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Brain-computer interfaces (BCIs) o�er alternative communication methods

for individuals with motor disabilities, aiming to improve their quality of

life through external device control. However, non-invasive BCIs using

electroencephalography (EEG) often su�er from performance limitations

due to non-stationarities arising from changes in mental state or device

characteristics. Addressing these challenges motivates the development of

adaptive systems capable of real-time adjustment. This study investigates a

novel approach for creating an adaptive, error-related potential (ErrP)-based

BCI using reinforcement learning (RL) to dynamically adapt to EEG signal

variations. The framework was validated through experiments on a publicly

available motor imagery dataset and a novel fast-paced protocol designed to

enhance user engagement. Results showed that RL agents e�ectively learned

control policies from user interactions, maintaining robust performance across

datasets. However, findings from the game-based protocol revealed that fast-

paced motor imagery tasks were ine�ective for most participants, highlighting

critical challenges in real-time BCI task design. Overall, the results demonstrate

the potential of RL for enhancing BCI adaptability while identifying practical

constraints in task complexity and user responsiveness.

KEYWORDS

error-related potentials (ErrPs), adaptive brain-computer interface, BCI, reinforcement
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1 Introduction

Rehabilitation and assistance systems can be used to improve life quality for patients
living with motor impairments caused, for example, by an amputation, spinal cord injury,
or stroke (Abiri et al., 2019; Soekadar et al., 2015; Kumar et al., 2019). Advances in the field
of brain-computer interfaces (BCIs) provide patients with an alternative communication
path to these systems. This is achieved through the direct decoding or classification of
specific brain signals and their translation into appropriate control commands for the
external systems. While different technologies can be used for neural signal acquisition,
non-invasive electroencephalography (EEG) devices are widely applied due to their good
temporal resolution, attractive price, and usability (Kumar et al., 2019).

BCIs can be developed based on different experimental paradigms and used to control
different devices: from a cursor on the monitor to robotic arms, or wheelchairs, for
example (Kumar et al., 2019). The experimental paradigms define, among others, which

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2025.1569411
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2025.1569411&domain=pdf&date_stamp=2025-06-04
mailto:aline.xavierfidencio@rub.de
https://doi.org/10.3389/fnhum.2025.1569411
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1569411/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Xavier Fidêncio et al. 10.3389/fnhum.2025.1569411

kind of brain signal should be decoded, and common applications
are based on event-related synchronization/desynchronization
(ERS/ERD) modulations generated during motor imagination,
steady-state visual evoked potentials (SSVEPs) or P300 potentials.
For a comprehensive review of different paradigms, we refer the
reader to Abiri et al. (2019).

However, the classification of brain signals is a challenging
task, and a current limitation in developing high-performance BCI
systems for long-term use is their decreasing performance over
time due to the inherent non-stationarities in EEG data caused, for
example, by changes in the subject’s signals or the recording device
itself, such as electrode placement and impedance. To address this
problem in traditional BCIs, adaptive systems are proposed to
dynamically adjust their behavior and parameters based on changes
in the user’s mental state, the environment, or the input data
quality.

In the last years, several works have proposed using a
specific brain signal elicited upon errors to improve BCIs. The
so-called error-related potentials (ErrPs) can be elicited under
different circumstances and measured with EEG (for a review, see
Xavier Fidêncio et al., 2022; Chavarriaga et al., 2014; Kumar et al.,
2019). In BCI research, seven different types of ErrPs are usually
mentioned. Errors committed by the subject are called response

ErrPs (Blankertz et al., 2002; van Schie et al., 2004). Feedback ErrPs
are generated upon feedback about a choice made (Miltner et al.,
1997; Chavarriaga et al., 2014) and target ErrPs can be generated by
implementing unexpected changes in the task (Diedrichsen, 2005).
However, in BCI paradigms it is more common to find the use
of either interaction ErrPs (Ferrez and Millán, 2005, 2008), which
are elicited when the interface wrongly interprets the user’s input,
or observation ErrPs, which are generated while the subject only
observes a system over which they have no control perform a wrong
action. Execution and outcome ErrPs are also reported as the neural
response to unexpected movements (Diedrichsen, 2005; Spüler and
Niethammer, 2015) or undesired outcomes (Krigolson et al., 2008;
Spüler and Niethammer, 2015; Kreilinger et al., 2016), respectively.
For an extensive review of each ErrP and experimental protocols
used to elicit them see Xavier Fidêncio et al. (2022).

ErrPs have been combined with reinforcement learning
(RL) in different studies to improve BCI performance (for a
review, see Xavier Fidêncio et al., 2022). In the RL framework,
an agent learns by trial and error while interacting with an
environment (Sutton and Barto, 2018). The agent performs an
action in the environment and receives a scalar numerical reward.
Its goal is to maximize the cumulative reward, called return,
and learn an optimal policy, that is mapping from inputs to
actions. While supervised learning relies on ground-truth data
being provided as a learning signal, RL agents need only a reward
signal that indicates the quality of a policy to drive the learning
process, making the use of ErrPs a natural fit, as they only
represent the existence of an error, not what the expected outcome,
action or observation would have been. In this work, because the
agent’s actions do not directly affect its next inputs, the setting is
specifically a contextual bandit problem, where the agent’s inputs do
not represent states, as in the full RL problem, but rather a context
that is independent between timesteps.

