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Background: Exercise is increasingly recognized as a beneficial intervention for 
Parkinson’s disease (PD), yet the optimal type and intensity of exercise remain 
unclear. This study investigated the relationship between exercise intensity 
and neural responses in PD patients, using electroencephalography (EEG) to 
explore potential neural markers that could be ultimately used to guide exercise 
intensity.

Method: EEG data were collected from 14 PD patients (5 females) and 8 healthy 
controls (HC) performing stationary pedaling exercises at 60 RPM with resistance 
adjusted to target heart rates of 30, 40, 50, 60, and 70% of maximum heart 
rate. Subjects pedaled for 3 min at each intensity level in a counterbalanced 
order. Canonical Time-series Characteristics (Catch-22) features and Multi-
set Canonical Correlation Analysis (MCCA) were utilized to identify common 
profiles of EEG features at increasing exercise intensity across subjects.

Results: We identified a statistically significant MCCA component demonstrating 
a monotonic relationship with pedaling intensity. We  have discovered nine 
features which show significant trends across intensity (p-value<0.01), and the 
dominant feature in this component was Periodicity Wang (p-value<0.0001), 
related to the autocorrelation of the EEG. Analysis revealed a consistent trend 
across features: six features increased with intensity, indicating heightened 
rhythmic engagement and sustained neural activation, while three features 
decreased, suggesting reduced variability and enhanced predictability in neural 
responses. Notably, PD patients exhibited more rigid, consistent response 
patterns compared to healthy controls (HC), who showed greater flexibility and 
variability in their neural adaptation across intensities.

Conclusion: This study highlights the feasibility of using EEG-derived features 
to track exercise intensity in PD patients, identifying specific neural markers 
correlating with varying intensity levels. PD subjects demonstrate less inter-
subject variability in motor responses to increasing intensity. Our results 
suggest that EEG biomarkers can be used to assess differing brain involvement 
with the same exercise of increasing intensity, potentially useful for guiding 
targeted therapeutic strategies and maximizing the neurological benefits of 
exercise in PD.
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1 Introduction

PD is a neurodegenerative disease associated with the 
accumulation of alpha-synuclein and loss of dopamine-producing 
neurons, particularly in the substantia nigra (Calabresi et al., 2023). 
Symptoms of this dopaminergic neuron loss include bradykinesia, 
muscle rigidity, and tremors, in addition to a host of non-motor 
symptoms (Licen et al., 2022). Current treatments such as medication 
and deep brain stimulation (DBS) can alleviate its symptoms but do 
not fundamentally alter the course of the disease and vary in 
effectiveness depending on the individual (Ridgel et  al., 2015). 
Consequently, it is crucial to explore new therapeutic approaches 
which can have rehabilitation potential without side effects.

Numerous studies have investigated the potential of exercise in 
improving symptoms of various neurological problems including 
neurodegenerative diseases such as Parkinson’s disease (Langeskov-
Christensen et al., 2024), and Alzheimer’s (Valenzuela et al., 2020). 
Valenzuela et al. (2020) shed light on the advantageous role of regular 
physical exercise [Aerobic exercise (with an intensity of 50–75% of 
VO₂ max)] in mitigating Alzheimer’s disease hallmarks, hippocampal 
volume reduction, spatial memory decline, and learning impairments 
in Alzheimer’s disease. Exercise has also had a positive impact on 
balance in patients with stroke, PD, and multiple sclerosis [for a 
systematic review see: Salari et al. (2022)]. Exercise has also been 
beneficial in psychiatric diseases such as anxiety (Pontifex et al., 2021), 
and Obsessive Compulsive Disorder (OCD) (Abrantes et al., 2019) 
with moderate-intensity aerobic exercise. In a meta-analysis (Ensari 
et al., 2015), showed that acute exercise sessions provide immediate 
relief from state anxiety, and Pontifex et al. (2021) demonstrated its 
ability to alleviate cognitive impairments associated with anxiety.

