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Introduction: Parkinson’s disease (PD) impairs motor preparation due

to basal ganglia dysfunction, contributing to motor deficits. Galvanic

Vestibular Stimulation (GVS), a non-invasive neuromodulation technique,

shows promise in enhancing motor function in PD, but its underlying

neural mechanisms are poorly understood. This study employs a Deep

Koopman model to linearize and analyze preparatory EEG dynamics in PD,

hypothesizing that GVS restores cortical activity patterns critical for motor

planning.

Methods: EEG data from 18 PD participants (on/off medication) and 18 healthy

controls were collected during a preparatory phase of a motor task under

three conditions: sham, GVS1 (50–100 Hz multi-sine), and GVS2 (100–150 Hz

multi-sine). A Deep Koopman framework mapped EEG signals into a three-

dimensional latent space for linear dynamical analysis. Temporal dynamics were

assessed via eigenvalue analysis, spatial contributions via regression-based scalp

mapping, and motor performance correlations via Pearson’s coefficients. A

Linear Quadratic Regulator (LQR) simulated control of PD dynamics toward

healthy patterns.

Results: The Deep Koopman model accurately captured EEG dynamics, with

eigenvalue analysis showing no significant temporal dynamic differences

across groups. Spatial contribution analysis revealed that PD-Off sham

conditions deviated most from healthy control EEG patterns, while GVS and

medication significantly reduced these deviations, aligning PD patterns closer

to controls. Closer alignment correlated with improved motor performance

metrics, including reduced reaction and squeeze times. LQR control effectively

guided PD neural dynamics toward healthy trajectories in the latent

space.
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Discussion: GVS enhances motor preparation in PD by restoring healthy

cortical EEG patterns, with additive benefits from dopaminergic medication. The

Deep Koopman framework offers a powerful approach for dissecting complex

EEG dynamics and designing targeted neuromodulation strategies. These

findings elucidate GVS’s therapeutic mechanisms and highlight its potential for

personalized PD interventions, warranting further exploration in larger cohorts

and varied stimulation protocols.

KEYWORDS

Parkinson’s disease, motor control, galvanic vestibular stimulation, Koopman operator
theory, deep neural network

1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that affects approximately 1% of individuals over
the age of 60, with its prevalence increasing with age (Tysnes
and Storstein, 2017). It is characterized by motor symptoms,
including bradykinesia, rigidity, and tremors, as well as
non-motor symptoms that include cognitive decline and
autonomic dysfunction. Research has demonstrated that both
motor and non-motor symptoms of PD can be modulated
by external interventions. For instance, sensory stimuli like
visual and auditory cues have been shown to alleviate motor
and sensory impairments in PD (Muthukrishnan et al., 2019;
Sacrey et al., 2011; Zadeh et al., 2024). Additionally, electrical
neuromodulation, such as deep brain stimulation (DBS),
have proven effective in mitigating motor symptoms and
enhancing quality of life, offering a valuable complement to
pharmacological treatments (Lachance et al., 2018). However,
despite the potential of these approaches, their utility is
often constrained by several factors, including variability
in patient response, limited accessibility, and diminishing
efficacy as the disease progresses. Further investigation into
the mechanisms underlying PD’s responsiveness to external
stimuli is a key step toward overcoming these challenges and
the exploration of innovative therapeutic strategies. Among
the current effective methods, galvanic vestibular stimulation
(GVS), a non-invasive brain stimulation technique, shows
significant promise and merits thorough evaluation as a
potentially effective and accessible intervention. GVS applies
low-intensity electrical currents via electrodes placed behind
the ears to stimulate the vestibular system (Pires et al., 2022).
Studies have shown that GVS can enhance balance and
motor control in PD patients, offering a means of modulating
motor symptoms (Khoshnam et al., 2018; Lee et al., 2021).
Previous work within our group has extensively examined the
behavioral effects of GVS in PD, demonstrating its potential
to enhance motor performance. Findings indicate that GVS
improves reaction times, reduces bradykinesia, and enhances
movement precision in visuomotor and motor execution
tasks. In visuomotor tracking experiments, noisy GVS led to
faster responses, smoother trajectory control, and improved
adaptation to task demands, particularly in more challenging

conditions. Additionally, motor execution tasks showed
that high-frequency GVS facilitated movement initiation
and increased response vigor, with effects varying based on
stimulation parameters and individual motor deficits (Lee,
2019). Despite these promising outcomes, the underlying
mechanisms by which GVS influences motor function,
particularly in the context of motor control, remain poorly
understood.

The effects of GVS on motor performance in PD are likely
multifaceted, as motor control involves the integration of sensory
information with motor commands to plan, initiate, and execute
movements (Gallivan et al., 2018; Shadmehr et al., 2010). While
certain aspects of motor control, such as well-learned movement
patterns, remain stable, the neural populations involved in planning
and executing movements are highly dynamic, particularly during
the preparatory phase preceding movement execution. This
phase reflects neural activity that anticipates movement, laying
the groundwork for effective motor initiation and coordination
(Churchland et al., 2010; Churchland et al., 2012).

Exploring the electroencephalogram (EEG) dynamics during
the motor preparation phase in individuals with Parkinson’s disease
(PD) is especially relevant given the critical role of dopamine in
this process. Dopamine modulates readiness potentials (Köhler
et al., 2024), facilitates gradual firing increases in motor-related
regions (Alm, 2021), and enhances cortico-striatal interactions
(Michely et al., 2015), all of which are essential for efficient
motor preparation and initiation. Moreover, dopamine’s influence
on synaptic plasticity, particularly long-term potentiation (LTP)
in the motor cortex (Molina-Luna et al., 2009), underscores
its importance in motor skill learning and preparatory states.
Examining EEG changes during motor preparation can reveal how
dopamine-mediated oscillatory activity and connectivity patterns
are disrupted in PD and how treatments, such as dopaminergic
medication or non-invasive brain stimulation like GVS, may
ameliorate these deficits. Such insights are crucial for advancing
therapeutic strategies to restore normal motor network dynamics.

From a dynamical systems perspective, motor control and
preparatory activity can be conceptualized as trajectories within a
high-dimensional state space, where the system transitions through
preparatory states to achieve desired motor outcomes (Shenoy
et al., 2011). This framework offers a powerful approach for
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understanding how external interventions, such as GVS, influence
neural dynamics and motor behavior.

