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Over the past decade, deaths attributable to opioid and stimulant use have risen
dramatically. While the U.S. Food and Drug Administration (FDA) has approved
three medications for opioid use disorder, there is currently no FDA-approved
treatment for stimulant use disorder. Despite the availability of medications for
opioid use disorder, the rates of relapse and overdose, particularly in the time
of widespread fentanyl use, remain distressingly high. There is an urgent need
for more effective treatment options for these debilitating disorders. This article
provides an overview of the current standard of care for opioid use disorder and
stimulant use disorder. New and emerging neuromodulation approaches with a
particular focus on deep brain stimulation are then discussed.
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1 Introduction

Over 45 million people in the United States (U.S.) meet the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for a substance use disorder
(Portrait of American Healthcare, 2022). In the U.S., drug and alcohol use directly account
for over 200,000 deaths annually (Ritchie et al.,, 2022). In 2019, 47,337 deaths in the
U.S. were opioid-related-reflecting a 988% increase in opioid-related deaths since 1990
(Ritchie et al., 2022). While opioids have been responsible for the largest number of drug-
related deaths, deaths associated with stimulant use have also risen dramatically in recent
years. From 2012 to 2018, the rate of psychostimulant-related mortality increased by a
factor of five (0.8-3.9 per 100,000 people) and cocaine-related mortality by a factor of
three (1.4-4.5 per 100,000 people) (Ciccarone and Shoptaw, 2022). Increasingly, fentanyl
has been intentionally introduced into the cocaine supply, (Di Trana et al., 2022) which
has fueled a growth in co-occurring opioid and stimulant use and raised overdose rates
(Ahmed et al., 2022).

The challenging treatment landscape compounds the devastating impacts of opioid
use disorder (OUD) and stimulant use disorder (StUD). Buprenorphine, methadone, and
naltrexone are U.S. Food and Drug Administration (FDA)-approved for the treatment of
OUD; no existing treatments are FDA-approved for StUD (i.e., use of methamphetamine-
type substances, cocaine, or misuse of prescription stimulants such as methylphenidate),
causing significant impairment and distress. Furthermore, medications for substance
use disorders are often difficult for patients to access conveniently and consistently
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(Cantor etal., 2021; Park et al., 2024). Neuromodulation techniques
such as repetitive transcranial magnetic stimulation (rTMS), deep
brain stimulation (DBS), and low-intensity focused ultrasound
(LIFU) are promising new treatment modalities for substance use
disorders that target dysfunctional neurocircuitry at the core of
the disorders. In this mini-review, we will summarize the current
standard of care for OUD and StUD. We will then discuss new and
emerging neuromodulatory treatments for these two substance use
disorders.

2 Standard of care for opioid and
stimulant use disorders

Three
naltrexone - are FDA-approved and target the mu-opioid

medications - buprenorphine, methadone, and
receptor with unique mechanisms of action (Leshner and Mancher,
2019). Methadone is a full agonist of the mu-opioid receptor with
a long terminal half-life (up to 120 h) that reduces opioid craving,
withdrawal, and stress reactivity. Methadone maintenance therapy
has the highest treatment retention rates (Connery, 2015) and is
highly effective (six randomized controlled trials, RR 0.66, 95%
CI: 0.56 — 0.78) (Mattick et al., 2009). However, methadone has
sedating effects and is difficult for many patients to access due to the
burden of mandated daily in-person visits to the limited number of
opioid treatment programs (Mitchell et al., 2022). Buprenorphine
is a partial mu-opioid receptor agonist that competitively blocks
or decreases the reinforcing effects of other opioids (Connery,
2015; Mattick et al., 2014). Unlike methadone, buprenorphine does
not require daily in-person dispensing, and new formulations can
extend dosing - even as far out as every 6-months (Soyka and
Franke, 2021). However, it is less successful in retaining patients
in treatment compared to methadone (Mattick et al., 2014). The
adherence rates to naltrexone, a mu-opioid receptor antagonist
that competitively blocks the effects of opioid agonists, are even
lower, which has limited the real-world utility of this medication
(Connery, 2015). This non-addictive treatment requires a period of
abstinence before initiation and does not appear to directly reduce
opioid craving (Dijkstra et al., 2007).