Cycling appears to be  a particularly beneficial exercise for 
individuals with PD. Alberts et al. (2011) noted improvements in a 
person living with Parkinson’s disease (PwP) within two days after a 
tandem cycling expedition. Follow-up studies (Ridgel et al., 2009; 
Ridgel et al., 2012; Ridgel et al., 2015) revealed significant benefits, 
including a 38% reduction in tremors and a 28% improvement in 
bradykinesia after eight weeks of forced tandem cycling. Dynamic 
high-cadence cycling also showed motor improvements, while other 
research (Snijders et  al., 2012; Licen et  al., 2022) highlighted the 
persistence of cycling ability in more advanced disease, even in those 
with severe freezing of gait. The repetitive nature of cycling poses a 
lower physical challenge and may help stabilize abnormal neural 
oscillations, making it a promising rehabilitative option for PD 
patients (Licen et al., 2022). In addition, Recent evidence suggests that 
integrating virtual reality and exergaming into rehabilitation programs 
may further enhance motor and cognitive outcomes in PD. A 
systematic review by (Marotta et al., 2023) found that exergaming-
based interventions, particularly those incorporating virtual reality, 
improve balance, executive function, and motor performance, making 
them a promising adjunct to traditional exercise therapies.

Despite the well-documented beneficial effects of exercise on 
brain function, there are still significant gaps in understanding how 
specific factors such as the duration, type, and intensity of exercise 
influence these outcomes. Most studies have focused on comparing 
pre- and post-exercise brain states (Moraes et al., 2007; Gutmann 
et  al., 2015). However, monitoring EEG during exercise could 
provide valuable insights into how these variables interact (Enders 
et al., 2016; Bailey et al., 2008), potentially enhancing our ability to 

optimize exercise-based therapeutic interventions. This study aims 
to address these gaps by exploring how dynamic brain activity 
during exercise—particularly through EEG—can provide deeper 
understanding of exercise-induced neurophysiological changes.

Recent research has focused on leveraging dynamic features from 
brain recordings like EEG to better understand neurodegenerative 
diseases (Cacciotti et al., 2024). EEG has emerged as a promising 
biomarker for tracking disease progression and assessing the 
neurophysiological effects of rehabilitation in PD. Studies have shown 
that alterations in EEG power bands features correlate with motor 
deficits, providing valuable insights into disease severity and treatment 
efficacy (Miladinović et al., 2021). These features offer critical insights 
into the temporal fluctuations of brain connectivity, which may assist 
in interpreting symptom progression, and mechanisms behind 
cognitive and motor impairments. Lubba et al. (2019) proposed 22 key 
temporal features, known as Canonical Time-series Characteristics 
(Catch-22), from an initial set of 4,791. These features effectively 
capture diverse aspects of temporal dynamics of various time series, 
including EEG, that capture extreme events, autocorrelation, symbolic 
patterns, and scaling behaviors, while reducing redundancy, making 
them broadly applicable across time-series analyses.

The main goal of this study is to explore how different pedaling 
intensities impact brain activity in individuals with Parkinson’s disease 
(PD). We will look at EEG data to track neural responses as exercise 
intensity changes. We believe that higher pedaling intensity will lead 
to clear changes in brain activity, which we can identify using Catch-22 
features. In this study, we applied Catch-22 dynamic EEG features to 
assess the effects of pedaling intensity on brain activity in individuals 
with PD and healthy controls. Participants pedaled at five different 
intensity levels while their EEG data were collected. Using MCCA (Fu 
et al., 2019), we identified linear combinations of EEG channels that 
exhibited consistent trends across participants, highlighting key 
neural responses as pedaling intensity increased.

2 Methods

2.1 Experimental protocol

In this study, 14 PD and 8 healthy control (HC) subjects were 
recruited from the Movement Disorders Clinic at the Pacific Parkinson’s 
Research Centre, Vancouver, Canada. All subjects provided written, 
informed consent, and all research was reviewed and approved by the 
appropriate Ethics Boards. Disease severity was assessed using the 
Hoehn and Yahr scale (stages 1–3), and symptom severity was quantified 
using the Unified Parkinson’s Disease Rating Scale (UPDRS), with a 
mean score of 18.96 (SD = 10.43). Additionally, all PD participants were 
in the early stages of the disease and regularly engaged in aerobic 
exercise (defined as >100 min of moderate aerobic activity per week 
over the last three months). To optimize exercise tolerance, subjects took 
their usual anti-parkinsonian medication. Exclusion criteria included a 
history of stroke, severe cardiovascular disease, or any other significant 
neurological or psychiatric disorder that could affect motor or cognitive 
function. Individuals with severe musculoskeletal impairments 
preventing safe participation in cycling exercises were also excluded. 
More information about PD subjects is in Table 1 in the results section.