In this study, we hypothesize that GVS modulates the
temporal properties of neural dynamics and/or restores and
enhances activity in underactive brain regions in PD, thereby
improving preparatory motor activity and motor function.
Traditional approaches to studying neural dynamics often rely
on non-linear methods, which are computationally intensive
and challenging to generalize. To test our hypothesis, we
analyzed EEG recordings during the preparatory phase of a
motor task using a Deep Koopman model. Koopman operator
theory offers a novel approach to analyzing non-linear systems
by transforming their dynamics into a higher-dimensional
space of observables, where the system evolves linearly
(Koopman, 1931). While the Koopman framework has seen
widespread application in engineering domains (Berger et al.,
2015; Kaiser et al., 2020; Korda and Mezić, 2018), its use
in neuroscience—particularly in clinical contexts like PD—
remains underexplored. Recent studies have demonstrated
the utility of Koopman-based methods in modeling complex
brain dynamics across various applications. For instance, one
study (Hellar et al., 2022) employed an embedded dynamic
mode decomposition (EmDMD) technique based on Koopman
theory to transform the non-linear spatiotemporal dynamics
of EEG signals into a linearized spectral representation. This
approach enabled the extraction of novel features, which
were then used to classify EEG segments into preictal and
interictal states, underscoring the potential of Koopman-based
techniques for clinical EEG analysis. Similarly, another study
(Li and Guo, 2024) addressed the challenge of detecting and
predicting Freezing of Gait (FOG) in PD using EEG data.
The researchers applied a novel DMD-ACSP (Dynamic Mode
Decomposition with Analytic Common Spatial Pattern) method,
which significantly outperformed traditional techniques like
Fourier Transform, Wavelet Transform, and convolutional neural
networks (CNNs) in FOG detection and prediction tasks. By
integrating dynamic mode decomposition with spatial filtering,
the study provided a robust framework for analyzing brain
dynamics, paving the way for personalized neuromodulation
strategies to manage FOG. These advancements highlight
the promise of Koopman-based approaches for advancing
the analysis of EEG dynamics in PD and other neurological
disorders.

Here we utilize a deep neural network (DNN) to map non-
linear EEG data into a latent space where linear dynamical systems
can be applied. This approach combines the representational
power of DNNs with dynamical system modeling to achieve
both linearization and dimensionality reduction of complex EEG
signals, enabling predictive modeling and control strategies within
a linear latent space. Group-specific models were trained, and the
EEG data were decomposed into a three-dimensional Koopman
subspace. These latent dynamics were further analyzed using
eigenvalue analysis, spatial contribution analysis, and a Linear
Quadratic Regulator (LQR) control strategy. This innovative
methodology provides a powerful framework for investigating
GVS-induced neural dynamics and offers practical insights for
designing targeted interventions to enhance motor function in
Parkinson’s disease.

2 Materials and methods

Figure 1 provides an overview of the methodological
steps, including data acquisition, the visuo-motor task, data
preprocessing, and model architecture. Each step is depicted in the
diagram, with additional details provided in the figure caption and
the subsequent subsections.

2.1 Data description

2.1.1 Ethics statement
The study protocol was approved by the Clinical Research

Ethics Board at the University of British Columbia (UBC), and
the recruitment was conducted at the Pacific Parkinson’s Research
Centre (PPRC) at UBC. All participants gave written, informed
consent before participation.

2.1.2 Participants, Behavioral tasks and EEG data
acquisition

Electroencephalogram and behavioral data used in this study
were obtained from prior study (Lee, 2019), including 20
participants with PD and 22 HC. All PD participants had a
clinical diagnosis of idiopathic Parkinson’s disease and were
in Hoehn and Yahr stages 1–3, indicating mild to moderate
disease severity. Individuals with atypical parkinsonism, advanced
PD, or major neurological or psychiatric comorbidities, were
excluded. Data collection was conducted under two conditions:
“off medication” (PD-Off), following a 12 h overnight withdrawal,
and “on medication” (PD-On), after participants had taken their
regular dose of Levadopa. No severe side effects of Levodopa were
reported or observed during the sessions. Participants selected for
the experiment were all able to perform the hand-squeeze task
used in the study. EEG recordings were obtained from 27 scalp
electrodes positioned according to the international 10–20 system,
with a sampling rate of 1 kHz.

The experiment employed a block design, with each block
corresponding to one of three stimulation conditions: sham
stimulation (no stimulation) or GVS using two distinct waveforms,
GVS1 (50–100 Hz multi-sine) and GVS2 (100–150 Hz multi-
sine). Participants sat in front of a computer screen and were
instructed to respond as quickly as possible to a visual “Go” cue
by squeezing a rubber bulb. Each block consisted of 10 trials, and
each trial followed a fixed sequence: a fixation screen displayed for
1,500 ± 500 ms, a “Go” signal presented for 500 ms, and a blank
screen lasting 1,000 ms. Various motor performance measures were
recorded during each trial. Further experimental and behavioral
details are provided in (Lee, 2019).

2.1.3 Data preprocessing
From the original dataset, two PD participants were excluded

due to excessive EEG noise. To maintain balance and minimize
potential group-size bias, we selected the 18 HC participants
with the highest EEG data quality from the original pool
of 22. This ensured a matched sample design, which was
critical for methodological consistency and statistical validity,
especially in the K-fold cross-validation framework used for model
training and evaluation.
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FIGURE 1

Schematic representation of the methodological workflow. (A) Data acquisition: the setup included electroencephalogram (EEG) recording during a
visuomotor task. Participants completed 10 trials for each stimulation condition (Sham, GVS1, and GVS2). (B) EEG data preprocessing: signals from
27 electrodes were grouped into five anatomically defined brain regions for analysis. (C) A total of 6-fold cross-validation: the dataset was
partitioned into training and test subsets to evaluate model performance within a 6-fold cross-validation framework. (D) Deep koopman framework:
an autoencoder was used to map the five-dimensional EEG input into a three-dimensional Koopman latent space, where the Koopman operator
acts linearly to facilitate analysis. (E) Koopman-based analysis: the three-dimensional Koopman latent space representation was leveraged to
examine temporal dynamics (via eigenvalue analysis) and spatial contributions (via scalp mapping), enabling direct comparisons across experimental
groups and stimulation conditions.

The 1,000 ms preparatory interval preceding the “Go” signal
was extracted from each trial to analyze motor preparation
dynamics. At 1 kHz sampling, this yielded 1,000 EEG samples per
trial. With 10 trials per subject, each participant contributed 10,000
samples, resulting in 180,000 samples per group (18 subjects × 10
trials× 1,000 samples).

The 27 scalp electrodes were grouped into five anatomically
defined regions of interest (ROIs)—frontal, central, parietal,
occipital, and temporal—to facilitate analysis. This grouping
method was selected to preserve regionally specific cortical
activity relevant to motor preparation, minimizing variability
across individual electrodes while reducing redundancy from
volume conduction. Since adjacent electrodes often capture
overlapping neural activity, averaging within ROIs enhances
interpretability and ensures that spatial contributions reflect
broader cortical patterns rather than isolated electrode-
level signals. From a computational perspective, reducing
the input to five regionally averaged signals maintained
a computationally efficient representation while preserving
essential EEG features.

For analysis, the data were divided into seven experimental
conditions representing participant type, medication status,
and stimulation condition: HC-Sham, PD-Off-Sham, PD-On-
Sham, PD-Off-GVS1, PD-On-GVS1, PD-Off-GVS2, and PD-On-
GVS2. Each group was analyzed independently to assess the
effects of medication and stimulation on brain activity and
motor performance.