This study introduces a novel ErrP and RL-based BCI
framework for the development of adaptive BCIs. The framework

applies reinforcement learning to learn the user intention directly
from brain signals obtained with non-invasive recordings and uses
the neural signature of errors measured in the form of interaction
ErrPs to drive the learning. Our hypothesis is that the intrinsic
interactive nature of the RL framework is particularly suitable for
the development of such systems, inspired by the work of Kim et al.
(2017). Moreover, as ErrPs are generated during human-system
interaction upon BCI errors, it does not increase the mental load
of the subject and directly constitutes a real-time feedback source
for the RL agent.

To further validate the proposed framework, in this study,
we also introduce a novel hybrid BCI paradigm using motor
imagery and ErrPs. We propose a relatively fast-paced game to
improve subjects’ motivation and engagement. The hypothesis is
that the gamified version of the commonly used cursor control
task can increase subjects’ motivation and interest in using the
BCI, increasing overall performance (Škola et al., 2019; Atilla et al.,
2024). Moreover, the increased game speed better aligns with real-
time decision-making scenarios requiring faster reactions from
participants.

The rest of this work is structured as follows: Section 2 reviews
studies that have used ErrP for adaptive BCIs. We present the
proposed ErrP-RL-based BCI framework and describe the datasets
used in this study in Section 3. Section 4 presents our results.
Finally, we conclude this work with a brief discussion and overview
in Section 5.

2 Related work

Adaptive BCIs using ErrPs have been proposed previously.
Llera et al. (2011) introduced an adaptive logistic regression
based on interaction ErrPs. The weights of the classifier were
modified based on the ErrP classification results. The approach
was validated using both simulated and MEG data for a two-
classMI paradigm, showing significant performance improvements
compared to the baseline static classifier. Schiatti et al. (2019)
later applied the same approach to MI data recorded with EEG.
Mousavi et al. (2017) introduced a new strategy by directly
combining the ErrP frequency-domain information and the MI-
related modulations to improve the classification of MI trials.
They used common spatial patterns (CSP) for feature extraction
and linear discriminant analysis (LDA) for the classification of
ErrPs and MI, combining the results with logistic regression,
and observed significant improvements in performance with the
proposed framework. This approach was further validated in an
online follow-up study (Mousavi et al., 2020).

The ErrP information has often been used to validate the
output of the BCI classifier. An online BCI-speller based on
code-modulated visual evoked potentials (c-VEP) and ErrP was
validated in Spüler et al. (2012). In this study, c-VEP trials were
classified using a support vector machine (SVM) and a spatial filter
(canonical correlation analysis). The ErrP information was used to
label trials for the training dataset. Artusi et al. (2011) considered
the classification of movement-related cortical potentials (MRCPs)
into different motor tasks (e.g., slow vs. fast arm flexion). They also
used the ErrP information to label trials before adding them to the
training dataset for an SVM classifier. This approach was also used
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recently by Tao et al. (2023) in a two-classMI task, using regularized
common spatial patterns (R-CSP) for feature extraction and the
combination of Fisher’s discriminant analysis (FDA) and SVM for
classification. Lastly, for the classification of MI data using k-NN,
Haotian et al. (2023) also used the trials labeled based on the ErrP
to create a dataset and, after applying cross-validation to evaluate
MI classification improvement, they expanded the training dataset
with the new trials. Chiang et al. (2021) used a similar approach
to show the benefits of including the ErrP feedback information in
the adaptation of a convolutional neural network (CNN) for the
classification of steady-state visually evoked potentials (SSVEPs)
for three classes, and Wang et al. (2024) for MI classification with
four classes. In contrast to the previously mentioned studies, which
included trials that elicited an ErrP after inverting the label, in these
studies, the training dataset only included trials that did not elicit
ErrPs. This is because with more than two classes, the presence of
an ErrP is not enough to infer the correct label, it only indicates that
the chosen label is not the correct one. All these studies reported
improved performance when using the ErrP-based adaptation.

3 Materials and methods

We introduce a novel BCI framework using ErrP and
reinforcement learning. Figure 1 shows the framework overview.
Our hypothesis is that the intrinsic interactive nature of
reinforcement learning agents is well-suited for the development
of real-time adaptive BCIs. Moreover, ErrPs represent an intrinsic
feedback source with no extra mental load given to the subject, as
they are implicitly generated, even upon external error occurrences.
Therefore, incorporating ErrP in the reinforcement learning
framework as the reward is very straightforward. The setup is
validated offline with a motor imagery paradigm for BCIs. We used
a well-known open-source dataset for a two-class motor imagery
protocol. Additionally, we propose a new BCI task designed to
combine the MI and ErrP paradigms in a gamified setup and use
part of the data we collected to also validate the proposed RL-based
framework. Details on all these components are described in the
following sections.

