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Neural markers of visual function in age-related macular degeneration (AMD)
allow clinicians and researchers to directly evaluate the functional changes in
visual processing which occur as a result of the progressive loss of a�erent
input from the macula. Unfortunately, few protocols exist that elicit such
neural markers, and most of these are poorly adapted to AMD. Here, we
propose a novel method of embedding frequency tags into full color and
motion videos by periodically manipulating the contrast of visual information of
di�erent spatial frequencies at di�erent temporal frequencies. These videos elicit
steady-state visual evoked potentials (SSVEPS) in viewers which, whenmeasured
using electrophysiological neuroimaging methods, independently represent the
responses of populations of neurons tuned to the tagged spatial frequencies. We
used electroencephalography (EEG) to record the SSVEPs of 15 AMD patients
and 16 age-matched healthy controls watching a 6-min series of natural scene
videos filtered with this spatial frequency tagging method. Compared with
healthy controls, AMD patients showed a lower SSVEP to high spatial frequency
information, and a stronger response to the low spatial frequency information in
the video set. The ratio of the SSVEP to lower relative to higher spatial frequency
information was strongly predictive of both visual acuity and contrast sensitivity,
and the topographic distributions of these responses suggested retinotopic
reorganization of the neural response to spatial frequency information.
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Introduction

Age related macular degeneration (AMD) is the most common cause of vision loss
in older adults, affecting 8.7% of people aged 45–85 years globally (Stahl, 2020). This
amounted to an estimated 196million people suffering fromAMD in 2020, with a projected
increase to 288 million people by 2040 (Wong et al., 2014). This chronic disease affects the
macular region of the retina and is characterized by progressive loss of central vision (Lim
et al., 2012; Rattner and Nathans, 2006). AMD can severely impinge on patient’s quality
of life and independence by interfering with visual discrimination tasks such as reading
(Varadaraj et al., 2018), face and emotion recognition (Boucart et al., 2008), object and
scene recognition (Boucart et al., 2013; Thibaut et al., 2018), interaction with electronic
devices (Taylor et al., 2016), and driving (Rovner and Casten, 2002; Wood et al., 2018).

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2025.1569282
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2025.1569282&domain=pdf&date_stamp=2025-05-01
mailto:angie.renton23@gmail.com
https://doi.org/10.3389/fnhum.2025.1569282
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1569282/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Renton et al. 10.3389/fnhum.2025.1569282

Clinicians and researchers who work to understand and treat AMD
require accurate and comprehensive measures of AMD patients’
changing visual function. Central vision loss is known to result in
structural and functional changes in the brain’s visual system, yet
standard visual function tests rarely directly measure these changes
(Baker et al., 2005; Broadhead et al., 2020; Chandramohan et al.,
2016; Cheung and Legge, 2005; Ramanoël et al., 2018). In turn,
researchers still have a limited understanding of what adaptive vs.
maladaptive changes in neural activity look like in the face of central
vision loss (Rosa et al., 2013). To address this gap, we developed and
tested a novel neuroimaging-based visual function test for AMD
which harnesses visual evoked neural responses to full-color natural
scene videos.

The macular region of the retina is characterized by a
high density of both light sensitive photoreceptor cells and the
retinal ganglion cells they innervate, with the density of these
photosensitive cells decreasing systematically toward the peripheral
visual field. The macula thus senses changes in light and color on
a fine scale, allowing the brain to resolve visual details such as
the shapes of letters on a page (Ambati and Fowler, 2012). Spatial
frequency, the rate at which information changes over space, is
therefore differentially detectable across the visual field, with the
highest spatial frequencies detectable in central vision (Drasdo
et al., 2007; Hadjikhani and Tootell, 2000; Ramanoël et al., 2018).
In turn, spatial frequency sensitivity in the brain’s visual system
is retinotopically mapped, such that neurons sensitive to higher
spatial frequencies are more populous in regions of the cortex
responsive to the central visual field, and neurons sensitive to lower
spatial frequencies are more populous in regions of the cortex
mapped to the periphery of the visual field (Kauffmann et al., 2014).
The detection of contrasted edges at distinct spatial frequencies is
one of the first steps in hierarchical visual processing; with this
information feeding forward through the visual system to allow for
more complex perceptual processing of visual information (Tovée,
1996). As such, the deafferentation of visual cortical tissue mapped
to the macular region of the visual field should be expected to have
a profound effect on neural activity in the brain’s visual cortex.

There is substantial evidence suggesting that AMD patients
undergo both structural and functional changes in vision. Several
studies have shown that long-term AMD patients present with
atrophy within cortical areas retinotopically mapped to central
vision (Boucard et al., 2009; Prins et al., 2016) and cortical
thickening in regions mapped to more peripheral regions of the
visual field (Burge et al., 2016). The cortical thickening is suggestive
of compensatory changes as visual perceptual processing adjusts to
the loss of central visual input. Indeed, many functional studies in
both animals and humans support this notion; finding evidence of
retinotopic reorganization following central vision loss (see Cheung
and Legge, 2005 for a review). These changes can be seen even in
short term adaptation to scotopic vision, such that neurons whose
receptive fields overlap with a central scotoma shift their receptive
fields to encompass a larger area centered more peripherally in the
visual field (Barton and Brewer, 2015). This adaptive reorganization
has been shown to be more dramatic in long-term AMD patients,
with visual cortical areas which map to central vision in healthy
adults found to respond to peripheral visual stimulation in AMD
patients (Baker et al., 2008, 2005; Dilks et al., 2014; Liu et al.,

2010; Plank et al., 2021; Schumacher et al., 2008). Further evidence
for functional reorganization comes from the tendency of AMD
patients to develop a preferred retinal locus (PRL); i.e., a location in
the peripheral retina adopted as pseudo-fovea by the oculomotor
system, setting a reliable and automatic new location for fixation
(Crossland et al., 2011; Maniglia et al., 2023, 2020; Rees et al.,
2005). Psychophysical testing has revealed that visual perceptual
function in the visual field around the PRLmimics that of the visual
field around the fovea in healthy vision (Chen et al., 2019; Chung,
2014). Together, these results strongly suggest that the visual system
undergoes functional reorganization to accommodate the loss of
central visual information from the retina.

The functional changes in neural activity found for AMD
patients can be either adaptive or maladaptive, either allowing
patients to optimize their remaining visual function or engendering
ancillary visual perceptual pathologies. As an example of an
adaptive change, Shanidze and Verghese (2019) found that motion
discrimination is well preserved in AMD patients. This is likely
because motion sensitive areas of the visual cortex are typically
innervated by the magnocellular pathway, which largely contains
information from peripheral vision (Hadjikhani and Tootell, 2000).
Crucially, the authors found a positive correlation between motion
discrimination performance and the time since AMD diagnosis,
suggesting that patients can adapt to improve their preserved
visual function as their ability to discriminate central visual
information wanes. By contrast, up to 40% of ocular pathology
patients develop a condition called Charles Bonnet syndrome as
a result of the loss of part of their visual field (Teunisse et al.,
1996). Charles Bonnet patients, who have no comorbid psychiatric
conditions, experience vivid long-term hallucinations ranging from
simple geometric shapes, patterns, and flashing lights to complex
hallucinations of animals, faces and even entire scenes (ffytche,
2009; Santhouse et al., 2000; Christoph et al., 2025). Painter et al.,
2018 found compelling evidence to support a long-held hypothesis
that Charles Bonnet syndrome in AMD can be attributed to
cortical hyperexcitability, as Charles Bonnet AMD patients display
strikingly elevated visual cortical responses to peripheral visual field
stimulation compared with control AMD patients. These examples
highlight the importance of visually evoked neural activity in
forming a full picture of any AMD patient’s visual function.

To date, several tests of visual function have been developed
that directly measure visually evoked neural activity. For example,
steady-state visual evoked potential (SSVEP) measures of visual
acuity use electroencephalography (EEG) tomeasure evoked neural
responses to a sweep of simple pattern reversing grating stimuli
across a range of spatial frequencies. Sweep protocols aim to
harness these SSVEPs at the grating flicker-frequency to measure
the threshold highest granularity of visual information that a
patients’ visual cortex can resolve (Hamilton et al., 2021a). If a
patient has lost the ability to resolve a grating of a particular high
spatial frequency, the pattern-reversal flicker appears as a uniform
gray surface and will not evoke an SSVEP. Unfortunately, while
visual acuity scores derived with this SSVEP thresholding approach
align well with objective behavioral measurements in general, this
correlation is less strong for AMD patients (Hamilton et al., 2021b).
Neuroimaging-based protocols that specifically aim to measure
visual field losses rely on similar principles to sweep SSVEP
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protocols, typically presenting a dartboard-like checkerboard
composed of concentric rings of black and white gratings. These
methods measure neural response to pattern reversals in specific
regions of the checkerboard stimulus (Bach, 2006; de Santiago et al.,
2019; Horn et al., 2016; Liu et al., 2021). These techniques require
patients to maintain fixation at the center of the display, to ensures
that patients’ visual fields line up correctly with the checkerboard
stimulus. Unfortunately, this poses a significant barrier for AMD
patients who struggle to maintain central fixation due to their
central vision loss. Thus, current neuroimaging-based measures of
visual function are relatively poorly adapted to AMD.