2.2 Koopman model

2.2.1 Koopman operator theory
Consider a discrete-time dynamical system:

xk+1 = F (xk) , xk ∈ M ⊆ Rn

Here, xk is an n-dimensional state vector at time step k, and
M ⊆ Rn denotes the state-space (or manifold) in which the
system evolves. The map F : M→ M defines the non-linear update
rule for the system.

We call any function g : M→ R an observable of the system,
meaning that it maps states x ∈ M to real values. The set of all
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such observables forms a (potentially) infinite-dimensional vector
space, as infinitely many functions can be constructed on the
state space (e.g., polynomials, exponentials, neural-network-based
features). This infinite-dimensional property allows the Koopman
operator to represent complex, non-linear dynamics through linear
evolution in a higher-dimensional functional space.

The Koopman operator, denoted K, is a linear operator acting
on this space of observables. Specifically, for any observable g, its
action is defined as:

K.g (xk) = g (F (xk)) = g
(
xk+1

)
Thus, K advances the value of g by one time step.

For a finite number of observable functions, K can be
approximated as a finite-dimensional operator, enabling numerical
analysis of the system’s dynamics. We refer the reader to Budisić
et al. (2012) for a more detailed discussion of the Koopman
operator basics.

A key challenge in practical applications of the Koopman
method is selecting appropriate observable functions. Dynamic
Mode Decomposition (DMD) has traditionally been used to
approximate the Koopman operator (Schmid, 2010; Williams et al.,
2015), but it relies on linear measurements of the system, which
are often insufficient to span a Koopman subspace in non-linear
systems.

In contrast, deep learning methods offer a data-driven
approach for identifying observables (Morton et al., 2019; Takeishi
et al., 2017). In the DNN approach, the observables are learned to
approximate the Koopman operator, forming a finite-dimensional
linear representation of the system. This representation satisfies:

ϕ
(
xk+1

)
= K.ϕ (xk) = λ.ϕ (xk)

Where ϕ (xk) represents the learned observables, and K is the
Koopman operator in the latent space. This formulation transforms
the non-linear update rule into a standard linear difference
equation:

zk+1 = Kzk.

Where zk = ϕ (xk) denotes the transformed state in the
Koopman latent space.

The eigenvalues λ of the Koopman operator characterize
critical system properties, including stability and dynamic behavior
(Korda et al., 2020; Mezic, 2017):

• Stability: A system is considered stable if all eigenvalues
satisfy |λ|< 1
• Non-Oscillatory Dynamics: A real eigenvalue describes

exponential damping without oscillations.
• Oscillatory Behavior: Complex conjugate eigenvalues

indicate oscillatory dynamics with exponential damping.

This Koopman-based framework enables the linearization of
non-linear dynamics, allowing for system analysis, prediction, and
control within a finite-dimensional space.

2.2.2 Deep neural network for Koopman operator
To implement the Koopman method, we utilized the DNN

framework introduced by Lusch et al. (2017), which employs a

deep autoencoder to learn a finite-dimensional representation and
approximate the Koopman operator.

Figure 2A depicts the core network architecture for identifying
the Koopman model. In our framework, ϕ represents the encoder
network in the deep autoencoder, mapping the raw EEG states
x ∈ R5 into a three-dimensional Koopman latent space z ∈ R3.
Formally, ϕ is a multi-layer neural network of the form

z = ϕ (x) , z ∈ R3

Each layer applies an affine transformation (weights and biases)
followed by a non-linear activation function. Unlike predefined
analytic functions, ϕ is learned directly from data, with its final
form determined by the network’s trained parameters. This learned
transformation ensures that the Koopman representation remains
expressive while maintaining interpretability and computational
efficiency. The bottleneck layer of the autoencoder defines the
latent space, which approximates the observables and provides
the foundation for linearizing the system’s dynamics. Once
encoded, the system evolution in this latent space follows
linear dynamics under the Koopman operator. The decoder
network ϕ−1 reconstructs the original EEG dynamics from
the latent representation, ensuring that the transformation
preserves essential temporal patterns while enabling a data-driven
Koopman approximation.

An auxiliary network refines the Koopman model by extracting
eigenvalues from the latent representation. The auxiliary network
takes the encoded latent representations [z = (ϕ(x))] as input
and outputs the eigenvalue parameters of the Koopman matrix
(K). It maps real eigenvalues directly and computes complex-
conjugate pairs using estimated parameters (µ, ω), defining the
corresponding block structure of K (Figure 2B). In the latent space,
the Koopman operator enables linear propagation of the system’s
dynamics across future time steps. Figure 2C demonstrates this
process: the predicted observables in the latent space are decoded to
reconstruct the future states of the original system. The multi-step
prediction process is mathematically described as:

zk = ϕ (xk)

zk+1 = Kzk

. . .

zk+m = Kmzk

x̂k+m = ϕ−1(Kmϕ (xk))

Details of the loss functions used to train the autoencoder, including
reconstruction loss, linearity loss, and prediction loss, are provided
in the Supplementary materials.

2.2.2.1 Training and parameters setting

The autoencoder was trained using the five-dimensional EEG
time series as input. In this DNN framework, which approximates
the Koopman operator in a finite-dimensional setting, the
dimensionality of the observables (i.e., the latent space) must
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FIGURE 2

Architecture and workflow of the deep Koopman framework adapted from Lusch et al. (2017). (A) The deep autoencoder maps input states (xk) into
a three-dimensional Koopman latent space using the encoder(ϕ), while the observables (zk) are reconstructed back to the original states via the
decoder (ϕ−1). (B) An auxiliary network is employed to identify the eigenvalue spectrum and parametrize the Koopman operator, enabling the linear
propagation of observables zk+1. (C) Multi-step predictions are achieved by propagating observables over time zk+m = Kmzk, with the decoder
reconstructing the predicted states x̂k+m = ϕ

−1(Kmϕ (xk)).

be predefined based on prior knowledge of the system. In our
approach, the dimensionality of the latent space corresponds to
the number of eigenvalues in the Koopman matrix (K). Based
on previous research (Yang et al., 2021), to enhance the linear
modeling of neural activity, we chose our model to incorporate
both damping and oscillatory dynamics, as captured by real and
complex-conjugate eigenvalues, respectively. From the available
odd-dimensional options for the latent space we chose a three-
dimensional space to balance model interpretability, computational
efficiency, and the ability to capture essential neural dynamics.
The bottleneck layer constrains the Koopman representation to
three dimensions, ensuring that the learned dynamics remain
low-dimensional while preserving key state transitions. This
dimensionality selection remains flexible and can be extended to
higher-dimensional representations if necessary for more complex
dynamical structures.

Hyperparameter tuning for each group’s network was
conducted using a grid search in the parameter space, following the
methodology described in Goodfellow et al. (2016). Full details of
the network architecture and hyperparameters for each model are
provided in Supplementary Table 1.

To ensure robust model evaluation and stable convergence,
we employed a 6-fold cross-validation approach. The time-series
data from each experimental group (18 subjects per group) were
divided into six folds, with 15 subjects used for training and three

subjects held out for testing in each iteration. This procedure was
repeated for each group to optimize model performance and assess
generalizability.