3.1 Open-source dataset: BCI competition
IV dataset 2b

In this study, we used the open-source dataset 2b from the
BCI Competition IV (Leeb et al., 2007). This dataset is widely
used as a benchmark for the classification of motor imagery.
The competition review describes the experimental protocols in
detail (Tangermann et al., 2012). The dataset includes EEG and
electrooculogram (EOG) data from nine subjects recorded in five
sessions. In the competition, the first three sessions were intended
for training, and the last two were for evaluation when validating
proposed methods. However, different splits are commonly used
in studies utilizing this dataset (for examples, see Ali et al., 2022).
In summary, the experimental task was a cue-based screening
paradigm. In the first two sessions, an arrow shown on the screen
for 1.25 seconds indicated the MI task that the subjects should
perform (either left or right hand, with the movement freely

chosen by each subject). Subjects had to imagine the corresponding
hand movement for 4 seconds. Afterwards, a break of at least
1.5 seconds, followed by a randomized time of up to 1 second,
was included (Tangermann et al., 2012). The last three sessions
included smiley feedback. Subjects were instructed to move this
smiley toward the left or right side according to the cue and
keep the MI for as long as possible. A break and a random
interval were also included at the end of these trials. EEG was
recorded using three electrodes (C3, Cz, C4) with a sampling rate
of 250 Hz. EOG was recorded using three monopolar electrodes.
Supplementary Table S1 reports the number of trials recorded for
each subject.

3.2 Snake game BCI dataset

We implemented a new experimental protocol to validate the
detection of motor imagery and ErrP-related neural signals. We
developed a modified version of the snake game1 (see Figure 2)
to (1) propose an interactive game design controlled via motor
imagery to keep subjects motivated and focused; (2) demonstrate
the feasibility of detecting MI modulations with a fast-paced task;
(3) demonstrate the feasibility of detecting interaction ErrPs in
response to misinterpreted commands by the BCI at a low artificial
error rate and simultaneously with the fast-paced MI control; (4)
provide the basis for the development of an adaptive MI-based BCI
using ErrP and reinforcement learning.

The study involving human participants was reviewed and
approved by the Ethics Committee of the Medical Faculty of the
Ruhr University Bochum. The participants provided their written
informed consent prior to participation.

3.2.1 Experimental protocol
All subjects were instructed both verbally and with written

instructions to imagine the movement of the left or right hand to
interact with the game. Participants chose freely whether to imagine
an open-hand gesture or squeezing a ball. The game included a
given path from the snake to the fruit that subjects were instructed
to follow. This ensured the ground-truth label for the MI trials (left
or right hand). Note that, while subjects believed they were actively
controlling the snake, we did not decode the MI data online in
this study. We artificially introduced error trials to keep subjects
motivated. With a 5% chance, the snake moved in the opposite
direction as defined by the path. This also allowed us to in parallel
demonstrate that interaction ErrPs can also be elicited with the
proposed protocol (the commonly used error rate in ErrP studies is
20-30% for a review, see Xavier Fidêncio et al., 2022). We included
a familiarization phase without artificial error activation to let
subjects get used to the game and avoid self-made errors (wrong
hand movement imagined). Moreover, subjects were familiar with
the snake game itself as they first participated in a recording session
with the keyboard version of the game. In this first session, the

1 game used as baseline: https://www.geeksforgeeks.org/snake-game-

in-python-using-pygame-module/.
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FIGURE 1

Overview of the BCI framework using ErrP and reinforcement learning. We consider non-invasive BCIs using EEG for neural signal acquisition. As a

proof-of-concept, we include BCIs based on motor imagery paradigms. The ErrP information is used as a reward for the RL agent (3), which learns

the mapping between motor imagery input features (1) and corresponding action (2) while the subject plays the modified snake game.

FIGURE 2

The experimental task: the subjects played the game by imagining a hand movement to control the snake and avoid collision with itself while

following the given path (the displayed dots) to collect as many points as possible. The snake moved straight by default and only turned when the

subject initiated a directional command-left or right relative to its current trajectory. Subjects were instructed to follow the dotted path, which was

automatically updated after wrong turns. In each trial in which the subject’s input command was expected, with a probability of 5%, the snake moved

in the wrong direction (as depicted in Trial 2) to keep subjects motivated, but also to elicit ErrPs.

subjects used two keys on the keyboard to interact with the game.
The data of this session is not included in this study.

The recordings were performed in three phases. In a pilot study
to validate the game, we recorded one subject and used the data
to define the preprocessing pipeline. As the results of this subject
were very promising, we extended to six other subjects. As the

data analysis revealed significant modulations in the frequency
domain as a response to the motor imagination as expected
only for two subjects, we decided to include the Movement
Imagery Questionnaire-3 (MIQ-3) (Williams et al., 2012) to assess
the subject’s ability to perform movement imagery before each
recording. The study was then expanded to more subjects, and we
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added a monetary compensation to attract participants. As none of
the subjects had previous experience with motor imagery BCIs, we
hypothesized that applying the questionnaire could help introduce
the experimental protocol, further improving performance during
the recordings. In this questionnaire, instructions are read to
subjects to inform them about the movement they first had to
physically perform and then imagine (using either internal visual,
external visual, or kinesthetic imagery). After eachmental task, they
rated the ease/difficulty of performing the imagery on a 7-point
Likert scale (1 - very hard to 7 - very easy to see/feel). Imagined
movements included knee lift, jump, arm movement, and waist
bending.