There is currently no FDA-approved treatment for StUD,
highlighting an urgent gap in care. The growing need is driven by
a significant increase in stimulant-related morbidity and mortality
in recent years, which has even prompted the FDA to produce draft
guidance to encourage drug development in this area (Center for
Drug Evaluation and Research [CDER], 2023). A meta-analysis of
behavioral and medical treatments for cocaine use disorder found
that contingency management, a treatment plan that provides
monetary rewards for negative drug tests, was the only treatment
category associated with an increased likelihood of a negative
urinalysis for cocaine (odds ratio 2.13,95% CI 1.62 - 2.80) (Bentzley
et al,, 2021). However, in one of the largest trials of contingency
management, the abstinence rate among participants remained
less than 20%, Petry et al. (2005) and its real-world availability
is limited (Bentzley et al., 2021; De Crescenzo et al., 2018). Off-
label pharmacologic treatments for StUD include anticonvulsants,
antidepressants, antipsychotics, dopamine agonists, opioids, and
psychostimulants, but none significantly increase the odds of
achieving negative urinalysis (Bentzley et al., 2021).
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3 New and emerging
neuromodulatory treatments

3.1 Non-invasive brain stimulation
techniques

Neuromodulation may fill the pressing unmet need for novel
treatments by directly engaging dysfunctional circuitry (Figure 1)
(Koob and Volkow, 2010, 2016). Table 1 includes studies of using
non-invasive brain stimulation techniques for treatment of StUD
and OUD. rTMS is a non-invasive method of neuromodulation
that stimulates or inhibits neural activity by applying alternating
magnetic fields to induce electric currents in underlying neurons in
specific brain regions according to Faraday’s law of electromagnetic
induction. It is FDA-approved for treatment-resistant depression,
obsessive-compulsive disorder, and migraine with aura. rTMS has
also been shown to be effective for smoking cessation, leading
to FDA clearance of the BrainsWay Deep TMS system in 2020
(Zangen et al., 2021). Research into rTMS as a potential treatment
for other substance use disorders is ongoing. The most commonly
targeted region is the left dorsolateral prefrontal cortex (DLPFC),
with varying stimulation parameters and treatment durations.
High-frequency rTMS to the prefrontal cortex is hypothesized
to reduce craving and drug cue reactivity and improve decision-
making in the preoccupation/anticipation stage of addiction
(Gorelick et al., 2014). Large sham-controlled double-blinded trials
of left DLPFC rTMS have demonstrated decreased drug craving
among subjects with StUD (Liang et al., 2018; Su et al., 2017,
2020a, 2020b; Yuan et al, 2020). Left DLPFC rTMS has also
been shown to be effective in reducing cue-induced craving in
patients with OUD (Liu et al., 2020). A recent systematic review
identified 18 studies including 985 patients [methamphetamine
use disorder (n = 519), cocaine use disorder (n = 227), OUD
(n = 239)] and showed mostly positive effects on cue-induced
drug craving, though cocaine studies showed particularly mixed
results (Mehta et al., 2024). The review highlighted several null or
opposite effects of TMS on craving and found that little research
has tested its effects on drug consumption. Statistically null results
of some rTMS studies for substance use disorders could be the
result of the type of coil employed (a figure-of-eight coil has a more
focal stimulation field compared to an H-coil), inaccurate targeting,
or strengthening of the sham/placebo effect with study visits
and psychosocial support (Bolloni et al., 2016; Martinotti et al.,
2022). Variable outcomes may also be attributable to suboptimal
stimulation parameters and difficulty with retention in rTMS trials,
which require daily treatments for up to 6 weeks (Brunoni et al.,
2020). Advances in the delivery of neuromodulation may improve
treatment efficacy and help address barriers to patient retention.
Intermittent theta burst stimulation, a form of rTMS, has shortened
treatment times while maintaining efficacy (Liu et al., 2022). In
one of the largest rTMS studies for StUD, 126 participants with
methamphetamine disorder were randomized to either 20 daily
sessions of intermittent theta burst stimulation to the DLPFC or
sham treatment (Su et al., 2020a). The theta burst stimulation
group experienced a significant decline in cue-induced craving
which was not observed in the sham group. This study could not
assess the effect of theta burst stimulation on abstinence as it took
place in a long-term residential treatment facility. Accelerated TMS
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paradigms, where the full course of TMS is compressed into 5 days,
have shown efficacy for depression (Cole et al., 2022) and may hold
promise for substance use disorders. Such treatments could also be
performed inpatient, which increases the likelihood of TMS course
completion. One such study, evaluating the feasibility of accelerated
rTMS for StUD and comorbid depression, is currently underway
(NCT06424184). In addition to reducing craving, the effect of TMS
on drug use abstinence and relapse is an important area for further
study.