Training stability was assessed by monitoring a combined
reconstruction/prediction/linearity loss, ensuring it consistently
decreased over epochs.

2.2.2.2 Model evaluation
The performance of the deep Koopman model was evaluated

to assess its effectiveness in reconstructing neural dynamics and
predicting future states across the seven experimental groups.
Separate networks were trained for each group using their
respective training sets, and performance was evaluated on the
test sets to ensure generalizability to unseen data. The primary
evaluation metric was the network error, defined as the total
loss function used during the autoencoder training process.
Model performance was further assessed based on two key
criteria: the accuracy of signal reconstruction from the low-
dimensional latent dynamics and the ability to predict future
dynamics. This approach provided a comprehensive evaluation of
the model’s capability to capture and generalize neural activity
across conditions.

Forward prediction performance was assessed by calculating
multi-step prediction errors. We defined m-step ahead prediction
as the estimation of the original dynamics (xk) using values from
up to m-time steps earlier, denoted as x̂k|k−m. For m = 1–15, the
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normalized mean squared error was calculated for each step as:

NMSE =
1
n
∑n

1 (xk−̂xk)
2

xmean

Where n is the total number of samples in the test set and xmean is
the mean value of the original signal.

2.3 Koopman latent representation

The proposed method transforms the five-dimensional EEG
time series into a three-dimensional Koopman latent space
while simultaneously constructing a linear dynamical model. This
transformation provides a reduced-dimensional representation
that encapsulates the system’s temporal evolution in a linearized
state space. The Koopman framework facilitates the tracking of
trajectories within this latent space, enabling detailed insights into
the system’s temporal and spatial dynamics. The three-dimensional
Koopman representation and its corresponding linear model were
utilized to compare neural dynamics across experimental groups.
Specifically, the Koopman transformation was assessed for its
ability to:

1- Capture temporal dynamics: Eigenvalue analysis of the
linear Koopman operator was performed to evaluate the
stability and oscillatory properties of the system.

2- Analyze spatial contributions: Regression-based back-
projections were used to examine how EEG activity from
different brain regions contributed to the latent dynamics.

2.3.1 Eigenvalue analysis
Eigenvalue analysis was conducted to characterize the

temporal dynamics represented in the Koopman latent space
for each experimental group. The models consistently identified
three eigenvalues: one real eigenvalue, reflecting non-oscillatory
dynamics with exponential damping, and a pair of complex-
conjugate eigenvalues, representing oscillatory activity. Systematic
comparisons of these eigenvalues across experimental groups were
performed to uncover differences in temporal evolution and to
examine the effects of medication and stimulation conditions on
the underlying neural dynamics.

2.3.2 Spatial contribution
A linear regression model was used to map the three-

dimensional Koopman latent representations back onto the EEG
scalp space. This mapping produced regression coefficients that
quantified the relative contribution of each EEG electrode to the
latent dynamics. Since each experimental group was modeled
using an independently trained Koopman network, the latent
space representations exist in relative coordinate systems unique
to each model rather than a shared absolute reference frame.
Consequently, direct comparisons of latent feature positions across
models are not meaningful, as coordinate system differences
could confound interpretations. To address this limitation, we
anchored comparisons in the EEG observational space, where
the spatial contribution of EEG electrodes remains consistent
across all groups.

To assess differences in these spatial contribution patterns
across experimental groups, pairwise Euclidean distances were
calculated between the coefficients of each experimental group and
those of the HC group, which served as a baseline reference for
optimal brain function. For each latent dimension (zi, i = 1,2,3).
The Euclidean distance di was computed as:

di =

√√√√ n∑
j = 1

(∣∣∣wPD−on
ij

∣∣∣− ∣∣∣wHC
ij

∣∣∣)2

where
∣∣∣wPD−on

ij

∣∣∣ and
∣∣∣wHC

ij

∣∣∣ are the absolute values of the regression
coefficients for the j-th EEG electrode in the PD-On group and HC
group, respectively, and n is the total number of electrodes.

2.3.2.1 Association with motor behavior

We investigated the relationship between spatial activations
and behavioral metrics across experimental groups to determine
whether the Koopman latent dynamics derived from preparatory
EEG activity correlated with motor behavior. Spatial activations
were quantified as the mean deviations from the HC baseline
for each experimental group. At the same time, behavioral
performance was characterized using four metrics: Movement
Time, Squeeze Time, Reaction Time, and Peak Time, averaged
across trials for each group. Pearson’s correlation coefficient (CC)
was calculated for each Koopman latent dimension (z1, z2, z3) to
evaluate the association between spatial activations and behavioral
metrics. This group-level analysis provided valuable insights into
the relationship between preparatory EEG dynamics and motor
behavior under different experimental conditions.

2.3.3 LQR control for the linearized neural
dynamics

Once the Koopman operator K has been identified, we
formulate an LQR to control the system in its latent space. Since
the Koopman-identified system is autonomous (i.e., it lacks explicit
input dynamics), we introduce a control input by defining an
identity matrix B in the latent space:

zk+1 = Kzk + Buk

where

• zk is the state in the Koopman latent space.
• K is the Koopman operator governing state evolution.
• B is an identity matrix allowing actuation in all latent

dimensions.
• uk is the control input applied in the latent space.

To ensure that the system is controllable, we check that the
controllability matrix:

C =
[
B,KB, K2B, . . . ,Kn−1B

]
has full rank, ensuring that all Koopman latent states can be
influenced by control inputs. If C has full row rank, then the system
is fully controllable, meaning LQR can be effectively applied.

Instead of stabilizing the system around an equilibrium,
we design LQR for trajectory tracking, where the control law
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FIGURE 3

Evaluation of the deep-Koopman model performance. (A) Test set network errors across experimental groups (HC, PD-Off, PD-On) and stimulation
conditions (Sham, GVS1, GVS2) are shown in panel (A). Box plots display the distribution of test errors, with dashed lines indicating the mean. (B) An
example of EEG reconstruction for one subject illustrates the original (blue) and reconstructed (orange) signals across all five input dimensions
(x1–x5). A zoomed-in view highlights the reconstruction accuracy of the x1 signal over a 2 s interval.

minimizes the deviation from a desired reference trajectory rk. The
cost function is defined as:

J =
N∑
0

((zk − rk)
TQ(zk − rk)+ uT

k Ruk)

where:

• rk is the desired reference trajectory in the latent space.
• Q penalizes deviations from the desired trajectory rk.
• R penalizes excessive control effort.

The optimal LQR control law for tracking is:

uk = − KLQR (zk − rk)

where KLQR the LQR gain matrix calculated by solving the discrete-
time algebraic Riccati equation (DARE). Substituting this into the
system dynamics, the closed-loop system becomes:

zk+1 = (K − BKLQRzk)+ BKLQRrk

where:

• The matrix Kcl = K − BKLQRzk defines the controlled
system dynamics.
• The eigenvalues of Kcl determine the stability of the

controlled system.

This formulation ensures that the control input
minimizes trajectory deviations while balancing stability
and control effort.