In total, thirty subjects participated in this study (thirteen
males, age: 25.5 ± 3.78, one left-handed, all with normal or
corrected-to-normal vision). We excluded the data from eight
subjects due to artifacted EEG data and one subject because of
excessive movements during recordings. The data of the remaining
twenty-one subjects (ten male, age: 26.0 ± 4.21, one left-handed)
were analyzed. Each subject performed up to 10 runs of 120 trials
each, and between 600 and 900 trials were collected as recordings
could be stopped at any time if subjects noticed they were losing
focus. Subjects took a self-paced break between runs andwere asked
about continuing or ending the recording.

3.2.2 Data recording
EEG data was recorded with the Enobio wet EEG from

Neuroelectrics at the following positions: FC1, FC2, C3, Cz, C4,
CP1, CP2, and Pz. The sampling rate was set to 500 Hz, and
CMS/DRL reference electrodes were fixed behind the right ear.
All recordings were performed in a quiet room, and we turned
off all electronic devices that were not required for the recording
itself. The manufacturer’s software uses a quality index (QI) instead
of impedance control for the EEG channels. As recommended,
recordings were only started when all channels showed a green or
orange indicator. We implemented the use of a cotton swab soaked
in skin-friendly disinfectant to remove hair between the electrode
and scalp before gel application. Typically, all electrodes were green
right after being filled with an appropriate amount of conductive
gel.

3.2.3 Data analysis
EEG data was analyzed in MATLAB R© using the open-

source toolbox EEGLAB (Delorme and Makeig, 2004). We
performed amanual artifacted data rejection on continuous data, as
recommended in the EEGLAB documentation, to avoid spreading
artifacts over good-quality data. The data was then filtered with
a Hamming windowed sinc FIR filter in the range [0.5, 100] Hz.
As recommended in EEGLAB, low and high-pass filters were also
applied separately. Additionally, a notch filter was applied to reduce
power line noise. Lastly, the data was epoched, and, if necessary,
artifacted trials were removed. Trials were extracted in the time
interval [-1.0, 2.0] seconds around the snake’s movement onset.
We excluded epochs containing automatic forward movements of
the snake. Supplementary Table S2 reports the number of trials
included for each subject.

3.3 Reinforcement learning agents

As stated in the introduction, the task faced by the agent in this
setting, is not the full RL problem. This is because the agents input
in timestep t + 1 does not depend on the agents action in timestep
t. Specifically, the subject’s EEG data is unaffected by the agent’s
classification of the data from the previous timestep.

In this study, we have applied the contextual bandit algorithm
LinUCB (Li et al., 2010) and its deep-learning counterpart,
NeuralUCB (Zhou et al., 2020), to validate our framework. The
adoption of LinUCB was motivated by the results reported by Kim
et al. (2017) and NeuralUCB was chosen for comparison. LinUCB
models the reward of each action as a linear function of the
given context. It builds a linear estimator for each action and
chooses actions using an upper confidence bound strategy, favoring
options that are some combination of promising and uncertain.
NeuralUCB generalizes this approach by utilizing a neural network
instead of a linear model, enabling it to learn complex, nonlinear
mappings between context and expected rewards. In our setup,
both agents used features extracted from EEG signals as their
input context. While we opted for these contextual bandit agents,
it is important to note that the framework could accommodate
other types of contextual bandit agents as well. The agents were
implemented in python and are publicly available.2

The agents receive input data derived from human EEG signals.
Their task is to learn the mapping between motor imagery-related
features and intended actions. This learning process receives direct
feedback through interaction ErrPs, which can also be obtained
from EEG data. A reward of 1 was assigned to an action when no
ErrP was detected, and a reward of 0 was given otherwise. As in
this study we only validate the framework offline, a perfect ErrPs
classification was assumed using the true data labels which, in this
case, are known beforehand. To simulate the online use of the
proposed BCI framework, the motor imagery data was streamed
trial-by-trial to the RL agents.

We used optuna (Akiba et al., 2019) to optimize the
hyperparameters of the agents for each subject individually. For
LinUCB, α was searched over (0.01, 0.1, 1, 2, 4, 10) and for
NeuralUCB we optimized the network hidden size (16, 32, 64, 128,
256, 512), ν (0.1, 1, 10), λ (10−i, i = 1, 2, 3, 4), and the learning rate
(2× 10−i, 5× 10−i, i = 1, 2, 3, 4), as in Zhou et al. (2020).