Currently available neuroimaging measures of visual function
share two additional limitations in their applicability to AMD
patients. The first is that they rely on detecting a threshold spatial
frequency or location at which neural responses are no longer
detectable. However, many visual impairments will lead to reduced,
heightened or shifted (i.e., in time or location in the brain) neural
responses rather than a simple absence of response. These more
subtle shifts in neural activity are not measured by the standard
application of currently available tests. The second limitation is
that these protocols rely on simple monochrome visual stimuli,
such as gratings and checkerboards. These high contrast stimuli
optimally stimulate early visual cortical activity and maximize the
signal-to-noise ratio or the measured neural response. However,
these stimuli also have low ecological validity as test stimuli, and
have been shown to be less effective than more complex visual
stimuli in stimulating neural activity through purely extra-foveal
stimulation (Nemrodov et al., 2024). Natural visual scenes contain
color and motion information and have a complex hierarchical
mathematical structure; i.e., spatial frequencies are grouped across
time and space following scale-invariant fractal geometry, and
exhibit a 1/f power law (Zetzsche, 2005). The human brain is
optimized to this structure. Further, due to both the anatomical
structure of the eye and the functional organization of the visual
system, there are retinotopic spatial and temporal patterns to color,
motion, and spatial frequency sensitivity which cannot be detected
using monochrome patterns. For example, lower spatial frequency
information, largely sensed in peripheral vision, is conveyed to
the visual cortex through a faster cellular pathway than the higher
spatial frequency information detected in central vision (Johnson
and Johnson, 2014; Neri, 2014; Roberts et al., 2022). Low spatial
frequency information, processed earlier, is used to extract scene
context which is fed back down the visual hierarchy to allow
predictive guidance in the processing of high spatial frequency
information (Kauffmann et al., 2014). This fast and automatic
feedforward/feedback process strongly impacts neural responses
to visual information of distinct spatial frequencies but cannot be
measured using simple monochrome pattern stimuli.

Here, we developed and benchmarked a novel neuroimaging-
based visual function test which aims to address limitations in past
neuroimaging measures of visual function in AMD. We propose
a novel method to embed frequency tags within full-color and
motion natural scene videos, such that the contrast of information
at different spatial frequencies is periodically modulated at different
temporal frequencies to elicit SSVEPs. Next, we propose a test of
visual function in AMD which measures the changing sensitivity
to spatial frequency information in these videos. This test relies

on the retinotopic organization of spatial frequency sensitivity and
would thus allow for the identification of central visual field deficits
while participants freely and naturally shift their gaze across the
display. We hypothesize that the novel video spatial frequency
tagging method will evoke SSVEPs, allowing for concurrent but
independent measurement of the population responses of neurons
tuned to each of the tagged spatial frequencies. Further, we
hypothesize that compared with healthy, age-matched controls,
AMD patients should present a reduced SSVEP to higher spatial
frequency information due to the loss visual sensitivity in central
vision, but a larger response to lower spatial frequency information
due to adaptive changes in visual perceptual processing. SSVEPs are
particularly well suited to this method because of their resilience to
oculomotor artifacts. Eye-movements and blinks minimally affect
SSVEP amplitudes and these minimal effects are distributed across
tagged frequencies, adding noise equally to all conditions. Thus,
changes in subjects’ gaze patterns cannot induce artifacts that would
alter the relative power of SSVEPs to higher vs. lower spatial
frequencies. To assess the hypotheses, we created a stimulus set in
which we tagged two spatial frequency ranges: a higher range which
should only be resolvable given the density of retinal ganglion cells
within paracentral vision (<8◦/visual angle within visual field,>3.2
c/d), and a lower range to which cortical regions retinotopically
mapped to peripheral vision should be most sensitive (<3.2 c/d,
Metha and Lennie, 2001). In total 15 patients diagnosed with
bilateral dry AMD and 16 age-matched healthy controls viewed
a 6-min series of these spatial frequency tagged videos while we
recorded EEG data to allow for the measurement of SSVEPs. In
analyzing these data, we found that the novel video tagging method
elicited SSVEPs at the tagged frequencies. In turn, we showed that
these SSVEPs were sensitive to the changes in visual processing
associated with AMD. We therefore propose that video-evoked
SSVEPs to spatial frequency information in natural scenes can be
used as a neural marker of visual function in AMD.

Methods

Participants

N = 15 patients diagnosed with bilateral dry AMD (13 females,
age M = 74.75 years, SD = 6.81) and 16 healthy older adults (14
females, ageM= 61.3 years, SD= 3.3) volunteered to participate in
the experiment after providing informed consent. Healthy controls
were recruited through Institutional Review Board (IRB)-approved
recruitment materials including flyers, online advertising on social
media platforms, and business cards. AMD patients were referred
and pre-screened by an ophthalmologist to the research team who
completed the screening and enrolment process. AMD patients
were included based on their age (at least 50 years old), a confirmed
diagnosis of bilateral Dry AMD by their ophthalmologist, corrected
visual acuity in both eyes between 20/30 and 20/100, Mini-Mental
State Exam (MMSE) score of at least 25, and ability to provide
written informed consent. Geographic atrophy (GA) was present
in many, but not all of the AMD patients (see Figure 1). No
data were collected on whether any of the AMD patients who
participated in this study experienced Charles Bonnet Syndrome.
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FIGURE 1

Optical coherence tomography (OCT) images of left and right eyes in example patients. Visual function scores for these patients can be found in
Table 2.

Healthy controls were included based on age (at least 50 years old),
best corrected visual acuity better than 20/25, and no history of
any eye or optic nerve conditions. Participants were screened for
psychiatric neurological conditions that could affect their vision or
cognitive abilities, photosensitivity to flickering images and lights
and history of epilepsy or seizures, no recent eye exam within the
last 2 years, evidence of wet AMD or active neovascular leakage,
any implanted electronic devices, history of cardiac problems, and
any active infection or inflammation in the eyes. AMD participants
were paid $88/h and healthy controls were paid $38/h for their
participation. AMD patients performed this experiment as part of
a larger battery of tests not presented here. The study was approved
by the Biomedical Research Alliance of New York (BRANY) Ethics
Committee, and the experiment was performed according to the
relevant guidelines and regulations.

Experiment design

All participants were instructed to freely view a 6-min series
of frequency-tagged natural-scene videos while we recorded EEG
data. Participants were not instructed to fixate at any position
on the display. The video set consisted of 6 unique, 7.5 s videos
(see Figure 2a for a sample frame from each video or visit
https://osf.io/rp4q5/to view videos). For each of these videos,
we frequency-tagged relatively higher and relatively lower spatial
frequency information (>3.2 cyc/deg, <3.2 cyc/deg), manipulating

the contrast of information within these spatial frequency ranges
at different rates (7Hz, 9Hz) to induce SSVEPs. We choose
3.2 cyc/deg as the threshold spatial frequency to which reginal
ganglion cells retinotopically mapped to regions of the visual field
outside of paracentral vision (>8◦/visual angle) should no longer
be sensitive. Temporal frequency and spatial frequency (SF) were
counterbalanced, such that each unique video was presented under
two conditions (Condition 1: high SF−7Hz, low SF−9Hz | Cond
2: high SF: 9Hz, low SF−7Hz). The 6-min series was therefore
composed of each of the 6 unique videos, presented under each of
the 2 tagging conditions, repeated 4 times per condition for a total
48 video presentations. Videos were presented in random order
with no breaks between videos.