To apply this control strategy, we selected the neural dynamics
of the HC group as the reference trajectory, while the system
to be controlled corresponded to the neural dynamics of the
PD-On condition. The optimal control inputs were computed in

the Koopman latent space and subsequently transformed back to
the original state space, influencing the system’s evolution in the
physiological domain.

2.4 Statistical analysis

Statistical analyses were performed using analysis of
variance (ANOVA) to assess differences across experimental
groups. Prior to conducting ANOVAs, the Kolmogorov-
Smirnov (K-S) test was used to verify normality assumptions
for each group. All p-values exceeded 0.05, supporting
the use of ANOVA. A single-factor ANOVA was used to
compare disease states (HC, PD-Off, PD-On) under sham
stimulation. For comparisons involving stimulation, a two-
factor ANOVA was conducted with stimulation condition
(Sham, GVS1, GVS2) and medication status (PD-Off, PD-On)
as independent variables. When significant main effects or
interactions were found, Bonferroni-corrected post-hoc t-tests
were applied. Full K-S test results are provided in Supplementary
Tables 19, 20.

3 Results

3.1 Model performance

The performance of the deep-Koopman model was evaluated
across seven experimental groups: HC-Sham, PD-Off-Sham, PD-
On-Sham, PD-Off-GVS1, PD-On-GVS1, PD-Off-GVS2, PD-On-
GVS2.

Network error served as the primary evaluation metric, with
detailed results for all fitted models provided in Supplementary
Table 2. A comparison of average network error between groups,
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FIGURE 4

Forward prediction performance of the Deep Koopman model. (A) The multi-step normalized prediction error as a function of the prediction
horizon (up to 15 steps) is shown for all experimental groups (HC, PD-Off, PD-On) and stimulation conditions (Sham, GVS1, GVS2). Solid lines
represent the mean normalized prediction error, and shaded regions depict the standard error of the mean (SEM). (B) A box plot comparison of
normalized 10-step prediction errors across all experimental groups and stimulation conditions illustrates the distribution of prediction errors.
Dashed lines within the box plots indicate the mean prediction error for each group and condition.

shown in Figure 3A, revealed higher errors for the HC group.
A single-factor ANOVA for the Sham condition identified a
significant difference in network test error among groups [F
(2,15) = 3.8, p = 0.046]. However, post-hoc analyses with corrections
for multiple comparisons did not reveal any significant pairwise
differences. Comprehensive results of the ANOVA and post-hoc
analyses are detailed in Supplementary Tables 3–5. Figure 3B
provides an example of EEG reconstruction for one subject,
showcasing the network’s capacity to accurately capture neural
dynamics. The reconstruction demonstrates strong agreement
between the actual and reconstructed signals across all five input
dimensions, highlighting the model’s effectiveness in preserving
essential neural features.

The forward prediction performance of the deep Koopman
model was assessed by calculating multi-step prediction errors for
all groups. Figure 4A depicts the progression of prediction error as
a function of the prediction horizon, demonstrating an increase in
errors with longer prediction steps. Figure 4B compares normalized
10-step prediction errors across experimental groups. Across all
groups, the NMSE for 10-step prediction remained below 0.02,
with most conditions achieving NMSE values< 0.01. This indicates
strong predictive performance. Although the HC group exhibited
the highest prediction error, ANOVA of the normalized 10-step
prediction errors found no significant differences between groups,
suggesting comparable prediction performance across all models.
Full ANOVA results are provided in Supplementary Tables 6, 7.

3.1.1 Model performance on individual trials
To further evaluate model performance, trial-level analysis

was conducted by examining reconstruction errors and 10-step
prediction errors across all trials for each subject within each
group. Statistical analysis showed no significant differences in either
reconstruction errors or 10-step prediction errors across the 10

trials within any group. Comprehensive results are presented in
Supplementary Table 8.

3.2 Eigenvalue analysis

To characterize the neural dynamics captured by the Koopman
model, we analyzed the real and complex eigenvalues of the
identified system for each experimental condition. The eigenvalues
provide insights into neural stability and oscillatory behavior in
the latent space, with differences observed between PD-On and
PD-Off conditions.

• Real Eigenvalues (λ = µ): These indicate the stability of
neural activity. Smaller real values (closer to 0) suggest
greater stability, while values approaching 1 indicate
persistent neural fluctuations.

◦ In PD-On, real eigenvalues were shifted slightly
toward 0, suggesting increased neural stability
compared to PD-Off.
◦ In PD-Off, real eigenvalues were closer to 1,

indicating reduced stability and more persistent
neural fluctuations.

• Complex Eigenvalues (λ = µ ± iw): These represent
oscillatory activity in the latent space.

◦ Real Part (µ): As with real eigenvalues, smaller values
indicate greater stability, meaning oscillations decay
more effectively.
◦ Imaginary Part (w): This component determines

oscillation frequency, with larger |w| values reflecting
faster oscillations.
◦ In PD-On, eigenvalues indicated controlled oscillatory

activity, suggesting more regulated neural behaviour.
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FIGURE 5

(A) Eigenvalues from all trained Koopman models, including one real eigenvalue and one complex-conjugate pair per model, are plotted on the unit
circle, confirming model stability. (B) A magnified view highlights eigenvalues near the stability boundary. (C–E) Box plot comparisons of eigenvalue
components across experimental groups (HC, PD-Off, PD-On) and stimulation conditions (Sham, GVS1, GVS2): (C) real eigenvalues, (D) real parts of
complex eigenvalues, and (E) imaginary parts of complex eigenvalues.

◦ In PD-Off, eigenvalues had higher |w| values and real
parts closer to 1, suggesting more persistent oscillatory
activity and reduced stability.

Figure 5A shows the eigenvalue distributions across conditions,
with PD-Off states exhibiting reduced stability and stronger
oscillatory activity compared to PD-On. These shifts align
with expected medication effects on motor-preparatory neural
dynamics.

Statistical comparisons of eigenvalue components across
conditions showed no significant differences in ANOVA; indicating
that the temporal dynamics of neural activity were consistent across
experimental conditions. Supplementary Tables 9–15 provide full
statistical details.

3.3 Analysis of spatial contributions
across experimental conditions

Differences in spatial contributions were evaluated by
calculating pairwise Euclidean distances between the regression
coefficients of each experimental group and the HC baseline,
which served as a reference for optimal motor-preparatory brain
function. Significant differences were observed in EEG electrode
contributions, particularly in latent dimensions z1. Figure 6
presents the mean Euclidean distances from the HC baseline for
each experimental group under PD-Off and PD-On conditions and
across stimulation settings (Sham, GVS1, GVS2).

Under PD-Off conditions, the Sham group exhibited the largest
deviation from the HC baseline, with a mean distance of 0.028

(± 0.012). In contrast, the GVS1 and GVS2 groups demonstrated
reduced deviations, with mean distances of 0.0006 (± < 0.001)
and 0.011 (± 0.002), respectively, indicating closer alignment with
the HC spatial contributions. Under PD-On conditions, all groups
showed smaller deviations from the HC baseline compared to PD-
Off. The Sham group had a mean distance of 0.008 (± 0.002),
while the GVS1 and GVS2 groups displayed further reductions,
with mean distances of 0.005 (±< 0.001) for both conditions.