The motor imagery features were extracted from the EEG data
using continuous wavelet transform (CWT) following the methods
used in several studies (Ali et al., 2022; Lee and Choi, 2019). With
CWT, we can obtain a time-frequency representation of the EEG
trials. The feature extraction was implemented in python using
the library MNE-python (Gramfort et al., 2013), and the Morlet
wavelet was applied to a two-second epoch extracted from cue-
onset for the snake dataset and 0.5 seconds from cue-onset for the
open-source dataset. Then, we extracted both mu [6, 13] Hz and
beta [17, 30] Hz band power from the wavelet coefficients. This
procedure results in a two-dimensional feature matrix (number of
samples in frequency and time axes, respectively) with different
dimensions for the frequency of the mu and beta bands. To achieve

2 LinUCB: https://www.kaggle.com/code/phamvanvung/linucb/notebook

| NeuralUCB: https://github.com/uclaml/NeuralUCB/.
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equal representation and avoid bias toward one frequency band, we
resized the feature matrices to 15× 32 using cubic interpolation as
done in Ali et al. (2022) and Lee and Choi (2019). These features
were extracted for all channels available (C3, Cz, C4) and combined
into a single, flattened vector for the RL agent.

4 Results

4.1 BCI competition IV dataset 2b

The performance of the contextual bandit agents for all subjects
in the open-source dataset is illustrated in Figure 3. We ran the
agents for multiple random seeds and report the average results. As
the LinCUB agent is CPU-bound, it was computationally expensive,
and we only executed five seeds. NeuralUCB benefits from GPU
computation, and we were able to use ten seeds. The results show
that, for most subjects, both agents can learn the mapping of motor
imagery input features into actions with reasonable accuracy.
A two-sided Wilcoxon signed-rank test for accuracy shows no
statistically significant difference between the two agents (two-
sided p-value: 0.91). For two subjects (B02 and B03), both agents
perform close to the chance level. This can be explained by the lack
of feature separability between the two motor imagery classes for
these two subjects, which is directly reflected in the performance
of supervised learning approaches in these datasets as well (see Ali
et al., 2022).

We also evaluated the performance of the agents on the training
data by splitting the trials in two (first- vs. second-half of the trials)
and testing whether its performance improved over time. One-
sided Wilcoxon signed-rank tests showed that, for both agents,
the accumulated number of errors was significantly smaller in the
second half of the training session compared to the first half (p =
0.002, for both agents). This further indicates that the agents were
able to learn while interactively receiving new motor imagery trials
as input.

4.2 Snake game BCI dataset

4.2.1 Neurophysiological analysis of the MI data
The mean event-related changes in spectral power compared to

the pre-stimulus baseline for the first subject used to validate the
snake game with motor imagery control are depicted in Figure 4.3

We used EEGLAB to generate the event-related spectral
perturbation (ERSP) image. The following parameters were
set: wavelet cycle parameter ([2, 0.1]), pre-stimulus baseline
[-750, -500] ms, and frequency range of [3, 30] Hz. We look
directly at channels C3 and C4, as MI-related modulations can be
measured at electrodes located over the sensorimotor cortex (Abiri
et al., 2019). The ERSP images for this subject show the expected
motor imagery-relatedmodulation in the contralateral hemisphere.
For example, for the right-hand motor imagination (MIRight),
an event-related desynchronization (ERD) is visible in the C3
electrode. This ERD is more pronounced in the frequency ranges

3 Please note that this subject, assigned the ID S07, also participated in a

previous ErrP-only study.

within the expected mu [6, 13] Hz and beta [17, 30] Hz bands (Abiri
et al., 2019). For each channel, we additionally show the statistical
comparison of the ERSPs for the two experimental conditions,
which highlight that the differences observed inmu and beta ranges
are statistically significant (permutation test with 800 permutations
and using false-discovery rate to correct for multiple comparisons.
In Figures 4–6, as well as in Appendix Figures 9, 10, p-values below
the significance level of 0.05 are shown in red).

As described in Section 3, we used the data recorded with this
pilot subject to define the preprocessing pipeline and validate the
feasibility of the experimental task for detecting motor imagery-
related neural activity. Given the results shown in Figure 4, we
extended the study to more subjects. Figure 5 shows the mean
event-related changes in spectral power for all subjects included in
the first extended study (n = 7), including S07. While ERSP plots
show some contralateral ERD for the experimental conditions, the
statistical comparison does not show significant differences.

Finally, Figure 6 shows the mean event-related changes in
spectral power for all subjects included in the final extended study
(n = 21). Also in this case, while some ERD is visible, the
differences across experimental conditions for all subjects are not
significant as seen for the pilot subject (S07).

The questionnaires to assess the motor imagery abilities were
analyzed after the recordings, and the scores are summarized
in Supplementary Table S3. If we consider a threshold for the
total motor imagery ability score at 75% of the maximum (score
of 15.21), only four subjects scored below this level. However,
we found that a high score in the questionnaire did not imply
significant ERSPmodulations. Subject S07 did not reach the highest
score and, still, for no other subject in this dataset such significant
ERSPmodulations were observed. Subject S12 obtained a low score.
However, statistically significant differences were found in the
ERSP modulations, especially during left-hand motor imagination.
On the other hand, subject S29 reached the highest score in the
questionnaire but no significant ERSP modulations can be seen
(see Appendix Figures 9, 10). Nonetheless, we believe that applying
the questionnaire helped improving subjects’ understanding of
the concept of motor imagination and how it can be performed.
However, one further aspect to consider is the increased overall
experimental time when such questionnaire is applied.