Frequency tag embedding

The novel spatial frequency video tagging method presented
here relies on embedding temporal frequency tags into the spatial
frequency structure of natural scene videos. To achieve this,
we applied a steerable 2D wavelet pyramid method to alter the
power with which different spatial frequencies and orientations
were represented in each frame (Karasaridis and Simoncelli,
1996; Simoncelli et al., 1992; Simoncelli and Freeman, 1995).
This method was used instead of a conventional 2D Fast-Fourier
Transform (FFT), because it allows for segmentation across both
orientation and spatial frequency; thus, creating the possibility to
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FIGURE 2

Overview of visual stimulus design. (a) Sample frames of each of the 6, 7.5 s natural scene video clips used in the experiment. Participants were free
to shift their gaze at will. (b) Illustrative steered 2D wavelet functions used for signal embedding. Each frame was decomposed into 5 spatial
frequency bands at 8 di�erent orientations to allow the contrast of these visual features to be independently manipulated. (c) By manipulating the
power of di�erent spatial frequencies and orientations in an image’s steerable wavelet pyramid, it is possible to reconstruct the image with altered
contrast in specific orientation and spatial frequency bands. For the example image shown here, this illustration shows the e�ect of applying this
approach to filter out (d) relatively higher or lower spatial frequencies at all orientations, or (e) each of the two oblique orientations at all spatial
frequencies. (f) To filter out orientation information, a filter is applied across orientations, smoothly down-regulating the power of filtered-out
orientations. These are the filters used to generate the images shown in (e, g). An example video frame before and after filtering to embed the flicker
signal. This example filtered frame highlights low spatial frequency information.

flexibly choose how different orientations are tagged. Indeed, this
method could also be applied purely to tag oriented information,
regardless of spatial frequency. Steerable wavelet transforms involve
convolving an input signal with a “mother wavelet” function,
which is scaled (stretched wider and narrower) to capture the
input signal at different spatial frequencies, and rotated to respond
to different orientations at a given spatial frequency (Van De
Ville and Unser, 2008). Here, we used a Simoncelli isotropic

wavelet function as the mother wavelet (Figure 2b) to build the
steerable wavelet pyramid, which provides good estimates for
early visual processing (Portilla and Simoncelli, 2000). One of
the computational benefits of this method is that the orientation-
spatial frequency space representation is perfectly invertible, and
thus it is possible to adjust the power with which different spatial
frequencies and orientations are represented across the image and
then reconstruct meaningful images incorporating these changes.
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For example, consider the image in Figure 2c, which varies in
both spatial frequency and orientation over space, for illustrative
purposes. Using the 2-D steerable wavelet pyramid, it is possible to
reconstruct the image after suppressing the power within specific
spatial frequency (Figure 2d) or orientation (Figure 2e) channels.
When the image is filtered for high spatial frequencies (Figure 2d,
left), high spatial frequency regions and edges throughout the
image are emphasized and smooth, low frequency areas are filtered
(averaged into gray). In contrast, when the image is filtered for low
spatial frequencies (Figure 2d, right), high spatial frequency regions
turn into gray and only the larger spatial structures are preserved.
Similarly, areas with oriented edges are differentially preserved or
filtered depending on the orientation of the filter (Figure 2e). The
steerable wavelet decomposition for this project was applied using
the Steerable Wavelet Transform Toolbox in MATLAB (Püspöki
andUnser, 2015; Unser and Chenouard, 2013).We recommend the
Plenoptic toolbox for implementation in Python, which we have
used successfully for the same purpose in other projects (Duong
et al., 2024).

To apply this method, we converted each full-color video
frame to hue, saturation, value (HSV) color space and extracted
the value (luminance) channel (see example single frame in
Figure 2f). We parsed this luminance information to a 2D steerable
wavelet pyramid to extract the power within 5 spatial frequency
bands for 8 orientations (0π-7π/8, Figure 2b). This allowed us
to separate out spatial frequency information larger and smaller
than the threshold (3.2 cyc/degree). For each of these spatial
frequency ranges, we sought to specifically tag information at
oblique (rather than cardinal orientations). In general, cardinally
oriented information is more prevalent in natural scenes, and in
turn the visual system is more sensitive to visual information at
cardinal orientations (Tovée, 1996). Thus, applying the embedded
tag to obliquely orientated information allowed us to probe neural
responses to distinct spatial frequencies while minimizing the
semantic distortion to the natural scene videos. This method could
also be applied to tag cardinal orientations to elicit a stronger
response. To achieve the tagging of oblique information, we applied
a filter to scale the power across the 8 recovered orientations (for
the relevant spatial frequency band) according to a phase of the
embedded frequency tag (7 or 9Hz sin wave). The power filter F
was computed as shown in Equation 1:

F = (2A− 1) × |sin 2θ | (1)

where A is the amplitude of embedded sinusoidal flicker signal,
which oscillates between 0 and 1, and theta is the orientation
of the tagged information. See Figure 2f for an illustration of
this type of power filter. Effectively, this filter up and down
regulated information at oblique orientations according to the
phase of the flicker signal, while leaving information cardinal
angles unmodulated over time. Note that the filter was applied
to the full frame, and any natural scene video will, by definition,
also vary in orientation and spatial frequency power over time
and space. However, as these natural variations are stochastic
in nature, averaging the neural response across successive video
presentations allows for the exclusive measurement of signals
time-locked to the embedded flicker signal (e.g., those evoked by
the embedded changes in contrast of specific orientations and

spatial frequencies). After applying the filters, we reconstructed
the luminance information using the modulated spatial frequency
pyramid. In turn, this new “Value” channel (HSV) was recombined
with its original hue and saturation channels and converted back
to RGB color space for presentation during the experiment. See
Figure 2f for an example of one such modulated frame, noting that
different orientations and spatial frequencies will be more relevant
in different frames depending on the interactions of the two
embedded frequency tags. Each raw video clip was subjected to this
procedure twice, once to tag relatively higher spatial frequencies at
7Hz and lower spatial frequencies at 9Hz, and a second time to
tag relatively higher spatial frequencies at 9Hz and lower spatial
frequencies at 7Hz. See Supplementary material to view the spatial
frequency tagged videos.

Behavioral visual function testing

All AMD patients and healthy controls underwent behavioral
visual function testing to assess visual acuity (logMAR) and
contrast sensitivity (logCS) using the Freiburg vision test (FrACT,
Bach, 2024, 1996). Testing was performed from a viewing distance
of 93 cm.

Other cognitive tasks

In addition to this experimental task, AMD patients in this
study also performed a larger battery of cognitive tasks which
were out of the scope of this research question. The study was
performed over 3 consecutive days, with sessions lasting 1–2 h
per day. Behavioral visual function tests were performed at the
beginning of the first session and at the end of the last session.
These included FrACT and MNRead (Calabrèse et al., 2016). The
visual function scores reported for this experiment were those
gathered using FrACT at the beginning of the first session. On
each of the three days participants performed a lateral masking
task requiring participants to identify low-contrast Gabor patches
in crowded visual displays and, a letter identification task requiring
participants to report the identity of letters which appeared for
only 100ms. These tasks are described in more detail by (Maniglia
et al., 2020). Participants also performed a novel reading-speed task,
in which they were asked to make speeded responses identifying
the semantic grouping of single printed words. These words could
be either “natural” (e.g., leaf, mouse, lake) or “man-made” (e.g.,
hammer, car, computer). The video-watching task which comprised
this experiment was presented as the first task on the second day of
the study. It should be noted that the lateral masking task which
was presented on each day is a visual perceptual learning task with
the aim to improve visual discrimination performance. However,
the video-watching task was presented after only one experimental
session, whereas training effects for this task have previously been
reported after 24 sessions (Maniglia et al., 2020). Statistical analysis
found no significant difference in visual function scores from the
first to the third day of this study, thus any results should not be
unduly biased by the inclusion of the lateral masking task in the
experimental protocol.
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Display computer specifications

All displays were presented at a viewing distance of 64 cm
on Alienware 27 inch AW2721D monitor with a refresh rate of
120Hz and resolution of 2,560 x 1,440. Stimuli were presented
using custom software incorporating PsychoPy video presentation
software (Peirce et al., 2019). The experiment was run on a Lenovo
Thinkpad laptop and Lambda workstation.

EEG recording

EEG data were sampled at 1,000Hz using a BioSemi Active
Two amplifier (BioSemi, Amsterdam, Netherlands) from 68 active
Ag/AgCl scalp electrodes arranged according to the international
standard 10–20 system for electrode placement in a nylon head
cap (Oostenveld and Praamstra, 2001). Four electrooculography
(EOG) electrodes were used to record eye-movement muscle
artifacts. The Common Mode Sense (CMS) and Driven Right Leg
(DRL) electrodes were placed to the left and to the right of POz,
respectively. Eye movements were recorded using the Tobii Pro
Fusion 250Hz eye-tracking system and synchronized with the EEG
data using Lab Streaming Layer (LSL, Wang et al., 2023).