Other promising non-invasive brain stimulation techniques
include transcranial direct current stimulation (tDCS) and
stimulation (tACS). tDCS
modulates cortical excitability via non-synaptic changes of

transcranial alternating current
the cells-including cathodal stimulation to decrease cortical
excitability and anodal stimulation to increase cortical excitability
via either hyperpolarization or depolarization, respectively,
of the resting membrane potential (Stagg and Nitsche, 2011).
While tDCS constantly depolarizes or hyperpolarizes neurons,
tACS delivers fluctuating current between electrodes to induce
synaptic plasticity (Elyamany et al., 2021; Gholamali Nezhad
et al,, 2024). In comparison to rTMS, tDCS and tACS do not
require a magnetic coil and are delivered by relatively inexpensive,
portable battery-powered devices (Elder and Taylor, 2014).
This increases the accessibility of these modalities, however,
unlike rTMS, tDCS and tACS are not able to focally deliver
stimulation to specific targets. tDCS treatments (most commonly
directed to the DLPFC) have been shown to reduce craving
for stimulants [cocaine, (Batista et al., 2015; Klauss et al,
2018) methamphetamine (Shahbabaie et al., 2014; Shariatirad
et al., 2016)] and heroin (Wang et al., 2016). tACS is a newer
technology than tDCS and only two studies have tested it
for substance use disorder indications. These studies applied
alpha-tACS to the bilateral DLPFC, with one showing improved
inhibitory control in people with a variety of substance use
disorders (N = 30) (Daughters et al., 2020) and the other showing
improved behavioral flexibility in people with prior substance use
dependence (N = 17) (McKim et al., 2021). Research has yet to
test the effects of tACS on OUD and StUDs or on drug use and
craving.

3.2 Deep brain stimulation (DBS)

One limitation of currently available non-invasive brain
stimulation techniques is the inability to directly target the
subcortical brain structures involved in the reward and
reinforcement circuit. DBS and LIFU can successfully reach
deeper brain targets. Table 1 lists the outcomes of all reported
studies of DBS and LIFU for the treatment of OUD and StUDs.

In DBS, electrical current is delivered to a deep brain
region via implanted electrodes. It is a standard-of-care treatment
for advanced movement disorders such as essential tremor
and Parkinson’s disease, and epilepsy with over 5,500 DBS
operations performed each year in the U.S (Sarica et al,
2023). The electrodes are connected via extension wires to a
pacemaker-like unit called an implantable pulse generator, which
is typically placed subcutaneously in the chest wall. There are

several proposed non-exclusive therapeutic mechanisms of DBS.
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One predominant theory is that the benefits of high-frequency
[>130 Hertz (Hz)] stimulation arise from a reversible lesioning
effect (Herrington et al., 2016). There is also increasing recognition
that DBS modulates neural activity on a network level to effect
dysregulated connectivity-the electrode target acting as a single
node with upstream and downstream projections (Hollunder et al.,
2024). Like TMS, DBS treatment involves multiple programming
parameters (frequency, current amplitude, pulse width) that can
be adjusted to maximize clinical efficacy and minimize side
effects.

Pre-clinical studies have shown that nucleus accumbens (NAc)
DBS reduces drug-seeking behavior in rodents (Eskandari et al.,
2023; Guercio et al,, 2015; Guo et al., 2013). Reinstatement testing,
commonly used in animal studies of addiction, is designed to
model relapse. After a period of drug self-administration followed
by extinction training, drug-associated cues are re-introduced to
test for drug-seeking behavior. Using this paradigm, Vassoler et al.
(2008) demonstrated that DBS of the NAc shell reduced drug
seeking in rats. Rats who received bilateral NAc DBS had lower the
number of lever presses to trigger cocaine administration following
reinstatement, suggesting attenuation of drug-seeking behavior
with stimulation.

Several human studies in a small number of patients have
demonstrated the feasibility of continuous NAc DBS for StUDs and
OUDs (Table 1). Most studies showed that participants remained
abstinent or reduced the amount and/or frequency of drug use.
Across these studies, no serious adverse events were reported.
Zhang et al. (2019) reported the results of bilateral NAc DBS in
a patient with treatment-refractory methamphetamine disorder.
Following 1 year of DBS treatment, the patient remained abstinent
per self-report and urine and hair drug testing. The patient also
had improvements in measures of craving, mood, anxiety, quality
of life, and functional impairment. Positron emission tomography
imaging obtained before and 1-year post-DBS implantation showed
enhanced striatal dopamine transporter binding, suggesting a
normalization of brain dopaminergic dysfunction. Rezai et al.
(2024) conducted a prospective, open-label, single-arm study of
bilateral NAc DBS in treatment-refractory OUDs. Two of the four
patients were completely abstinent after surgery, one patient had
recurrent drug use but decreased frequency and severity, and one
patient had the DBS system explanted due to non-compliance with
study protocols. In light of the promising early findings, several
groups are now designing randomized-controlled trials to establish
the safety and feasibility of NAc DBS for substance use disorder
(NCT04354077).