A two-factor ANOVA was conducted to assess the effects
of medication status (PD-Off vs. PD-On) and stimulation
condition (Sham, GVS1, GVS2) on the Euclidean distances.
The results revealed a significant main effect of medication [F
(1,30) = 4.65, p = 0.039F], indicating substantial differences in
spatial contributions between PD-Off and PD-On conditions.
The main effect of the stimulation condition reached moderate
significance [F (2,30) = 3.17, p = 0.05). These findings suggest
that medication significantly influences the spatial contributions
of brain regions, and stimulation protocols (particularly GVS1
and GVS2) have the potential to align spatial contributions closer
to the HC baseline. Detailed ANOVA results are provided in
Supplementary Tables 16–18.

3.3.1 Association with motor behavior
The correlation analysis identified significant associations

between spatial activations derived from the Koopman latent
dynamics and behavioral metrics across experimental groups.
Table 1 presents the Pearson correlation coefficients (CC) and their
corresponding p-values for each latent dimension (z1, z2, z3) and
behavioral metric.

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1566566
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1566566 May 10, 2025 Time: 18:22 # 11

Kia et al. 10.3389/fnhum.2025.1566566

FIGURE 6

Bar plots display the average pairwise Euclidean distances of regression coefficients for Sham (red), GVS1 (blue), and GVS2 (green) groups under
PD-Off and PD-On conditions. Error bars represent the standard error of the mean. Greater distances indicate larger deviations from the HC
baseline, whereas smaller distances reflect closer alignment with the HC spatial contributions.

TABLE 1 Pearson correlation coefficients (CC) and p-values for the association between spatial activations and behavioral metrics across Koopman
latent dimensions.

Latent dimension Movement time Squeeze time Reaction time Peak time

z1 0.62 (p = 0.19) 0.96 (p< 0.001) 0.86 (p = 0.03) 0.96 (p< 0.001)

z2 0.73 (p = 0.1) 0.62 (p = 0.19) 0.87 (p = 0.02) 0.87 (p = 0.07)

z3 0.61 (p = 0.2) 0.87 (p = 0.02) 0.84 (p = 0.04) 0.91 (p = 0.01)

Significant correlations (p< 0.05) are highlighted in bold.

• Latent dimension z1: Significant correlations were found
for Squeeze Time (r = 0.96, p < 0.001), Reaction Time
(r = 0.86, p = 0.03), and Peak Time (r = 0.96, p < 0.001),
indicating that spatial activations in this dimension are
closely related to motor behavior metrics involving timing
and task duration.
• Latent dimension z2: Moderate to strong correlations were

noted with Reaction Time (r = 0.87, p = 0.02).
• Latent dimension z3: significant correlations were

observed for Squeeze Time (r = 0.87, p = 0.02), Reaction
Time (r = 0.84, p = 0.04), and Peak Time (r = 0.91,
p = 0.01), highlighting this dimension’s role in capturing
motor behaviors related to fine motor control and task
completion timing.

Notably, spatial activations showed stronger and more
consistent correlations with Reaction Time, and Peak Time
measure than with Movement Time. These differences in p-values
reflect variability in how reliably each behavioral metric tracked
changes in latent EEG dynamics across groups. Movement Time
and the Squeeze Time metric exhibited higher inter-subject
variability, resulting in weaker correlations and higher p-values.

Figure 7 visualizes the relationship between spatial activations
(measured as deviations from the HC baseline) and significant
behavioral metrics (Reaction Time, Squeeze Time, and Peak Time)
for each latent dimension. Across all dimensions, greater deviations
from the HC baseline were associated with higher behavioral metric
values (e.g., longer Reaction Time, Squeeze Time, and Peak Time).
Directional arrows in Figure 7 illustrate the effects of medication
and stimulation on both spatial activations and motor behavior:

• Medication Effects (Green Arrows): Medication
consistently reduced spatial contribution distances
and behavioral metric values, reflecting improved motor
performance (shorter times) and closer alignment of
spatial activations with the HC baseline.
• Stimulation Effects (Blue and Magenta Arrows):

Both GVS1 and GVS2 stimulation reduced spatial
contribution distances and behavioral metric values under
PD-Off conditions, demonstrating their potential to
enhance motor behavior.
• Combined Effects (Black and Cyan Arrows): The greatest

reductions in both spatial activations and behavioral
metrics were observed when medication and stimulation
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FIGURE 7

Effects of medication and stimulation on spatial contributions and motor behavior metrics across Koopman latent dimensions (z1,z2,z3). (A–C)
Illustrate the correlations between spatial contribution distances from the HC baseline (x-axis) and behavioral metrics (y-axis) for Reaction Time,
Squeeze Time, and Peak Time, respectively, across the three latent dimensions. Colored circles represent experimental groups, while arrows indicate
the direction of change induced by medication and stimulation.

Frontiers in Human Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1566566
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1566566 May 10, 2025 Time: 18:22 # 13

Kia et al. 10.3389/fnhum.2025.1566566

(e.g., GVS1 or GVS2) were combined, highlighting the
cumulative benefits of these interventions.

3.4 LQR control for the linearized neural
dynamics

The controllability analysis confirmed that the Koopman-
transformed system was fully controllable, ensuring that any
desired trajectory in the latent space could be tracked with
appropriate control inputs. Building on this, we applied the
LQR controller to align the neural dynamics of the PD-On
group with the reference trajectory derived from the HC group.
A representative example of the PD-On condition (Sham) system
identified for LQR control design is:

KPD−On =

 0.999
−3 × 10−5

0

3 × 10−5

0.999
0

0
0

0.951


Figure 8A illustrates the trajectory tracking performance of
the LQR-controlled system across the three latent dimensions
(z1, z2, z3) in the Koopman space. The LQR-controlled trajectories
(green) closely tracked the reference trajectories (blue), significantly
reducing deviations compared to the uncontrolled PD-On
trajectories (red dashed). This demonstrates that the controller
effectively influenced the system dynamics in the latent space.
Figure 8B depicts that the control inputs (u1to u5), computed in
the latent space and mapped back to the EEG domain, remained
bounded and stable. Together, these results validate both the
theoretical controllability and practical performance of the LQR
controller in regulating neural dynamics.