EEG analysis

Pre-processing
EEG data were pre-processed for offline analysis using the

MNE-Python package (Gramfort et al., 2013). Noisy electrodes,
identified via visual inspection by an expert, were replaced with
cubic-spline interpolation based on the nearest channels. A tutorial
outlining this process can be found within the documentation
for the MNE MEG and EEG Analysis and Visualization toolbox.
EEG data were average-referenced and bandpass filtered using a
zero-phase bandpass filter from 1–100Hz. Additionally, a notch
filter at 60Hz was applied to eliminate line noise. An independent
component analysis (ICA) with 20 components was used to
eliminate oculomotor artifacts, using the MNE-Python automated
algorithms to identify and exclude components likely to be blink
artifacts, eye-movement artifacts, or muscle noise.

SSVEP analysis
For each 7.5 s video, we computed a 7 s epoch beginning

0.5 s after video onset. For each of these epochs, EEG data
across all channels were linearly detrended and baseline corrected.
Videos on which the absolute amplitude at any occipitoparietal
electrode (Iz, I1, I2, Oz, O1, O2, POz, PO3, PO4, PO7, PO8, Pz,
P1, P2, P3, P4) exceeded 150 µV were excluded from further
analysis. Using these epochs, we averaged across all videos for
each of the two spatial frequency-flicker frequency conditions
(lower SF 7Hz, higher SF 9Hz | lower SF 9Hz, higher SF
7Hz). Thus, we computed ERPs representing the neural activity
synchronized to the embedded flickering signals, and averaged out
spontaneous endogenous neural activity which changed in phase
across successive video presentations. These ERPs were submitted

to Fast Fourier Transforms (FFTs), and SSVEPs were taken
as the average power across the two occipitoparietal electrodes
that showed the strongest SSVEP for each flicker frequency
(7Hz, 9Hz). As flicker frequency and spatial frequency were
fully counterbalanced, this approach optimized SSVEP amplitudes
equally for the relatively lower and higher spatial frequencies. Signal
to noise ratio (SNR) was calculated by dividing the power at each
frequency by the average of the four neighboring frequencies on
either side (Meigen and Bach, 1999). Given the signal length of 7 s,
this corresponded to 0.57Hz. This was then converted to decibels
as shown in Equation 2:

SNR (dB) = 10 log10(SNR) (2)

Machine learning

Electrode sites used in machine learning analyses were: Iz,
I1, I2, Oz, O1, O2, POz, PO3, PO4, PO7, PO8, Pz, P1, P2, P3,
P4. Regression was implemented using Lasso (L1) regularized
regression, with parameters estimated using the union of intersects
(UoI) method (Sachdeva et al., 2021). UoI Lasso regression
was implemented through the PyUoI package, using the default
parameters with the exception of stability_selection (Bouchard et al.,
2017; Sachdeva et al., 2021). The stability_selection parameter was
set to 0.5 to reduce overfitting by encouraging the selection of more
electrodes as features. We used 5-fold cross validation to estimate
goodness of fit on unseen data. Splitting the data into 5 groups,
we predicted visual acuity for the members of each group using
a model trained on data from the 4 remaining groups. Goodness
of fit was evaluated on these predictions using the coefficient of
determination (R2), confidence intervals on R2 were calculated as
per Cohen et al. (2013). 5-fold cross validation was fit using scikit-
learn. The K-nearest neighbors (KNN), logistic regression (LR)
and multi-layer perceptron classifiers were all fit using scikit-learn.
KNN was fit using 5 nearest neighbors. The MLP was trained
with two hidden layers (sizes: 10, 2) using Adam optimisation.
Logistic regression was fit using L1 regularization and the
liblinear solver.

Statistical tests

Statistical tests were conducted using the BayesFactor package
in R (Package version 0.9.2+, R version 3.6.1, Rouder et al., 2012).
Pairwise differences and differences between groups were assessed
using the JZS t-test (Rouder et al., 2009). Bayes factors for main
effects and interactions in Bayesian ANOVA models were assessed
by comparing the full model (main effects+ interaction+ random
effects) with themodel containing all effects bar the effect of interest
(Rouder et al., 2012). Bayes factors are reported with proportional
error estimates unless the estimate of proportional error was
<0.01%. Bayes factors are interpreted according to Jeffrey’s criteria
(Jarosz and Wiley, 2014), as follows:
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Data and code availability

Python code used to implement data analysis and R code used
to implement statistical analysis can be found at https://github.
com/MIPLabCH/VENM-AMD. The raw data supporting these
results are available upon request to the authors.

Results

Groupwise frequency tagging results

Here, we proposed a novel method of eliciting SSVEPs by
periodically altering the contrast of distinct spatial frequencies
in natural scene videos. Thus, we first sought to confirm
that the videos tagged using this method elicited SSVEPs. As
an initial step we investigated whether the video processing
method had embedded the frequency tags as intended. To this
end we submitted the processed videos to the 2D steerable
wavelet decomposition, extracting the power with which different
orientations and spatial frequencies were represented in each frame
(Supplementary Figure 1a). As expected for natural scenes, we
found that power peaked at the lowest spatial frequencies, with
progressively higher spatial frequencies less strongly represented
(1/f power distribution). Further, cardinal angles were more
strongly represented than obliques (Supplementary Figure 1b). To
interrogate the fidelity of the frequency tagging procedure we
computed the average power for oblique angles at each spatial
frequency in each video-frame and subjected this power to an
FFT. This procedure showed that the tags were embedded as
intended, with higher and lower spatial frequencies displaying
peaks in the power spectra for their tagged temporal frequencies
(Supplementary Figure 1c). As a point of interest, we performed
the same procedure for cardinal angles and found that the tags
were less strong, though still present (Supplementary Figure 1d).
Thus, for future studies intending to use this procedure to
investigate differences in orientation (rather than spatial frequency)
representation, we recommend a sharper cutoff in the filter used to
apply frequency tags across orientation than the sinusoidal taper
applied here.

Once we had satisfied that spatial frequency information in the
video set had been tagged as intended, we turned our attention
to the EEG data. Using these data, we computed an ERP for each
frequency-tagging condition (low SF 7Hz, high SF 9Hz | low SF
9Hz, high SF 7Hz), and subjected these ERPs to FFTs. Finally, we
computed the SNR (dB) across the frequency spectrums output
by the FFT. The grand-average frequency spectrums computed
using this method revealed SSVEPs at the tagged frequencies
(7Hz, 9Hz), for both AMD patients and controls (Figure 3a).
We next visualized the topographic distribution of the grand-
mean SSVEP (Db) across tagged frequencies (7Hz, 9Hz). In line
with previous frequency tagging protocols, SSVEPs were found to
peak at occipitoparietal electrode sites, indicating a visual cortical
response (Norcia et al., 2015; Renton et al., 2022, Figure 3b). Thus,
we concluded that the novel method of frequency tagging was
effective in eliciting SSVEPs.

Interestingly, we noted a topographical difference in the peak
of the SSVEP between AMD patients and healthy controls; on
average, the SSVEP for healthy controls peaked at the electrode
sites Oz, O1, and O2. By contrast, the SSVEP for AMD patients
was shifted anteriorly, toward the electrode sites POz, PO3, and
PO4 (Figure 3b). To investigate this further, we interrogated the
topographic distribution of the SSVEP separately for each spatial
frequency (high SF, low SF). This revealed that the topographic
difference was driven by the lower spatial frequency response;
while both AMD patients and healthy controls SSVEPs r to high
spatial frequencies peaked at the electrode site Oz, the lower
spatial frequency response was shifted anteriorly to POz in AMD
patients. This difference in response likely reflects the retinotopic
organization of the visual system; AMD patients progressively lose
the ability to resolve all information in central vision, and thus
this low spatial frequency information must be detected more
peripherally. Indeed, such anteriorly shifted topographies have
been linked to peripheral visual stimulation in a previous study
aiming to retinotopically map visually evoked responses in EEG
(Capilla et al., 2016). By contrast, the higher spatial frequencies
tagged in these video stimuli should only be possible to resolve
within the macular region of the eye and not in the periphery. Thus,
in line with these findings, we would expect the neural response
to high spatial frequencies to be reduced at all electrode sites in
AMD patients. These topographic differences represent compelling
first evidence of the efficacy of video spatial frequency tagging as a
neural marker for visual field loss in AMD.