DBS provides continuous treatment with a less demanding
follow-up schedule than methadone maintenance therapy.
However, frequent programming visits to optimize stimulation
settings can be a barrier (Hunka et al., 2005). In 2020, the first fully
remote DBS programming system received FDA approval, which
may substantially improve the feasibility of this treatment option
(Merola et al., 2021). Another recent advance is the commercial
availability of devices with the capability to continuously record
local field potentials, i.e., synaptic potentials of adjacent neurons
at the implantation site. The ability to detect behaviorally relevant
brain signals brings promise to closed-loop delivery of DBS
only when needed (i.e., when a pathological signal is detected).
Electrophysiological biomarkers of reward anticipation or craving
have been identified in animals (Wu et al.,, 2018) and humans
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A. Neurocircuits in the Stages of Addiction
Binge/Intoxication

Extended AMY
Habenula

Withdrawal/Negative Affect

A repeating cycle wherein reward reinforcement and
the incentive salience of drug behaviors (green) is

followed by a reward deficit and stress (red) and then S
craving and poor executive control (blue). (

B. Cue-Reactivity

Increased BOLD Response to drug cues

Striatal cue reactivity is considered a
potential response biomarker

C. Neuromodulation Techniques
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DBS

| ) \

Pulse \
Generator J

(A) Dysfunction within the mesocorticolimbic circuit, which processes rewards and punishments underlies substance use disorders. It is theorized
that disturbances in three subcircuits underly the binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation stages of addiction.
(B) Brain reactivity to drug-related pictures during task-based fMRI studies. (C) The neuromodulation techniques available for treatment:
transmagnetic stimulation (TMS), deep brain stimulation (DBS), and low-intensity focused ultrasound (LIFU). Abbreviations: amygdala (AMY), blood
oxygen level dependent (BOLD), anterior cingulate cortex (ACC), nucleus accumbens (NAc), orbitofrontal cortex (OFC), ventral tegmental area (VTA).

(Nho et al., 2023) through the use of intracranial recordings and
may potentially be integrated into new DBS technology (Chen
et al, 2024). In closed-loop DBS, stimulation is delivered only
when a biomarker is detected (responsive DBS), or stimulation
is adjusted based on the presence or magnitude of a biomarker
(adaptive DBS). In a patient with a history of OUD and StUD,
we identified a drug-cue specific low-frequency (1-7 Hz) band
electrophysiological signal in the left NAc shell (Qiu et al., 2024).
This biomarker was not identified in other electrode contacts
nor with other behavioral tasks. Stimulation in the NAc shell
attenuated the power of this low-frequency band signal as well
as clinical ratings of craving. This suggests the potential of using
this low-frequency signal as a biomarker of craving, and ability to
modulate this signal, and thus behavior, with DBS. The feasibility
of closed-loop stimulation has been demonstrated in Parkinson’s
disease, epilepsy, and some neuropsychiatric conditions (Oehrn
et al., 2024). Like the symptoms of Parkinson’s disease, the urges
and cravings associated with substance use disorder are often
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dynamic and context-dependent. Closed-loop capabilities can
permit the identification and modulation of urge/craving states
in real time. This flexibility would enable treatment of both
background affective symptoms in addition to cue-reactive states
to further enhance recovery. Other advantages of closed-loop
stimulation include decreasing the total stimulation burden, which
may reduce side effects, minimize tachyphylaxis phenomenon,
improve outcomes, and facilitate neural plasticity.

3.3 Focused ultrasound

Low-intensity focused ultrasound is an exciting and new
neuromodulation technique that can reach deep structures but,
unlike DBS, does not require open neurosurgery or a device
implant (Olaitan et al., 2024). While high-intensity focused
ultrasound uses thermal energy to ablate surgical targets, LIFU
is non-ablative and is thought to modulate neuronal activity
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TABLE 1 Studies of non-invasive brain stimulation techniques [repetitive transcranial magnetic stimulation (rTMS), transcranial direct current
stimulation (tDCS), transcranial alternating current stimulation (tACS)], deep brain stimulation (DBS) and low intensity focused ultrasound (LIFU) for
stimulant use disorder and opioid use disorder.