4 Discussion

This study demonstrates the utility of a Koopman-based
linearization framework for analyzing preparatory EEG dynamics
in PD under GVS. While EEG is not a standard clinical
tool for diagnosing or monitoring PD—as clinical evaluation
remains the gold standard—it provides valuable non-invasive
access to large-scale cortical dynamics., for investigating how
interventions such as GVS modulate preparatory motor activity.
Prior work within our research group has established the
behavioral benefits of GVS, particularly using the same dataset
and motor execution task analyzed in this study (Lee, 2019).
High-frequency GVS (50–100 and 100–150 Hz) has been shown
to enhance motor initiation, reduce movement latency, and
increase response vigor in PD patients, reinforcing its potential
as a neuromodulatory intervention. While previous research has
largely focused on behavioral outcomes, this study extends those
findings by providing a mechanistic explanation of the underlying
EEG-based neural dynamics. By leveraging Koopman operator
theory, we systematically examined how GVS influences cortical
stability, spatial organization, and oscillatory activity during
motor preparation. The deep Koopman model effectively reduced
the dimensionality of EEG signals while preserving essential

neural patterns, allowing for a comprehensive comparison of
temporal and spatial dynamics across seven experimental groups,
including HC and PD participants under different medication
and stimulation conditions. These findings offer new insights into
how GVS modulates motor-preparatory brain activity, bridging the
gap between observed behavioral improvements and their neural
underpinnings.

4.1 Koopman-based EEG findings and
their connection to motor performance

The eigenvalue analysis quantitatively measured stability,
growth, decay, and oscillatory properties of neural signals. Across
all experimental groups, predominantly stable Koopman modes
were observed, indicating consistent temporal dynamics in motor
preparation. While numerical variations in eigenvalues were noted
between groups, no statistically significant differences were found
in real or complex eigenvalues. These findings suggest that while
GVS and medication influence neural dynamics, the fundamental
stability of motor-preparatory signals and oscillatory characteristics
of dominant modes are preserved.

The spatial contribution analysis identified cortical regions
that contributed to the three-dimensional Koopman latent space,
linking these latent dynamics to motor preparation processes. Key
findings include:

• The largest deviations from HC baseline patterns were
observed in the PD-Off Sham group, indicating that
cortical dynamics in untreated PD significantly diverge
from normal motor preparation patterns.
• GVS1 and GVS2 reduced these deviations, with GVS1

achieving the closest alignment to HC spatial patterns,
suggesting that stimulation restores cortical activity
associated with motor preparation.
• The PD-On condition further reduced spatial deviations

compared to PD-Off, underscoring the role of medication
in partially restoring EEG-based motor-preparatory
dynamics.

Importantly, correlations between EEG spatial patterns and
behavioral metrics (Reaction Time, Squeeze Time, and Peak Time)
confirmed the functional relevance of these EEG transformations.
Closer alignment to HC EEG patterns was consistently associated
with improved motor outcomes, reinforcing the hypothesis
that GVS-induced EEG changes directly contribute to motor
performance improvements. These findings support the hypothesis
that GVS enhances motor function by restoring activity in
underactive brain regions in PD. The complex spatial patterns
observed in the latent space transformation (Supplementary
Figure 1) likely result from the intricate projection of subcortical
and cortical activity onto scalp EEG recordings. The reductions in
spatial deviations from normal under GVS and medication – and
the association with improved motor behavior– underscores the
deep Koopman framework’s capacity to capture meaningful latent
dynamics and highlights its potential for identifying therapeutic
targets and developing novel strategies for intervention.
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FIGURE 8

Trajectory tracking and control inputs for the LQR-controlled system. (A) Tracking performance: the trajectory tracking of the LQR-controlled
system is shown across the three latent dimensions (z1, z2, z3) of the Koopman space. The solid blue lines represent the reference trajectories
derived from the Healthy Control (HC) group, while the red dashed lines depict the uncontrolled PD-On dynamics. The green solid lines illustrate
the LQR-controlled system, which aligns closely with the reference trajectories, demonstrating effective control. (B) Control inputs: the mapped
control inputs (u1to u5) are shown in the original EEG space, transformed from the Koopman latent space using the DNN decoder. These control
inputs remain bounded and stable throughout the tracking period, highlighting the feasibility and robustness of this control strategy for practical
implementation.

4.2 How this study extends prior work

While previous research primarily focused on behavioral
outcomes (Lee, 2019), this study extends those findings by
providing a mechanistic explanation of the EEG-based neural
dynamics underlying GVS-induced motor improvements.

• Establishing a direct neurophysiological correlation of
GVS-induced behavioral enhancements. Prior studies
demonstrated that GVS enhances reaction time and motor
execution; this study links those improvements to specific
cortical activity changes during motor preparation.
• Introducing Koopman-based modeling as a novel

framework for EEG analysis. Traditional EEG methods
often fail to capture the full temporal structure of neural
dynamics, whereas the Koopman operator approach
enables linear tracking of these dynamics over time.
• Reinforcing the role of GVS in restoring cortical

motor-preparatory activity. The observed GVS-
driven shifts toward HC-like EEG patterns suggest
that neuromodulatory stimulation can help compensate
for PD-related motor deficits.

These findings highlight the potential of GVS as a
neuromodulatory therapy, with specific EEG-based biomarkers
that could be used to track and optimize stimulation protocols for
individualized interventions.

Importantly, the observed neural effects correspond closely
with previously reported behavioral improvements under GVS.
Prior work using the same dataset has shown that GVS enhances
reaction time, movement execution, and motor control in PD. The
present findings—demonstrating the restoration of HC-like EEG
spatial patterns—align with behavioral evidence that GVS reduces

bradykinesia and improves movement efficiency, reinforcing the
functional relevance of these EEG modulations.

Moreover, correlations between EEG spatial deviations
and behavioral performance metrics (Reaction Time, Squeeze
Time, and Peak Time) further support this relationship.
As EEG activity under GVS became more aligned with HC
patterns, participants exhibited enhanced motor performance,
suggesting that restoration of cortical dynamics is functionally
relevant for motor execution. These findings suggest that
GVS-induced EEG changes are not merely byproducts
of stimulation but actively contribute to improved motor
preparation and execution.

4.3 Theoretical and clinical implications

This study provides important theoretical and clinical
insights into the application of dynamical system modeling for
neuromodulation in PD. From a dynamical systems perspective,
motor control and preparatory activity can be conceptualized
as trajectories within a high-dimensional state space, where
the system transitions through preparatory states to achieve
desired motor outcomes. The Koopman framework allows
for:

• A mathematically rigorous representation of EEG signals,
preserving latent motor-preparatory dynamics.
• Potential applications in real-time tracking and

intervention, such as Koopman-based models can
facilitate predictive modeling and closed-loop control of
neural activity.
• These findings suggest that GVS, in combination with

EEG-informed modeling, could serve as a personalized
neuromodulation strategy to optimize treatment for PD.
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In a broader context, this study addresses the challenge
of interpreting high-dimensional neural activity, particularly in
the context of motor impairments in PD. While methods
such as Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) simplify neural data, they often fail
to capture the temporal evolution and dynamic interactions
of neural systems under non-stationary conditions. The deep
Koopman-based framework combines the representational power
of deep learning with the interpretability of dynamical systems,
enabling robust modeling of non-linear EEG dynamics. This
approach facilitates tracking and predicting neural activity over
time and offers opportunities to reconfigure these dynamics
through feedback and control strategies (Acharya et al., 2022),
advancing therapeutic interventions for PD.