We next sought to understand how, on average, AMD patients
differed from healthy controls in their SSVEPs to the spatial-
frequency tagged videos. For each participant, we computed an
SSVEP amplitude for each spatial frequency by taking the average
response across the two electrodes where the SSVEP peaked for
each tagged spatial frequency and flicker frequency condition (low
SF 7Hz, high SF 9Hz | low SF 9Hz, high SF 7Hz). We submitted
these SSVEPs (dB) to a Bayesian ANOVA with spatial frequency
(low SF, high SF) and group (AMD, control) as factors, and found
decisive evidence for an interaction between these two factors (BF10
= 3005.81 ± 3.64%, Figure 3c). Note that the terminology used to
describe the strength of evidence (e.g., decisive evidence) is derived
Jeffrey’s criteria (Jarosz andWiley, 2014). These criteria are outlined
in Table 1. Interestingly, there was only anecdotal evidence for an
effect of group on SSVEP (dB), such that AMD patients (M= 9.61,
SD = 4.29) did not differ significantly from controls (M = 11.40,
SD = 3.99) in the overall magnitude of their neural response to
the tagged videos (BF10 = 1.51 ± 23.87%, Figure 3d). This may be
surprising, as AMD patients progressively lose the ability to resolve
their central visual fields. In turn, less visual information innervates
the early visual cortex, and one might expect a significantly lower
amplitude neural response to the same visual information. Indeed,
we found results in line with this supposition for SSVEPs to the
higher spatial frequency visual information, which could only be
resolved given the density of retinal ganglion cells typically found
in paracentral vision. There was decisive evidence that SSVEPs
(dB) to higher spatial frequency information in the tagged videos
were weaker for AMD patients (M = 5.99, SD = 2.21) than for
controls (M = 11.70, SD = 4.76, BF10 = 106.61, Figure 3c). By
contrast, however, we found anecdotal evidence for the opposite
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FIGURE 3

Overview of frequency tagging results. (a) Grand average frequency spectrum across all participants. To generate these spectrums, ERPs to video
presentations for each of the two spatial frequency/flicker frequency conditions were submitted to FFTs. For each participant, spectrums were taken
as the average across the occipitoparietal electrode sites where SSVEPs peaked for each frequency. Spectrums were then averaged across all
participants tagging conditions for each group (AMD, controls). Flicker frequencies (7Hz, 9Hz) and their harmonics (14Hz, 18Hz) are marked by grey
stars. The shaded areas mark 95% confidence intervals. (b) Topographical distribution of grand-mean SSVEPs (dB) across all tagged spatial
frequencies. Topographies are shown for AMD patients, healthy controls, and the di�erence of mean SSVEPs for AMD patients—controls. All scalp
topographies were visualized using the MNE-Python toolbox. (c) Violin plot showing SSVEPs (dB) for the relatively higher and lower spatial
frequencies, for AMD patients and controls. SSVEPs were taken at two occipitoparietal electrode sites for which SSVEPs peaked for each participant.
(d) Violin plot showing the mean SSVEPs across spatial frequencies, for AMD patients and controls. Statistical significance is illustrated by both the
Bayes Factor, and a star system representing the p value computed using frequentist statistics: n.s. p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 1 Je�rey’s criteria for Bayes Factor inference.

Bayes factor Inverse of Bayes factor Support for H1

1–0.33 1–3 Anecdotal

0.33–0.10 3–10 Substantial

0.10–0.03 10–30 Strong

0.03–0.01 30–100 Very strong

<0.01 >100 Decisive

effect for lower spatial frequency information. SSVEPs to lower
spatial frequencies were stronger for AMD patients (M = 13.20,
SD = 2.26) than for controls (M = 11.00, SD = 3.17, BF10 =

1.98 ± 0.01%, Figure 3c). This interaction between group (AMD,
control) and spatial frequency response (low SF, high SF) may
reflect a compensatory mechanism to the loss of central vision,
such that AMD patients become more sensitive to lower spatial
frequency information as they lose the ability to resolve higher
spatial frequency information within the macular region.

Given that AMD patients differed from healthy controls in
their responses to both higher and lower spatial frequencies, we
sought to combine these effects into a single neural marker by
computing the ratio of SSVEPs to lower relative to higher spatial
frequencies. Initial visual inspection, confirmed by a Shapiro-
Wilk’s test for normality (W = 0.78, p < 0.001), suggested that
these ratios were heavily right skewed. We therefore computed
the log of the SSVEP ratios, resulting in normally distributed
data as confirmed by a non-significant Shapiro-Wilk’s test (W =

0.94, p = 0.073). To visualize the topographical distribution of
the SSVEP ratios, we computed the log(low SF/high SF) SSVEP
ratio for each electrode. Visual inspection suggested that this
neural marker differentiated well between AMD patients and
controls (Figure 4a): healthy controls showed a weak negative
log(ratio) centered posteriorly on the scalp and peaking at
electrode O2. By contrast, AMD patients showed a strong positive
log(ratio) centered more anteriorly on the scalp and peaking
around electrode PO4. The slight right-shifted asymmetry of these
scalp topographies is a common finding in visual perceptual
studies and likely reflects the underlying asymmetries in visual
attention networks (Corbetta and Shulman, 2002). To confirm
these observed differences, we computed the log(ratio) of the peak
neural response to lower vs. higher spatial frequencies (Figure 4b).
SSVEPs for each spatial frequency were computed at the electrode
sites where they peaked. Note that this approach means that
the high vs. low spatial frequency SSVEPs used to compute the
log(Ratio) were derived from different electrode sites. The SSVEP
values used to compute the log(ratio) were the SNR amplitudes
before conversion to decibels. Using these ratios of lower to
higher spatial frequency responses, we found decisive evidence
that the log(ratio) was higher for AMD patients (M = 1.67,
SD = 0.61) than controls (M = −0.14, SD = 1.23, BF10 =

940.47. Thus, the novel spatial frequency video tagging method
allowed for the derivation of a neural marker which was sensitive
to differences in visual processing between AMD patients and
healthy controls.

Individual di�erences: video-evoked
SSVEPs vs. visual function

To contextualize the SSVEP results, we measured visual
function in both AMD patients and controls using standardized
behavioral measures of visual acuity and contrast sensitivity. The
visual acuity (logMAR), contrast sensitivity (logCS), and SSVEP
metrics for each participant in the study are shown in Table 2. As
expected, we found decisive evidence that visual acuity for AMD
patients (logMAR, range: 0.07– 0.81, M = 0.31, SD = 0.20) was
significantly poorer than for healthy controls (range:−0.22–0.23, M
= 0.03, SD= 0.10, | BF10 = 450.28, Figure 4c). We also found very
strong evidence that AMD patients had lower contrast sensitivity
(logCS, range: 0.20 −1.94, M = 1.22, SD = 0.52) than healthy
controls (range: 1.42–2.11, M = 1.74, SD = 2.11, | BF10 = 48.84,
Figure 4d).

Having established that the log(SSVEP Ratio) of lower relative
to higher spatial frequencies could be used as a neural marker of
AMD, we next sought to understand how well log(SSVEP Ratio)
aligned with traditional behavioral measures of visual function. To
this end, we fit a Bayesian general linear model to each of the
behavioral visual function measures (logMAR, logCS) with group
membership (AMD, control), and log(SSVEP Ratio) as predictors.
For visual acuity, we found that data were best explained by both
a linear effect of log(SSVEP Ratio) on logMAR (β = 0.54) and a
main effect of group membership on logMAR (BF10 = 609.29 ±

0.60% vs. intersect only model, Figure 5a). There was anecdotal
evidence for a null interaction between these terms, suggesting
that the linear relationship between logMAR and log(SSVEP
Ratio) did not change across groups (BF10 = 2.26 ± 1.07%). For
contrast sensitivity, data were best explained only by an effect
of group membership on logCS (BF10 = 48.84 vs. intersect only
model, Figure 5b). We found anecdotal evidence that there was
no additional linear relationship between log(SSVEP Ratio) and
logCS (β = −0.41) beyond that explained by group (BF10 = 1.52
± 0.64%).

The log(SSVEP Ratio) metric was calculated using the SSVEPs
to lower and higher spatial frequency information in the video set at
the electrode sites where these SSVEPs peaked for each person. It is
therefore possible that there is an underlying topographic pattern
in the SSVEPs which is more strongly predictive of behavioral
visual function metrics. To investigate this possibility, we used
Lasso (L1) regularized regression using the union of intersections
(UoI) method for parameter inference (Sachdeva et al., 2021).
Lasso regularization is known to be useful in feature selection,
pushing the coefficients of less predictive features to zero. Here,
we can apply this method to determine which electrode-sites
were most predictive of visual acuity for higher and lower spatial
frequency SSVEPs. However, application of the L1 regularization
penalty is also known to bias non-zero weights to smaller values
(“shrinking”) and often incorrectly identifies non-zero weights,
reducing predictive accuracy (Sachdeva et al., 2021; Tibshirani,
1996). The UoI method aims to achieve both stable feature-
selection and high predictive accuracy by utilizing ensemble model
training and separating feature selection and estimation across two
steps (Sachdeva et al., 2021). We therefore used the UoI method
to fit a Lasso regression to predict visual acuity (logMAR) using
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FIGURE 4

Measures of visual function. (a) Topographical distribution and (b) violin plot of log(Ratio) of SSVEPs to lower relative to higher spatial frequencies for
AMD patients vs. controls. (c) Violin plot showing visual acuity (logMAR) for AMD patients vs. controls. (d) Violin plot showing contrast sensitivity
(logCS) for AMD patients vs. controls. ***p < 0.001.

group membership (AMD, Control) and SSVEP (dB) to lower and
higher spatial frequencies across occipitoparietal electrode sites as
predictors. Visual acuity was used as it was more strongly linearly
predicted by log(SSVEP Ratio) than contrast sensitivity.