Drug of use

Intervention

Adverse events

Non-invasive brain stimulation techniques

Batista et al., 2015 Crack-cocaine Five sessions of bilateral 17 Craving scores were significantly reduced in Mild side effects
DLPFC tDCS (left the treatment group compared to sham. including altered scalp
cathodal, right anodal) sensation (buzzing,

tingling, burning).

Wang et al, 2016 Heroin Single tDCS session to 20 Cue-induced craving scores were significantly No side effects reported.
the bilateral reduced in the treatment group whereas there
frontal-parietal-temporal was no changes in craving in the control
areas. group.

Yuan et al., 2020 Heroin 10-Hz and 1-Hz rTMS to 118 Cue-induced craving was significantly reduced | Mild side effects
the left DLPFC in treatment group compared to control group | including dizziness,

receiving no rTMS treatment. headache, neck pain,
insomnia.

Liu et al., 2020 Methamphetamine 1-Hz rTMS to the left 73 Impulse inhibition was significantly improved None reported.
prefrontal cortex in the treatment group as well as reduced

self-reported cue-induced craving compared
to the sham group.

Deep brain stimulation

Zhou et al., 2011 Heroin Continuous bilateral 1 No relapse at 6-year follow-up. Improvement Mild confusion, urinary
NAc DBS. in memory scores, and reduction in depression incontinence, weight

and anxiety measures. gain.

Valencia-Alfonso Heroin Continuous bilateral 1 Six months without heroin use with exception None reported.

etal., 2012 NAC/ALIC DBS. of a 14-day relapse.

Kuhn et al., 2014 Opioids (& Continuous bilateral 2 Continuous abstinence with exception of one Seizure in patient with
methamphetamine) | NAc DBS. singular incident of heroin consumption for prior history of seizures.

both patients. Follow-up time not reported.

Gongalves-Ferreira Cocaine Continuous bilateral 1 At 24-month follow-up, 68% weeks free of Transient stimulation

etal, 2016 ALIC/nucleus stria consumption vs. 41% before and 56.5% side effects.
terminalis/NAc DBS. negative urinalysis vs. 12% before.

Three-phase crossover
design.

Geetal., 2019 Methamphetamine Continuous bilateral 2 One participant without relapse at 1.5-year Transient hypomania,
NAc/ALIC DBS. follow-up. Minimal effect in one participant anxiety.

who started intermittently relapsing at
6-month follow-up.

Zhang et al., 2019 Methamphetamine Continuous bilateral 1 Abstinence for a full year. None reported.
NAc/ventral capsule
DBS.

Rezai et al., 2024 Opioids (& Continuous bilateral 4 Two participants with complete abstinence. No serious adverse
benzodiazepines, NAc/ventral capsule One participant with reduced frequency and events or device- or
cannabis) DBS. severity of drug use. One participant had stimulation-related

device explanted due to non-compliance with adverse events.
treatment requirements.

Focused ultrasound

Mabhoney et al., 2023 Opioids Two doses (60 and 90 W) | 4 Two participants receiving 90 W LIFU dose No serious adverse
of LIFU to bilateral NAc. had decreased craving 90 days following events.

treatment. Urine toxicology was negative for
opioids through 90-day follow-up for all four
participants.

Rezai et al., 2025 Opioid (& One dose (90-100 W) of 8 Five participants were abstinent at 90-day No serious adverse
stimulants) LIFU to bilateral NAc follow-up. The three participants who events.

experienced relapse used drugs less frequently
than their baseline use.

ALIC, anterior limb of internal capsule; DLPFC, dorsolateral prefrontal cortex; NAc, nucleus accumbens; W, Watt.
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through mechanotransduction effects and can excite or inhibit
neuronal activity depending on the specific parameters. While still
nascent in its development, a pilot open-label study including
four participants with OUD who received LIFU [either 60 or
90 Watt (W) dose] to the bilateral NAc demonstrated safety
and promising outcomes on craving (Mahoney et al., 2023). The
two participants receiving the enhanced LIFU dose (90 W) had
decreased craving for substances acutely and at 90 days following
treatment. In a follow-up study (NCT04197921) of a similar but
larger sample (N = 8), investigators again found reductions in cue-
induced craving following 90-100 W sonication to the NAc and
further showed sustained decreases in substance use (Rezai et al.,
2025). Building on these results, there are currently five active
LIFU studies for substance use disorder indications, including
another study investigating the safety and tolerability of LIFU for
OUD (NCT06218706) and one study seeking to understand the
impact of LIFU on craving levels among patients with cocaine use
disorder as evidenced by imaging of the dorsal anterior insula and
subjective ratings (NCT05857852). This reflects the strong interests
and growth of LIFU as a potential neuromodulatory therapy in
substance use disorders.

