predictor

No deviation No deviation 26 25 31 20 102 74 77 83 80 23 14

Mild deviation 5 7 0 11 23 35 31 27 29 87 0

Moderate to
severe deviation

0 0 0 1 1 1 2 0 1 0 96

Mild deviation No deviation 0 4 1 2 7 34 30 28 26 4 21

Mild deviation 19 18 24 11 72 54 59 63 63 94 0

Moderate to
severe deviation

2 2 5 7 16 11 10 8 10 1 78

Moderate to
severe
deviation

No deviation 0 0 1 0 1 8 9 4 3 2 4

Mild deviation 2 0 2 0 4 16 14 22 20 26 0

Moderate to
severe deviation

4 6 3 3 16 9 10 7 10 5 28

Sensitivity 0.80 0.84 0.77 0.73 0.78 0.50 0.53 0.53 0.56 0.44 0.33

Specificity 0.92 0.88 0.94 0.81 0.89 0.76 0.78 0.79 0.80 0.72 0.65

Positive
predictive value

0.80 0.78 0.75 0.56 0.71 0.53 0.56 0.58 0.59 0.69 –

Negative
predictive value

0.91 0.88 0.93 0.79 0.88 0.76 0.78 0.80 0.80 0.78 0.67

Balanced
accuracy

0.86 0.86 0.85 0.77 0.83 0.63 0.66 0.66 0.68 0.58 0.49

F-score 0.80 0.80 0.75 0.56 0.73 0.51 0.54 0.54 0.57 0.40 0.20

The majority vote was considered the true outcome in human experts’ assessments.
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3 Results

The automatic extraction identified ∼926 utterances from
the 108 passage readings. The stratified sampling procedure
aimed to create a comparable distribution of dysprosody severity
levels across the training and test sets of utterances. A total
of 684 utterances were assigned to the training set, while 242
were designated for the test set, which was used only at the
evaluation stage.

The performance of machine learning models in predicting
the assessments of trained clinical professionals is presented in
Table 3, along with the agreement of each of the four professionals’
assessments with a majority rating for the utterance. Table 4
summarizes the inter-rater agreement between pairs of raters.
Human raters showed an average consensus (balanced accuracy
in prediction) of 0.83 ± 0.04 (0.77–0.86) and an average F

score of 0.73 ± 0.11 (0.56–0.80). The Support Vector Machines,
Penalized ordinal regression, k Nearest Neighbors, and Random
Forest models showed an average balanced accuracy in predicting

TABLE 4 Inter-rater agreement in dysprosody severity assessments

among human raters.

Compared ratings % Agreement Cohen’s K

Rater 1–Rater 2 69 0.47

Rater 1–Rater 3 62 0.35

Rater 1–Rater 4 44 0.18

Rater 2–Rater 3 66 0.40

Rater 2–Rater 4 46 0.22

Rater 3–Rater 4 43 0.15

unseen data of 0.66 ± 0.02 (0.63–0.68), with an average F score
of 0.54 ± 0.02 (0.51–0.57). The best-performing model overall
was the Random Forest model, with a balanced accuracy of 0.68
and an F score of 0.57; the Ensemble model training failed to
produce a model that generalized well into the test data and showed
performances that were lower than most original models, except
for a strengthened positive predictive value of 0.69. The receiver
operating characteristics (ROC) curves for the best-performing
model (Random Forest), the model using the least number of
predictors (penalized ordinal regression), and the model stack of
all directly trained models (model ensemble) presented in Figure 2
indicate that the superior performance of the RandomForest model
is achieved primarily by the model’s ability to accurately predict
cases rated as having “No deviation”.

Figure 3 presents the FIRM (Zien et al., 2009) variable
importance of the top 30 acoustic predictors in the best-performing
Random Forest model. As a point of reference, an ordinal
regression model in which variability in fo was the only predictor
of dysprosody severity showed a reduced balanced accuracy (0.49)
and F score (0.20) compared to other models.

4 Discussion

Prosody is the language function that organizes the speech
stream into manageable chunks for the listener to process, and
failure to meet listeners’ expectations is linked with reduced
speech intelligibility. Prosody is inherently multidimensional in
how it is signaled to the listener, and previous models aimed to
detect neurogenic dysprosody severity have achieved 62.2–73.9%
detection accuracy by incorporating information from intonation,
rhythm, and pausing, information that was acquired through a
manual annotation procedure. The requirement of a laborious

No deviation Mild deviation Moderate to severe deviation

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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FIGURE 2

Receiver operating characteristic curves of random forest, the penalized ordinal regression, and ensemble models.
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FIGURE 3

Variable importance of the 30 most important predictors extracted from MPT changes from one MPT to the next or across entire utterances. The
importance of each variable was computed using the feature importance ranking measure (Zien et al., 2009) procedure. Notes: MTPs, Momel target
points; LTAS, long-term average spectrum; C1, The first Mel-frequency cepstral coe�cient; SLF, SLF6D, coe�cients of a polynomial (with 1 and 6
components, respectively) fitted to the short-term logarithmic magnitude spectrum; MIN, MAX, MEAN, SD, and IQR indicate the summary statistic
(minimum, maximum, mean, standard deviation, and interquartal range) applied to an utterance’s quantifications to derive a single measure for each
utterance. Measures described as “corrected” have spectral magnitude corrections (Iseli et al., 2007).

and time-consuming transcription task preceding assessment
presents a clear barrier to the clinical adoption of the assessment
procedure. In this study, an automatic dysprosody assessment
pipeline for speech utterance identification and pitch contour
preprocessing was constructed and provided with a comprehensive
quantification aimed at capturing aspects established to be
prosodically important from the speech signal of an utterance.