To establish baseline performance, we first fit a standard linear
regression with group membership (AMD, Control) as the only
predictor of visual acuity. Cross validated goodness of fit for
this model was R2 = 0.33, 95% CI [0.08, 0.57]. By contrast, a
UoI-Lasso model which included the log(SSVEP Ratio) at each
occipitoparietal electrode-site as predictors provided a better and
more reliable fit, R2 = 0.38, 95% CI [0.27, 0.49] (Figure 5c).
However, the best fitting model was the UoI-Lasso model which
included individual SSVEPs to low and high spatial frequencies as
predictors, providing the best and most reliable prediction of visual
acuity, R2 = 0.61, 95% CI [0.59, 0.63] (Figure 5d). These results
show that not just the ratio, but also the topographic distribution of
SSVEPs to high and low spatial frequencies was predictive of visual
function. To estimate how these topographic patterns contributed
to the prediction of visual acuity scores, we computed the mean
of the coefficients across the 5 cross-validation folds. These
average coefficients are plotted topographically in Figure 5e. The
topographic plots of the coefficients show that in general, weaker
responses to higher spatial frequencies and stronger responses
to lower spatial frequencies across occipitoparietal electrode sites
were predictive of worse visual acuity (Figure 5e). This is evident
in the coefficients for the log(SSVEP Ratio) regression with the
presence of a strong positive coefficient at electrode site POz.
Interestingly, there is also a weak negative coefficient at Iz, showing
that at this posterior electrode site, a stronger log(SSVEP Ratio)
was actually predictive of better visual acuity. Coefficients for low-
spatial frequency weights were largely positive and peaked at the
electrode PO2. Thus, stronger SSVEPs to low spatial frequencies
at this site were predictive of worse visual acuity. This large positive
peak was flanked by electrodes with weaker negative coefficients (Iz,
PO3, P2), suggesting that stronger low spatial frequency responses
at these flanking locations were associated with better visual acuity.
By contrast, high spatial frequency SSVEPs were associated with a
strong negative coefficient at the electrode site POZ, and weaker
positive coefficients at PO2, I1, and I2. This is a near, though

not exact, inverse of the pattern found for low-spatial frequency
responses. Together, these results are indicative of the retinotopic
remapping previously reported for AMD patients; suggesting
AMD patients experience a shift toward prioritized processing of
lower spatial-frequency information and a topographic change in
sensitivity to high and low spatial frequency information (Baker
et al., 2008, 2005; Dilks et al., 2014).

These findings suggest that SSVEPs elicited by the spatial
frequency tagged video set are predictive of visual function in
AMD. However, while the neural and behavioral measures share
variance, they are not completely aligned; i.e., SSVEP measures
do not capture all the variance in behavioral measures, and vice
versa. This misalignment suggests that SSVEP measures will likely
contain additional information which may be relevant to the
classification of AMD. To asses this possibility, we trained several
machine learning models to discriminate between AMD patients
and controls based on (1) their visual function scores (logMAR,
logCS), (2) their spatial-frequency evoked SSVEPs (low SF, high SF)
at central occipitoparietal electrode sites (Oz, O1, O2, POz, PO3,
PO4), and (3) all of the above. We selected three machine learning
models for this task: a logistic regression with L1 regularization
as a linear model and K-nearest neighbors (KNN) and multi-layer
perceptron (MLP) classifiers as non-linear models. The sensitivity,
specificity, and accuracy of each of thesemodels is shown in Table 3.
Confusion plots for the MLP classifier, which performed best
overall, are shown in Figure 5f. Overall, classification accuracy was
better using the behavioral function scores (Mean performance:
sensitivity: 83.00%, specificity = 72.33%, Accuracy = 76.33%)
compared with SSVEPs (sensitivity: 71.67%, specificity = 70.67%,
Accuracy = 71.00%) as predictors. However, the best result was
for the combination of SSVEPs and visual acuity (sensitivity:
85.00%, specificity = 87.67%, Accuracy = 86.00%). Critically, we
do not suggest that video-evoked SSVEPS should be used to
diagnose AMD. Rather, these results highlight that the SSVEPs
elicited by the spatial frequency tagging method provide additional
information related to AMD, unique from that measured by
behavioral visual function tests. This measure could therefore be
gathered as part of forming a full picture of an individual patient’s
visual function.
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TABLE 2 SSVEP and behavioral measures of visual function for each participant, sorted by visual acuity (logMAR).

Participant
ID

Group Visual acuity
(logMAR)

Contrast sensitivity
(logCS)

SSVEP higher
SF (Db)

SSVEP lower
SF (Db)

SSVEP ratio
[log(lower/higher SF)]

C1 Control −0.2122 1.84 22.08 7.86 −3.27

C2 Control −0.09 1.64 3.53 2.98 −0.13

C3 Control −0.06 1.94 10.21 9.07 −0.26

C4 Control −0.02 2.11 17.49 10.99 −1.50

C5 Control −0.02 1.85 15.33 8.79 −1.51

C6 Control 0.02 1.47 6.53 12.23 1.31

C7 Control 0.02 1.80 13.23 14.46 0.28

C8 Control 0.02 1.72 10.49 12.98 0.57

C9 Control 0.05 1.82 8.71 11.17 0.56

C10 Control 0.05 1.82 8.06 13.37 1.22

C11 Control 0.06 1.57 13.54 15.11 0.36

AMD12 AMD 0.07 1.65 7.95 10.87 0.67

AMD13 AMD 0.07 1.94 6.26 11.52 1.21

C14 Control 0.08 1.77 11.25 9.38 −0.43

C15 Control 0.09 1.83 17.87 14.07 −0.88

AMD16 AMD 0.09 1.81 6.37 12.89 1.50

AMD17 AMD 0.11 1.40 5.16 13.86 2.00

C18 Control 0.12 1.59 7.80 14.70 1.59

C19 Control 0.14 1.69 11.24 9.80 −0.33

AMD20 AMD 0.20 1.78 3.56 11.95 1.93

C21 Control 0.23 1.42 9.22 9.84 0.14

AMD22 AMD 0.23 0.82 6.63 13.07 1.48

AMD23 AMD 0.25 1.59 7.62 15.98 1.92

AMD24 AMD 0.28 1.35 3.77 12.67 2.05

AMD25 AMD 0.28 1.31 0.45 13.36 2.97

AMD26 AMD 0.38 1.21 6.06 11.65 1.29

AMD27 AMD 0.39 0.95 8.17 18.76 2.44

AMD28 AMD 0.41 0.90 7.75 13.89 1.41

AMD29 AMD 0.47 0.93 4.14 11.22 1.63

AMD30 AMD 0.53 0.39 7.91 10.66 0.63

AMD31 AMD 0.81 0.20 7.99 16.16 1.88

Test optimisation

In this first evaluation of the novel video spatial frequency
tagging method for probing spatial frequency sensitivity in AMD
patients, the test parameters were determined based on first
principles and early pilot results. We therefore sought to investigate
the influence of video content and experiment duration on the
results, with the aim of aiding decision-making for future research
using this method.