4.4 Methodological considerations and
limitations

4.4.1 EEG channel selection and dimensionality
reduction

The decision to group 27 EEG electrodes into five anatomically
defined ROIs was based on neurophysiological, computational,
and methodological considerations, ensuring a balance between
model interpretability, efficiency, and robustness. This approach
aligns with the study’s goal of capturing group-level motor-
preparatory dynamics, rather than focusing on isolated electrode-
level variations.

• Neurophysiological Relevance: Motor-preparatory EEG
activity is distributed across functionally coordinated
cortical regions, rather than being confined to single
electrodes (Churchland et al., 2010; Michely et al., 2015).
ROI-based grouping allows for regionally specific analysis,
aligning with established neurophysiological frameworks.
• Minimizing Redundancy: EEG signals exhibit spatial

correlations due to volume conduction, meaning that
adjacent electrodes often capture overlapping neural
activity. ROI averaging reduces redundancy and enhances
interpretability in spatial contribution analysis.
• Computational Efficiency and Model Stability: Directly

applying the Deep Koopman model to all 27 channels
would significantly increase input dimensionality,
potentially requiring a higher-dimensional latent space
and leading to training instability. Using five averaged
signals ensures a computationally feasible representation
while preserving key EEG features.

Additionally, rigorous data preprocessing, including artifact
removal and 6-fold cross-validation, ensured that averaged signals
remained representative and generalized well across subjects. While
increasing spatial resolution by using all 27 channels could offer
finer detail, preliminary tests indicated that expanding input
dimensionality without adjusting the latent space structure reduced
model stability.

Future work could explore adaptive channel selection
strategies, sparse learning techniques, or channel-wise Koopman

modeling to refine individualized cortical representations while
maintaining computational feasibility.

4.4.2 Identifiability and comparability of
Koopman latent representations

Since each experimental group’s Koopman model was trained
independently, the resulting latent spaces exist in relative
coordinate systems rather than a shared absolute reference
frame. This means that direct comparisons of latent feature
positions across groups are not meaningful, as differences may
arise from model-specific encodings rather than underlying
neurophysiological distinctions.

Rather than interpreting latent space geometry in absolute
terms, this study prioritizes preserving key temporal dynamics
(eigenvalue analysis) and linking latent representations to
EEG spatial contributions as a means of neurophysiological
interpretation. The spatial contribution analysis, which anchors
latent dynamics in the EEG observational space, provides a robust
framework for examining group-level differences while mitigating
the effects of coordinate system variability in latent representations.

Future work could explore shared embedding constraints, joint
training strategies, or higher-dimensional latent representations to
enhance identifiability and further refine the relationship between
latent space geometry and underlying neural mechanisms.

4.4.3 Validation of Koopman representations in
EEG dynamics

The Deep Koopman model was validated through multiple
analytical approaches to ensure that the latent space representations
captured meaningful neural oscillatory dynamics relevant to motor
preparation. The model’s performance was assessed using:

• Reconstruction Accuracy: High fidelity EEG
reconstructions (Figure 3B) and low test errors
(Supplementary Table 2) confirm that the model preserves
the essential temporal and spatial structure of EEG signals,
including oscillatory components.
• Temporal Dynamics via Eigenvalues: The presence

of complex-conjugate eigenvalues across all groups
(Figure 5) indicates that the model captures oscillatory
interactions alongside non-oscillatory trends, reflecting
expected neural behavior.
• Prediction Performance: The model’s ability to propagate

latent EEG dynamics forward in time (Figure 4) suggests
that it preserves underlying temporal evolution and
transient state changes in neural activity.
• Spatial Contributions and Functional Relevance: The

latent space representations align with EEG-based
spatial activation patterns (Figure 7) and correlate
with motor behavior metrics (Table 1), reinforcing the
neurophysiological validity of the extracted dynamics.

While this study focused on real EEG data, future work
could incorporate synthetic neural oscillatory systems to
further characterize the model’s sensitivity to specific dynamical
transitions, such as shifts between synchronous and asynchronous
states. The current findings provide strong evidence that the
Koopman framework effectively captures functionally relevant
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latent neural representations, and additional numerical validation
would further enhance its applicability in modeling complex
neural dynamics.

4.5 Future directions and conclusion

While this study provides strong evidence for EEG-based
mechanisms of GVS-induced motor improvements, several areas
remain for future investigation:

• Subject-specific modeling: Future work should explore
individualized EEG responses to GVS, moving beyond
group-level analysis to enable personalized interventions.
• Optimization of stimulation parameters: This study

focused on specific GVS waveforms; future research should
explore alternative stimulation paradigms to maximize
therapeutic benefits.
• Validation in broader clinical settings: The Koopman

framework should be tested in larger patient cohorts
and different experimental conditions to establish its
robustness and translational potential.

Despite these limitations, this study introduces a novel and
practical approach to integrating Koopman modeling into brain
stimulation research. The observed associations between EEG-
derived latent dynamics and motor behavior highlight the potential
of Koopman method for designing advanced stimulation strategies
in PD. These findings provide a strong foundation for future
research aimed at leveraging dynamical systems modeling for
optimizing neuromodulatory interventions.

Data availability statement

Data supporting the findings of this study will be made available
upon reasonable request to the corresponding author. The code is
available in the GitHub repository at https://github.com/niktaaan/
DeepKoopman_PD.

Ethics statement

The studies involving humans were approved by Clinical
Research Ethics Board at the University of British Columbia (UBC).
The studies were conducted in accordance with the local legislation
and institutional requirements. The participants provided their
written informed consent to participate in this study.

Author contributions

MK: Writing – review and editing, Writing – original draft.
MSM: Writing – review and editing. SSo: Writing – review and
editing. SSa: Writing – review and editing. EA: Writing – review
and editing. MF: Writing – review and editing. AC: Writing –
review and editing. SL: Writing – review and editing. AL: Writing –
review and editing. MJM: Writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was partly
funded through the John Nichol Chair in Parkinson’s Research
(MJM). This work was supported by resources made available
through the Dynamic Brain Circuits cluster and the NeuroImaging
and NeuroComputation Centre at the UBC Djavad Mowafaghian
Centre for Brain Health (RRID SCR_019086).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2025.1566566/full#supplementary-material

Frontiers in Human Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1566566
https://github.com/niktaaan/DeepKoopman_PD
https://github.com/niktaaan/DeepKoopman_PD
https://scicrunch.org/resolver/RRID~SCR_019086
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1566566/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1566566/full#supplementary-material
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1566566 May 10, 2025 Time: 18:22 # 17

Kia et al. 10.3389/fnhum.2025.1566566

References

Acharya, G., Sebastian, F. R., and Erfan, N. (2022). Brain modeling for control: A
review. Front. Control Eng. 3:1046764.

Alm, P. (2021). The dopamine system and automatization of movement sequences:
A review with relevance for speech and stuttering. Front. Hum. Neurosci. 15:661880.
doi: 10.3389/fnhum.2021.661880

Berger, E., Sastuba, M., Vogt, D., Jung, B., and Ben Amor, H. (2015). Estimation of
perturbations in robotic behavior using dynamic mode decomposition. Adv. Robot. 29,
331–343. doi: 10.1080/01691864.2014.981292
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