Overall, the results obtained with the pilot subject S07
demonstrate the feasibility of using the proposed fast-paced motor
imagery paradigm. On the other hand, it is intriguing to us that only
one particular subject performed remarkably well. We extended
the study first to seven and then to thirty subjects to validate the
protocol with a broader audience with the expectation of having
more subjects with such significant modulations. It is unclear to
us how this particular subject differs from the others such that
classification performance is so outstanding.

4.2.2 Neurophysiological analysis of the ErrPs
As ErrPs are fronto-centrally located, higher amplitudes are

expected at channels FCz and Cz (Xavier Fidêncio et al., 2022).
The pre-stimulus interval [-0.2, 0] s was used for baseline correction
and the ErrPs are calculated as the difference of error trials minus
correct trials. Figure 7 shows the ErrP grand averages for the correct
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FIGURE 3

Performance of two contextual bandit agents (LinUCB and NeuralUCB) in the evaluation sessions for the open-source dataset (n = 9). Results are

averaged over di�erent seeds (five and ten, respectively). The plots show the accumulated number of errors across all trials. The accuracy is

calculated based on the final accumulated regret. Results show that both agents perform reasonably well for all except two subjects (B02, B03).

There is no statistically significant di�erence in the performance of both agents (two-sided Wilcoxon signed rank test, p = 0.91).

FIGURE 4

Event-related spectral perturbation (ERSP) for one subject (S07) at channels C3 and C4 for both left and right-hand motor imagery tasks. The color

bars show the color and power spectral density in dB. For each channel, we used EEGLAB to compare the two experimental conditions (left versus

right) and show in the right-most plot the permutation results (800 permutations, using false-discovery rate correction for multiple comparisons,

significant p-values shown in red for α = 0.05). These plots highlight how motor-imagery-related spectral modulations could be measured for this

subject, with modulations mostly visible in the frequency ranges of [10-13] Hz and [16-30] Hz.

and error conditions measured at channel Cz. The measured ErrP
displays a positive peak at 200 ms, a negative peak at 252 ms,
and a positive peak at 348 ms. The statistical comparison shows
significant differences between the error and correct conditions.
The observed waveform is consistent with existing literature on
interaction ErrPs (Ferrez and Millán, 2005, 2008; Ferrez and Del
R Millan, 2008; Ferrez and Millán, 2009). However, the expected
negative peak between 430-550 ms is not clearly visible with
this experimental protocol. In our previous study, when subjects
interacted with the game via keypress, this component was also
visible in the ErrP (for details, see Xavier Fidêncio et al., 2024).

4.2.3 Reinforcement learning results
Considering the results from the data analysis on the MI-

related ERSP modulations, this study only applied the agent to a

subset of eight subjects. We selected subjects based on the presence
of at least some significantly different modulations between left
and right-hand motor imagination, indicating the potential for
sufficient class separability. Furthermore, considering the higher
computation time for running the CPU-bound LinUCB agent,
with the implementation used in this study, we only applied the
NeuralUCB agent for this dataset, as results on the open-source
dataset were very similar between linear and neural UCB agents.

For each subject, the data was randomly shuffled, and we used a
simple train-test split to create the training and evaluation datasets
(80/20). Figure 8 shows the performance of the NeuralUCB agent
in the evaluation datasets. The pilot subject (S07) achieves the
highest accuracy. This was expected and simply reflects the quality
of the input features and the higher class separability. In general,
the results obtained for subject S07 support our hypothesis that (1)
the proposed experimental protocol can be used to elicit MI-related
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FIGURE 5

Event-related spectral perturbation (ERSP) for all subjects (n = 7) at channels C3 and C4 for both left and right-hand motor imagery tasks. The color

bars show the color and power spectral density in dB. For each channel, we used EEGLAB to compare the two experimental conditions (left vs. right)

and show in the right-most plot the permutation results (800 permutations, using false-discovery rate correction for multiple comparisons, for

α = 0.05). These plots show that, although some ERD is visible, the di�erences across experimental conditions are not significant when considering

all subjects.

FIGURE 6

Event-related spectral perturbation (ERSP) for all subjects (n = 21) at channels C3 and C4 for both left and right-hand motor imagery tasks. The color

bars show the color and power spectral density in dB. For each channel, we used EEGLAB to compare the two experimental conditions (left versus

right) and show in the right-most plot the permutation results (800 permutations, using false-discovery rate correction for multiple comparisons, for

α = 0.05). These plots show that, some ERD is visible (see dotted areas for each condition in the contralateral hemisphere), the di�erences across

experimental conditions are not significant when considering all subjects.

modulation and (2) a reinforcement learning agent can be used to
learn the mapping between MI input features and intended action
based on the feedback from the ErrP. On the other hand, the low-
class separability obtained for most subjects with our experimental
protocol directly impacts the agent’s performance, highlighting the
need for high-quality MI data to make the proposed ErrP-RL-based
BCI framework feasible.