The 6 videos used in this test were selected with the aim
of spanning a diverse range of color, motion, perspective and
subject matter. However, there likely exists a subset of video

features that optimally elicit the SSVEP-ratio marker of visual
function. While it is impossible to map this full feature-space with
only 6 videos, we still sought to quantify how SSVEP metrics
varied across this stimulus set. To this end, we computed the
log(SSVEP Ratio) metric independently for each video in the set.
It should be noted that this meaningfully increases the noise in
the SSVEP metric, as per-video SSVEPs could only be calculated
with a cell-size of 8 video repeats compared with the full 48 video
repeats available when calculating SSVEPs for the full experiment.
Interestingly, visual inspection suggested that the differences in
log(SSVEP Ratio) between AMD patients and controls did vary by
video ID (Figure 6a). To investigate this effect, log(SSVEP Ratio)

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1569282
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Renton et al. 10.3389/fnhum.2025.1569282

FIGURE 5

Individual di�erences in log(SSVEP ratio) and relationship to behavioral visual function metrics. (a) log(SSVEP ratio) vs. visual acuity (logMAR) for AMD
patients and healthy controls. (b) log(SSVEP ratio) vs. contrast sensitivity (logCS) for AMD patients and healthy controls. (c) Results of an UoI Lasso
–regularized regression using group identity (AMD, Control) and the log(SSVEP Ratio) of low to high spatial frequencies at occipitoparietal electrode
sites to predict visual acuity. (d) Results of an UoI Lasso –regularized regression using group identity (AMD, Control) and SSVEPs to high and low
spatial frequency information at occipitoparietal electrode sites to predict visual acuity (logMAR). Predicted data in (c, d) were acquired through
5–fold cross validation. (e) EEG channel coe�cients for the UoI Lasso regression shown in (c, d). Topoplots were generated using “nearest”
interpolation. (f) Confusion matrices for the prediction of participant group (AMD, control) using behavioral visual function measures (left), SSVEPs to
high and low spatial frequency information (center), and all of the above (right) using the best performing classification model (MLP).

data for each video were subjected to JZS t-tests to compare
AMD patients vs. controls. The results, in order of significance
were as follows: V3: BF10 = 4.84, V2: BF10 = 1.42 ± 0.01%, V6:
BF10 = 1.19, V1: BF10 = 0.43, V5: BF10 = 0.37, V4: BF10 =

0.36. Thus, only V3 elicited a log(SSVEP Ratio) with substantial
evidence for a difference between groups (threshold: BF10 > 3).
Notably though, there was also no video which, when analyzed
alone, elicited a log(SSVEP Ratio) with substantial evidence for a

null difference between groups (threshold: BF10 < 0.33). A second
variable of interest in assessing the efficacy of each video is the
alignment with behavioral measures of visual function. As such,
we computed the Pearson correlation between log(SSVEP Ratio)
and each behavioral visual function metric (logMAR, logCS) for
each video ID (Figure 6b). Again, we found variability in the
strength of these relationships across videos. Similarly to the group
difference results (AMD patients vs. controls), the correlation
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TABLE 3 Classification performance for the three classifiers, Logistic Regression (LR), K–nearest neighbors (KNN) and multi–layer perceptron (MLP).

Predictor Sensitivity Specificity Accuracy

LR KNN MLP LR KNN MLP LR KNN MLP

Behave 92% 82% 75% 79% 70% 68% 84% 74% 71%

SSVEP 69% 77% 69% 73% 72% 67% 71% 74% 68%

Both 87% 86% 82% 88% 82% 93% 87% 84% 87%

Cells are colored on a gradient scale to reflect the value, with increasing color saturation reflecting increasing values within the cell.

FIGURE 6

SSVEP metrics by video id and experiment duration. (a) Violin plot showing log(SSVEP ratio) between low and high spatial frequencies for AMD
patients and controls, independently calculated for each video in the tagged video set. The videos are ordered on the axis from the smallest to largest
mean di�erence between AMD patients and controls. (b) Pearson correlation between log(SSVEP ratio) and behavioral measures of visual function
(logMAR, logCS). The video–order is the same as in (a). (c) log(SSVEP ratio) between low and high spatial frequencies by simulated experiment
duration. Results are shown for AMD patients, healthy controls, and the mean di�erence between AMD patients and controls. (d) Pearson correlation
between log(SSVEP ratio) and behavioral measures of visual function (logMAR, logCS) by simulated experiment duration. Shaded areas on (c, d)

indicate 95% CI, computed by Monte–Carlo permutation.

analysis showed that the strongest alignment with behavioral
measures of visual function was elicited by videos V3, V2, and
V6, while the weakest alignment was for videos V4, V5, and V1.
Thus, the semantic content and visual feature set of videos used
in eliciting SSVEP metrics is likely to be an important variable in
test performance.

Another important factor in future experiment design is the
duration of the test. Neural responses to each probed spatial
frequency range can be estimated more precisely with additional
video presentation. Conflictingly, shorter diagnostic tests are
valuable for both clinicians and researchers to maximize the

number of distinct tests which can be performed and minimize
demands on patients’ time. As such, we performed a permutation
test to estimate the variance on the mean of each of the test
metrics for increasing experiment durations (15 s, 1min, 2min,
3min, 4min, 5min, 6min). For each experiment duration, over 30
permutations, we randomly sampled (with replacement) N/2 trials
from each of the two frequency tagging conditions (low SF 7Hz,
high SF 9Hz | low SF 9Hz, high SF 7Hz), where N is the number
of 7.5 s trials needed to reach the targeted experiment duration.
Thus, for example, in the 15 s condition, we sampled 1, 7.5 s trial
from each frequency tagging condition, 30 times for each subject,
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to create 30 permuted samples in which each participants’ SSVEPs
where computed using only 2 trials.

Using these permuted data, we calculated the mean log(SSVEP
Ratio) for each group (AMD, control, Figure 6c). Visual inspection
suggested that the log(SSVEP Ratio) for the control group
converged to a stable value within 1min of video presentation. By
contrast, the log(SSVEP Ratio) for the AMD group increased with
each successive minute of video presentation. To estimate when the
difference in log(SSVEP Ratio) between AMDpatients and controls
might converge to a stable value, we fit an inverse exponential
function to this curve, as shown in Equation 3:

△ log (Ratio) = a(1− e−s(T−i)) (3)

Where T is the number of training trials, a is the asymptote, s is
the scaling factor and i is the x-axis intercept (Scolari et al., 2007).
This model was found to provide a very good fit for the data (R2 =
0.99, Figure 6c). The inverse exponential model suggested that the
mean log(SSVEP Ratio) difference between groups would converge
to an asymptote of 0.99 after 10.5min of presentation (experiment
duration required to achieve 99% of asymptote value). This result
suggests that a slightly longer presentation time than used here may
have been optimal and should be used in future results.

Another relevant metric is that of alignment with behavioral
measures of visual function. We therefore also correlated the
permuted log(SSVEP Ratio) data with visual acuity (logMAR) and
contrast sensitivity (logCS) data for each experiment duration. The
inverse exponential model used for the log(SSVEP Ratio) difference
between groups also provided a good fit for the changing r-values
in this correlation as experiment duration increased (logMAR: R2

= 0.97, logCS: R2 = 0.94, Figure 6d). Thus, using the same model,
we determined that the correlation between log(SSVEP Ratio) and
visual acuity (logMAR) could be expected to converge to r = 0.46,
within a 7-min experiment duration. For the correlation between
log(SSVEP Ratio) and contrast sensitivity (logCS), the model
suggested that an asymptote value of r = −0.37 could be reached
within 5min of experiment duration. As such, the relationship
with contrast sensitivity is likely already optimally represented
within the experiment duration presented here. However, effects
for group differences and the relationship with visual acuity may
be more strongly evident with the additional power of a longer
experiment duration.

Discussion

Here, we developed and benchmarked a neuroimaging-based
visual function test which harnesses full-color andmotion videos of
natural scenes. To facilitate this test, we proposed a novel technique
of embedding frequency tags within video stimuli through periodic
modulation of the contrast of higher and lower spatial frequencies.
Neurons tuned to the tagged spatial frequencies should respond
at the tagged flicker frequencies of 7 and 9Hz, eliciting SSVEPs
detectable at the scalp through EEG. Here, we demonstrated the
efficacy of the novel video tagging method in eliciting SSVEPs. In
turn, we showed that these SSVEPs were sensitive to the changes
in visual processing associated with AMD and could be used as a
neural marker of visual function in this patient group.

As hypothesized, we found that AMD patients differed from
controls in their SSVEPs to both higher and lower spatial
frequencies. The macular region of the retina is characterized by
a high density of both photosensitive cone cells and the retinal
ganglion cells they innervate. Retinal ganglion cells at the fovea
may respond to only a single photoreceptor, as compared to
thousands photoreceptors per retinal ganglion cell in peripheral
vision (Watson, 2014). Thus, increasing eccentricity in the visual
field corresponds with lower spatial frequency sensitivity in retina,
a pattern reflected by the retinotopic organization of spatial
frequency sensitivity in the visual cortices of healthy adults.
As the macula region of the retina degenerates, AMD patients
progressively lose the ability to resolve higher spatial frequencies,
and thus should be expected to display a decreased neural response
to this information. In turn, research suggests that the visual
system adapts to the loss of central vision through structural
and functional reorganization, reallocating processing resources
toward lower spatial frequency information in peripheral vision
(Cheung and Legge, 2005; Ramanoël et al., 2018). SSVEPs to
the tagged video stimuli were in line with these predictions.
Compared with healthy controls, AMD patients displayed a lower
neural response to higher spatial frequencies across occipitoparietal
electrode sites. In turn, they displayed a larger neural response to
lower spatial frequencies. This lower spatial frequency response
was topographically shifted toward the expected response pattern
from cortical regions retinotopically mapped to peripheral regions
of the visual field (Capilla et al., 2016). Thus, the SSVEPs elicited
by this video set were sensitive to the functional changes in visual
processing which occur in AMD.