The complete pipeline was then assessed regarding its proficiency
in assessing the dysprosody severity of patients with Parkinson’s
disease based on a recording of speech patients’ reading, with no
prior pre-processing. Five models were trained on the individual
assessments of levels of dysprosody severity made by four
clinical raters with extensive experience in assessing dysarthria
and evaluated in terms of their ability to predict the consensus
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assessment of dysprosody severity among expert human raters on
unobserved utterances.

The results suggest that the severity of dysprosody is not
well described by single metrics, including the predominant
proxy measure for dysprosody (utterance-wide variability in fo).
Simpler bases for classification tended to result in strongly biased
predictions that do not reflect human experts’ ratings well, and no
acoustic predictor showed an influence on the classification that
was strong enough to serve as a proxy in determining dysprosody
severity. Amodel of dysprosody assessment based on the utterance-
wide variability of fo alone showed a strong preference for
classifying most samples (84%) as having “Moderate to severe
deviation”. When using all predictors, the ensemble models
Random Forest and penalized ordinal regression showed the best
ability to identify utterances in the evaluation set that human
experts had determined to have moderate to severe deviation
in prosody. The support vector machine models failed to reach
competitive levels of accuracy across all dysprosody severity levels.
Overall, the Random Forest model achieved sensitivity, positive
and negative predictive values, and an F score of predictions
comparable to that of one rater (Rater 4) while not achieving similar
sensitivity and balanced accuracy levels as the human rater. Overall,
the acoustic models showed a lower sensitivity in their predictions
than all human raters.

The result demonstrates that human clinical experts’
assessment of dysprosody severity in Parkinson’s disease can
be partially modeled by a fully automatic speech processing
pipeline in which utterances are automatically identified and that
an intonation stylization can provide the scaffolding required for
extracting acoustic cues. The developed models shed light on what
constitutes a symptom of perceived dysprosody due to Parkinson’s
disease. While utterance-wide variability in fo was not identified as
a robust indication of the perceived level of dysprosody, the degree
of variability, as well as the minimum of how much fo changed
from one MPT to the next, were identified as strong predictors.
The modeling further highlighted that disregarding the first Mel
spectrum coefficient and the level differences between the first and
second, as well as the first and third harmonics, severely reduces
the ability of an acoustic model to approximate human perception
of dysprosody. The expert raters studied were not specifically
experts in assessing dysprosody but were well-established experts
in assessing dysarthria in a clinical setting, and the findings can,
therefore, be transferred to a clinical setting.

Thus, previous reports in which dysprosody has been evaluated
solely based on the proxy measure of the standard deviation of
fo are likely to have determined, in part, the level of liveliness
(Traunmüller and Eriksson, 1995) in speech. Liveness is essential
to our speech and likely contributes significantly to the experience
of both parties in a communicative setting. However, utterance-
wide variability in fo alone does not ensure a retained linguistically
functional intonation that adequately supports the transfer of
information from the speaker to the listener. Instead, estimates of
more local alterations in intonation, spectral balance, and intensity
are used to distinguish portions of the speech signal of particular
importance for the message from relatively less significant portions,
providing a better model of clinical judgments of reduced prosodic
functioning in patients with Parkinson’s disease. Patients with
Parkinson’s disease have previously been observed to be reduced

in their rapid regulation of phonation (Goberman et al., 2002;
Goberman and Blomgren, 2008; Karlsson et al., 2012; Eklund
et al., 2014; Tsuboi et al., 2014; Tanaka et al., 2015; Whitfield
and Goberman, 2015), which may provide a partial explanation
of the finding of less rapid local changes in fo being significant
predictors of clinically rated dysprosody specifically for patients
with Parkinson’s disease. While an explanation for the observations
in terms of neurofunctional correlates cannot be offered to date,
the connection with the subcortical structures, the globus pallidus,
and the putamen (Sidtis and Sidtis, 2003) is congruent with an
interpretation that failure to achieve tonal targets by persons with
Parkinson’s disease may be related to a failure to initiate an
alteration of state in the phonatory musculature rather than an
effect of muscular inability or fatigue or conflicting signaling in
the direct, indirect, or hyper-direct pathways from the striatum to
the cortex (Utter and Basso, 2008). This interpretation is, however,
tentative and requires experimental support before being accepted.

Dysprosody is discussed here and in other parts of the literature
as a single symptom. While discussed under a single term,
dysprosody of a rated severity due to Parkinson’s disease may
differ from dysprosody caused by other neurological conditions
(Sidtis, 1984). The automatic processing pipeline developed here
does not presuppose a particular language or underlying disease
causing dysprosody, but the relative importance of weights may
likely be different for other diseases. Adjustments can, however,
only be made with access to clinical raters with sufficient levels of
experience and expertise. The procedure used in extracting acoustic
parameters is made publicly available (Supplementary material A),
and the procedures used for utterance segmentation and intonation
modeling are widely available and well-documented (Hirst, 2007;
Hirst et al., 2007; Origlia et al., 2013; Jadoul et al., 2018; Yin
et al., 2018; Bredin et al., 2019; Bullock et al., 2020), which,
when combined, removes any barrier to replication, language or
disease estimates, adjustments in weights, and replication efforts in
later research.

5 Conclusion

The perception of dysprosody can be approximated using an
intonation stylization algorithm and an associated comprehensive
acoustic assessment with no manually added temporal or tonal
information. A performance in dysprosody assessment that
approximates the abilities of clinical expert raters was achieved,
which affords the transfer of a clinical assessment to remote
situations where an experienced clinical expert is unavailable. The
variation in pitch across an utterance, which is the most often
used quantification of dysprosody in neurological disease, is not
a reliable predictor of the level of dysprosody in patients with
Parkinson’s disease.
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