4 Discussion

The current standard of care for patients with substance use
disorders is severely lacking, leaving many patients refractory
to existing therapies. The resulting morbidity and mortality
are substantial and represent an unacceptable status quo. The
dysfunctional neurocircuitry driving addiction is theoretically
amenable to neuromodulation as a treatment, and the results
from cases of neuromodulation in humans with severe, refractory
substance use disorders are promising. However, the nature of
this disorder challenges retention rates in complex treatment trials,
which, together with a lack of consensus and standardization
of reliable outcome measures and biomarkers, has hindered the
necessary clinical development pathway to FDA approval.

Growing efforts seek to standardize the reduction in substance
use rather than abstinence as a primary outcome measure. FDA
draft guidance released in October 2023 highlights within-subject
change in the pattern of drug use as an appropriate clinical trial
endpoint (Center for Drug Evaluation and Research [CDER],
2023). Yet, the lack of reliability of self-report measures and the
burden of frequent urine drug screens still remain as challenges.
The use of multiple substances further complicates the outcomes
for specific substances. As OUD and StUDs increasingly co-
occur and involve overlapping neurocircuitry, there is a scientific
rationale for neuromodulation trial designs that encompass both
conditions. fMRI-cue reactivity is an exciting potential surrogate
endpoint that is widely accepted by researchers in the field
(Ekhtiari et al., 2022). Cue reactivity is a learned response to
drug cues that triggers prefrontal cortex-driven craving along with
conditioned activation of the subcortical motivational (reward)
circuitry. Objective neuroimaging biomarkers of cue reactivity
may help identify people at risk for recurrence and measure the
progression and treatment of the disorder (Childress et al., 2008;
Ekhtiari et al., 2024; Morales and Berridge, 2020). fMRI studies
across substance use disorders consistently identify increased
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activity in the striatum, amygdala, PFC, and insula in response to
drug cues, (Dejoie et al., 2023; Hill-Bowen et al., 2021; Huang et al.,
2018; Moeller and Paulus, 2018; Regier et al., 2021; Yalachkov et al.,
2012) which is associated with substance use severity, treatment
outcomes, and risk of relapse (Janes et al., 2010; Jasinska et al.,
2014; Li et al., 2015; Moeller and Paulus, 2018). While fMRI has
high spatial resolution, the temporal resolution is poor compared
to electroencephalography (EEG) (Houston and Schlienz, 2018).
Event-related potentials (ERP), EEG brain signals measured in
response to a specific stimulus, have been associated with treatment
outcomes, relapse, and cue reactivity in patients with substance
use disorders (Bel-Bahar et al., 2022; Habelt et al., 2020; Parvaz
etal,, 2017; Sokhadze and Shaban, 2022) EEG biomarkers may serve
as a more practical and temporally dynamic endpoint compared
to fMRI biomarkers. Current efforts to standardize experimental
design and analysis of these markers are laudable and may
lead to the necessary extensive validation before such markers
(neuroimaging or signal-based) can support regulatory approval
(Ekhtiari et al., 2022, 2024).

Future designs of randomized controlled studies also need
to account for key practical considerations relevant to the
care of patients with substance use disorder to ensure the
feasibility of these interventions on a larger scale outside of
an investigative context. Novel approaches to neurostimulation,
including accelerated TMS and LIFU, may help achieve this goal
by reducing total intervention time and more directly targeting
the reward circuitry underlying craving and addiction. Ongoing
refinement of neuromodulatory techniques and advancement in
the understanding of neurocircuitry will further improve their
efficacy and may transform the treatment landscape for substance
use disorders. While the NAc for DBS and focused ultrasound
and the DLPFC for non-invasive stimulation techniques have
been the predominant targets for addiction treatment, the optimal
target for each modality is not fully established and an area of
ongoing research (Mehta et al., 2024; Zammit Dimech et al., 2024).
Neuromodulation treatment will likely be concentrated in tertiary,
academic medical centers at first. Therefore, it will be critical to
target outreach to communities with decreased healthcare access.
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