We established that the ratio of SSVEPs to lower relative to
higher spatial frequency information in the tagged video set acts
as a neural marker of AMD. This marker differed significantly
between AMD patients and age-matched healthy controls and
could be used to predict visual acuity and contrast sensitivity in
individual participants. This neural marker is likely attributable
to two distinct effects in the visual cortex; the loss of afferent
information from the central retina, and the neuroplastic changes
in visual perceptual processing which occur in response to these lost
inputs. The most profound of these adaptations is the development
of a preferred retinal location (PRL), a “pseudo-fovea” in peripheral
vision which is adopted when scotoma prevents central fixation.
Researchers have found a large body of evidence to suggest that
retinotopic remapping occurs toward the PRL. Functionalmagnetic
resonance imaging (fMRI) data has shown that cortical regions
which, in healthy adults, typically respond to visual stimulation
at the fovea become responsive to visual stimulation at the PRL
in long-term AMD patients (Baker et al., 2008, 2005; Dilks et al.,
2014; Schumacher et al., 2008). Further, psychophysical testing has
revealed changes in how visual stimuli interfere with the processing
of other nearby stimuli in AMD patients (an effect termed
“crowding”). Indeed, behavioral responses around the PRL begin
to resemble those typically seen around the fovea (Chung, 2014,
2011). Further research has shown that visual cortical neurons
whose receptive fields overlap with a central visual scotoma exhibit
a shift in receptive field over time (Barton and Brewer, 2015). These
receptive fields typically grow larger and shift outward from the
scotoma, resulting in greater cortical sensitivity to lower spatial
frequency visual information from peripheral vision as AMD
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progresses. Given the likely contribution these functional changes
in visual processing to the log(SSVEP Ratio), it would be useful for
future research to concretely map the relationship between SSVEPs,
visual field loss, and time since AMD diagnosis.

The results presented here highlight the importance of neural
markers of visual function. While behavioral visual function tests
capture the outcome of the full process of visual perceptual
processing and perceptual decision making, neural markers allow
for exploration of subtle changes within specific stages of visual
processing. Prior research suggests that the results of the behavioral
visual function tests commonly administered for AMD patients
often correspond poorly with AMD patients’ reported everyday
visual quality of life (Broadhead et al., 2020; Taylor et al., 2016).
Here, we found that AMD could be best classified using both
SSVEPs and behavioral visual function scores, suggesting that
these two measures explore different sources of variance in visual
function. It would be interesting to know whether this neural
marker might also account for some of the unexplained variance
in visual quality of life scores. Behavioral measures of visual acuity
and contrast sensitivity represent the end result of a chain of
neural events; visual information is sensed at the eye, undergoes
hierarchical visual processing, is subject to perceptual decision-
making processes which, finally, lead to a behavioral action (e.g.,
reporting a letter’s identity). In later stages of processing, the brain
is able to lean on cognitive skills such as selective attention, visual
statistical learning, and predictive coding to enhance and pattern
complete missing visual information. While these visual processing
steps improve perceptual performance, they are also effortful and
cannot be continuously applied to full capacity. As such, behavioral
metrics can be considered to test patients’ best possible visual
function. By contrast, the SSVEP measure proposed here indexes
neural responses at the first stages of visual processing; spatial
frequency sensitive neurons are typically found in visual areas
V1 and V2 (Foster et al., 1985). This measure can therefore be
considered a baseline of which visual information is reaching the
visual system before processing. Notably, while these initial results
are promising, the proposed method will need to be standardized
and validated with a larger cohort before it can be deployed as a
formal diagnostic test.

Several open questions should be answered in the development
of such a standardized protocol. Primarily, the feature set and
semantic content of the test video set should be optimally selected.
In this first study, we purposefully selected six natural scene video
clips, aiming to span a diverse range of color, motion, perspective
and subject matter. However, there likely exists a subset of video
features that optimally elicit the SSVEP-ratio marker of visual
function. To address these questions, we propose a neuroadaptive
Bayesian optimization approach; by simulating scotoma in healthy
participants, one could explore the feature space of videos which
optimally elicit differences in log(SSVEP Ratio) between the
scotoma vs. no-scotoma condition (Lorenz et al., 2017). An
important point to note in any such experiment would be that while
high spatial frequency responses should be immediately dampened
by artificial scotoma, changes in the low-spatial frequency response
and topographical distribution of responses are likely to largely
reflect longer term neuroplastic changes. As such, results should
always be validated with a patient population. The optimal test

duration should also be established with this population using
an optimized video test set; A model trained on the current
dataset suggests that 10.5min should be a sufficient duration to
converge on the maximal power to differentiate between AMD
patients and controls using the log(SSVEP Ratio). However, this
should be confirmed using a longer test duration. Finally, the
current results were obtained using a full 68-channel EEG cap.
This setup is expensive and time-consuming to set up, making it
inappropriate for clinical settings. However, examination of the
coefficients in the machine learning regression analyses suggested
that the electrode sites POz, PO2, PO3, Iz, I1, and I2 were most
important in predicting behavioral measures of visual function and
classifying AMD patients. A lower density EEG setup with this
small subset of electrode sites would be more suitable for a clinical
setting and should be sufficient for deriving the log(SSVEP Ratio)
neural marker.

Here, we presented the novel video spatial frequency tagging
method in the context of diagnostic applications in AMD.
However, while neural markers of visual function are useful for
diagnosis and patient monitoring, they also may be useful in
therapeutic applications. For example, closed-loop neurofeedback
protocols aim to shift neural activity toward a pattern of
activity associated with a targeted cognitive state. Advances in
compute power, experimental protocols, and analytical methods
over the past 15 years have meaningfully shifted the horizon
of viable cognitive objectives for neurofeedback interventions.
Neurofeedback protocols are rapidly developing to allow more
effective and specific cognitive enhancement, with compelling
evidence of training effects in visual perceptual processing;
including to improve visual selective attention (Bagherzadeh
et al., 2020), sustained attention (deBettencourt et al., 2015), and
perceptual confidence (Cortese et al., 2020) and visual perceptual
learning (Amano et al., 2016; Shibata et al., 2011). The first step in
developing any such neurofeedback protocol is to identify a neural
marker of the targeted cognitive objective. Neurofeedback therapy
represents an especially promising treatment avenue for patients
suffering from Charles Bonnet Syndrome, a common condition
in AMD patients leading to vivid visual hallucinations (Christoph
et al., 2025; Teunisse et al., 1996). A leading hypothesis for the
cause of these hallucinations is cortical hyperexcitability in the
visual cortex (Bridge et al., 2024). Notably, chronic tinnitus has
been attributed to the same cause in the auditory cortex (Chai
et al., 2019; Langguth et al., 2007), and has been demonstrated to be
treatable through neurofeedback (Gninenko et al., 2024). Previous
research has shown that, due to this cortical hyperexcitability,
Charles Bonnet AMD patients display profound differences in
the strength of SSVEPs as compared to control AMD patients
(Painter et al., 2018). Thus, SSVEPs elicited by the video spatial
frequency tagging method will likely allow for a more nuanced
exploration of this hyperexcitability and would provide a strong
candidate for neurofeedback training aiming to regulate this
maladaptive response.

Here, we presented a novel spatial frequency video tagging
method to elicit neural markers of AMD, with applications in the
diagnosis, monitoring, and therapeutic treatment of this patient
group. This method is quick to administer, requires few electrodes,
employs an ecologically valid test set of full color and motion
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stimuli with natural scene statistics, does not require patients to
hold fixation, and allows for exploration of subtle differences in
the amplitude and retinotopy of neural responses to distinct spatial
frequencies. A limitation of this study is that even though all
patients included experienced bilateral AMD, and thus presented
with central scotoma, they still all had relatively good visual
acuity. Indeed, by the World Health Organisation’s International
Classification of Diseases (ICD-11), corrected visual acuity scores
for the patients included in this study could be categorized in a
range from no vision impairment to moderate vision impairment.
In future studies, it will be important to explore whether the pattern
of results found here can be extrapolated as AMD progresses
toward more severe vision impairment. For the patients included
here, we found that evoked SSVEPS were sensitive to differences
between AMD patients and age-matched controls with normal
vision, aligned well with existing behavioral measures of visual
function, and represented a source of variance in visual function
not computed by these behavioral tests. Finally, we explored how
test parameters might be altered to optimize the power of this test
in scoring visual function and recommended several avenues for
future research using this method.
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