5 Discussion

This paper introduces a novel framework using error-related
potentials (ErrPs) and reinforcement learning (RL) for the
development of adaptive non-invasive brain-computer interfaces
(BCIs). This study explores the use of a contextual bandit agent
to learn the mapping between motor imagery-related features and
intended actions, demonstrating the feasibility and effectiveness
of this approach in interpreting and responding to neural signals

associated with motor imagery (MI). The learning framework
was applied to both an open-source and an in-house dataset
we recorded using a new experimental protocol. The results
indicate that the agents are able to learn from the time-frequency
domain features extracted from EEG recordings with reasonable
accuracy using the simulated perfect ErrP classification as a reward.
Moreover, the pilot study with the novel experimental task for using
motor imagery and ErrPs in a fast-paced, interactive BCI suggests
the feasibility of the introduced protocol.

Results with two contextual bandit algorithms (LinUCB and
NeuralUCB) using the open-source BCI Competition IV dataset 2b
for a two-class MI task show that both agents perform similarly and
are able to learn the mappings between MI features extracted using
the continuous wavelet transform, and the classes (left or right).
The results obtained with selected subjects recorded with the novel
MI-ErrP experimental task confirm the feasibility of the proposed
RL-based MI framework, complementing the results obtained with
the open-source dataset. However, as in other domains of machine
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FIGURE 7

(A) Event-related potentials (ERP) for the error condition for each subject (blue traces) and average overall (black trace). (B) ERP for the correct

condition for each subject (green traces) and average overall (black trace). (C) ERPs at electrode Cz averaged over all subjects for each condition

(error and correct). ErrPs are given as the di�erence grand average (error minus correct). On the bottom, the black background shows the time

intervals with a significant di�erence between error and correct trials [p < 0.05; corrected for multiple comparisons by false discovery rate (FDR) to

avoid false positives]. Results are consistent with related works, but a late negativity is not observed.

FIGURE 8

Performance of the NeuralUCB contextual bandit agent in the

evaluation sessions for the Snake game BCI dataset (n = 8). The

plots show the accumulated number of errors across all trials,

averaged over ten executions with di�erent seeds. The accuracy is

calculated based on the final accumulated regret. Results show that

for most subjects the agent performance is not very high.

learning, reinforcement learning performance is highly dependent
on the quality of features and, therefore, of the raw input data.
The accuracies for individual subjects obtained in both datasets
vary from close to chance level (e.g., for subjects B02 and B03
in the open-source dataset) to very high (e.g., for subject B04 in
the open-source dataset). Nevertheless, as the aim of this study
was to validate the overall feasibility of the proposed learning
framework, rather than obtaining optimal feature extraction
performance, and performing MI can be a challenging task,

we are confident that with higher quality MI features agents’
performance can be further improved in the proposed framework.
Different preprocessing and feature extraction pipelines can be
investigated together with the proposed framework to improve
overall discrimination accuracy.

In this work, we used BCIs with a binary output. However,
as the framework is based on reinforcement learning (RL), we
believe the setup can be easily extended to non-binary tasks and

higher action spaces. This is, in fact, one of the main advantages
of the proposed approach compared to the related works reviewed

in Section 2. Most studies considered the binary case, where,

upon ErrP detection, the true class label could be inferred as the

opposite label (with some uncertainty due to the imperfect ErrP
classification accuracy). In the few studies that considered more

than two classes, only trials that did not elicit ErrPs were used, and
trials for which the true label could not be inferred were discarded.

In contrast, in an RL framework, such as the one proposed in
this work, the agent can learn from every sample based on the

reward received, regardless of the number of classes (actions) in
the output. Hence, future work could extend this framework to

more classes, for example, using the open-source dataset 2a from
the BCI Competition IV for a four-classMI task (Tangermann et al.,

2012). Moreover, the framework is not limited to the decoding of
MI-related responses, and its application to other signals can also
be evaluated, using benchmark datasets for offline validation or
including online experiments to address real-time feasibility.

While RL shows potential for dealing with the non-
stationarities in the EEG data due to its adaptability, its successful
application in BCIs requires overcoming some challenges, such
as noisy EEG data, limited training data, and the design of the
reward function. In this work, the latter was addressed by including
ErrPs as reward information, as it is intrinsically generated during
interaction with BCIs. In the proposed framework, mistakes made
by the BCI in the form of wrongly classified MI trials are
expected to elicit interaction ErrPs, which can be used to provide
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feedback for the agent in the form of reward (or penalty). On the
other hand, as the learning results show, the agents’ performance
is significantly reduced if the classes are less clearly separable.
This is the case for subjects B02 and B03 in the open-source
dataset, for whom other works also report reduced classification
accuracies and three out of eight subjects in the in-house collected
dataset. Therefore, future work should further investigate different
feature extraction methods to improve input data quality for the
agents, and further validate the learning framework to establish
performance boundaries and minimal requirements.

In this study, we also introduce a novel experimental paradigm
for the development of a hybrid BCI using motor imagery and
ErrPs. An interactive snake game was proposed to increase the
subject’s motivation and mitigate issues like boredom and reduced
attention that commonly happens in repetitive BCI tasks. The
increased game speed was defined based on previous studies and
feedback from subjects, who were much less interested when
playing the slower game. Moreover, a shorter interval better aligns
with real-time decision-making scenarios that would require a
faster reaction from subjects than commonly used slower-pacedMI
tasks. Data collected with twenty-one subjects show the feasibility
of eliciting ErrPs under a low error rate of 5% while subjects
perform MI in a fast-paced task. Data analysis of the MI data
shows the expected mu and beta band modulations, but significant
differences across experimental conditions (left- versus right-hand
motor imagination) are only visible for a few subjects, with one
subject performing particularly well.

While the two-second step deviates from the commonly used
timings (usually 3-5 seconds), the proposed protocol provided
insights into the feasibility of fast-paced MI tasks and the real-life
deployment of such BCIs. On the other hand, such a short inter-
trial interval might also not have been sufficient for most subjects
to account for awareness of the game state, cognitive preparation
for the MI task, and execution of the MI task with robust
neural activation, leading to the observed low-class separability and
consequently reduced decoding accuracy. Moreover, while subjects
might be more motivated by playing, the continuous nature of
the game might increase the cognitive load too much, leading
to faster mental fatigue or inconsistent performance over time.
Furthermore, all recorded subjects had no previous experience with
motor imagery. This can be learned and improved over several
training sessions (Tao et al., 2023). Therefore, results indicate that
future research should also validate the protocol with experienced
subjects or include training sessions. Extending the experiment and
analysis protocol this way should rule out some possible reasons
for insufficient data quality, enabling systematic validation of the
feasibility of the proposed experimental protocol. Another aspect
that could be included is the evaluation of whether including a
higher reaction time between feedback presentation and the start
of the motor imagination is required. Moreover, even though we
already included breaks between experimental blocks, we would
like to evaluate the quality of the motor imagination with shorter
blocks (e.g., only 20 trials per block instead of 120).

Another aspect of the proposed task to consider is that
incorporating the pre-programmed paths in the game helped
ensure true labels for the MI trials. This can also be particularly
helpful for recording labeled data for training classifiers using
supervised learning approaches, which are widely used in BCI

development. On the other hand, if subjects doubt their influence
on the game control, this can reduce their motivation and the
quality of the MI data. We also artificially introduced ErrPs in the
task. In the envisioned online BCIs, these signals are generated
because the BCI misinterpreted the subject’s intention. In both
cases, the interest in the BCI can also reduce if too many error trials
are spotted.

Lastly, in this study we analyzed the proposed framework
offline and assumed a perfect ErrP classification. In reality, ErrP
classification accuracy will most likely be lower. Our ongoing
work also considers the systematic validation of the proposed
framework considering different rates of ErrPs misclassification to
understand the performance boundaries for a general ErrP-based
RL framework for adaptive BCIs. Future work should validate
the entire framework during online use, as this is the intended
application of BCI systems.

In summary, the development of non-invasive BCIs using
EEG data usually requires the design of subject-specific classifiers
to decode the neural modulations of interest for each specific
paradigm. Not only must these classifiers be calibrated before
use, but their performance might also degrade over time due to
non-stationarities in the EEG signals. Some works have proposed
different re-calibration strategies to update the classifiers and
account for changes during long-term BCI use. In this work, we
proposed and validated a new framework based on error-related
potentials (ErrPs) and reinforcement learning for the development
of adaptive BCIs. We hypothesize that RL methods have the
potential to deal with the non-stationarities of EEG signals and, by
using the intrinsic ErrP generation as a reward, they can constitute
the fundamental block for the development of adaptive BCIs.
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Appendix

FIGURE 9

Event-related spectral perturbation (ERSP) for subject S12 at channels C3 and C4 for both left- and right-hand motor imagery tasks. The color bars

show the color and power spectral density in dB. For each channel, we used EEGLAB to compare the two experimental conditions (left vs. right) and

show in the right-most plot the permutation results (800 permutations, using false-discovery rate correction for multiple comparisons, significant

p-values shown in red for α = 0.05). These plots highlight how some motor-imagery-related spectral modulations could be measured for this

subject, even though they obtained the lowest score on the motor imagery ability compared to other subjects in the same study.

FIGURE 10

Event-related spectral perturbation (ERSP) for subject S12 at channels C3 and C4 for both left- and right-hand motor imagery tasks. The color bars

show the color and power spectral density in dB. For each channel, we used EEGLAB to compare the two experimental conditions (left vs. right) and

show in the right-most plot the permutation results (800 permutations, using false-discovery rate correction for multiple comparisons, significant

p-values shown in red for α = 0.05). These plots highlight how no significant motor-imagery-related spectral modulations could be measured for

this subject, even though they obtained the highest score on the motor imagery ability compared to other subjects in the same study.

Frontiers inHumanNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1569411
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	Hybrid brain-computer interface using error-related potential and reinforcement learning
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Open-source dataset: BCI competition IV dataset 2b
	3.2 Snake game BCI dataset
	3.2.1 Experimental protocol
	3.2.2 Data recording
	3.2.3 Data analysis

	3.3 Reinforcement learning agents

	4 Results
	4.1 BCI competition IV dataset 2b
	4.2 Snake game BCI dataset
	4.2.1 Neurophysiological analysis of the MI data
	4.2.2 Neurophysiological analysis of the ErrPs
	4.2.3 Reinforcement learning results


	5 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References
	Appendix