Participants underwent standardized cognitive and mood 
evaluations before the experimental session. Cognitive status was 
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screened using the Montreal Cognitive Assessment (MoCA), with all 
participants scoring above 24 (mean = 27.53, SD = 1.92). Psychological 
well-being was evaluated using the Beck Depression Inventory (BDI) and 
the Beck Anxiety Inventory (BAI), with mean scores of 2.27 (SD = 3.63) 
and 3.67 (SD = 3.2), respectively. Fatigue was assessed using the Fatigue 
Severity Scale (FSS) (mean = 20.21, SD = 10.25), and emotional affect 
was measured using the Positive and Negative Affect Schedule (PANAS) 
(mean = 28.42, SD = 5.74). Additionally, cognitive processing speed and 
executive function were evaluated using the Trail Making Test (TMT), 
with a mean completion time of 30.57 s (SD = 7.98) for TMT A, assessing 
visual attention and processing speed, and 63.81 s (SD = 32.72) for TMT 
B, which measures cognitive flexibility and executive function.

Participants pedaled on a stationary bicycle, with the seat height 
individually adjusted for comfort. Each session began with a 5-min 
warm-up to ensure safety. Subjects pedaled at intensities of 30, 40, 50, 
60, and 70% of their maximum heart rate [calculated as 0.85 * (220 – 
age)] while maintaining a steady pace of 60 RPM. Resistance was 
adjusted to vary intensity, with 3-min intervals followed by 3-min 
recovery periods. Intensity intervals were pseudo-randomly assigned, 
except for 70%, which never came first. The 30-min intervention 
concluded with a 5-min cool-down.

EEG was recorded using nine electrodes at standard locations F3, 
Fz, F4, C3, Cz, C4, P3, Pz, and P4, targeting frontal, central, and parietal 
regions critical for monitoring brain activity during exercise. A 
stretchable head cap with Ag-AgCl electrodes (ANT Wave Guard cap, 
Advanced Neuro Technology B.V.) was used, with the reference 
electrode placed near the vertex between Cz and CPz. The ground 
electrode was positioned between Fz and FPz on the frontal scalp, and 
electrode impedances were maintained below 10 kΩ to ensure signal 
quality. The EEG recording was performed continuously, beginning with 
the warm-up phase (first three minutes) and concluding after the 

cool-down phase (final three minutes). Importantly, the recording 
remained uninterrupted during rest stages between pedaling sessions, 
ensuring the continuous capture of neural activity throughout 
the experiment.

2.2 Preprocessing

We performed a number of careful steps to remove the artifact 
from the EEG. First, the common average reference (CAR) technique 
was applied, followed by high pass FIR filtering, low pass FIR filtering, 
and notch filtering to remove frequencies below 0.1, above 100, and 
60 Hz line noise. A recursive least squares (RLS) algorithm was 
applied to remove eye-related (ocular) artifacts, and an adaptive filter 
was used in this method to remove eye blinks from the EEG signal by 
adjusting its coefficients in each iteration according to the difference 
between the EEG signal and the EOG signal. The automatic artifact 
rejection (AAR) plugin was used in EEGLAB (MATLAB 2018b) to 
reject this artifact. Then, the EMG artifact was removed with principal 
component analysis (PCA). In the last step, another remaining artifact 
source was removed with the help of the IClabel plugin of EEGLAB, 
with two of the nine components removed.

2.3 Feature extraction using Catch-22

We utilized the Catch-22 package, which allows for the extraction 
of 22 distinct features from each EEG channel, as listed in Table S1. The 
duration for feature extraction was specifically set to one second, 
corresponding to one complete cycle of pedaling (60 RPM). By 
synchronizing the feature extraction window with the pedaling cycle, 
we effectively isolated and minimized the impact of pedaling frequency 
on the EEG signals, ensuring that the extracted features more accurately 
reflected the underlying brain activity rather than the mechanical motion.

2.4 MCCA-based extraction of 
intensity-linked neural signatures

MCCA extends traditional CCA by analyzing relationships across 
multiple datasets. It identifies optimal linear combinations of variables 
(canonical variates) that maximize correlations between datasets. In 
this study, MCCA was applied to EEG data from 14 participants in a 
two-step process (Figure 1).

2.4.1 First round: feature selection
In the first round (upper dashed rectangle in Figure 1), the data 

matrix for each subject was structured as 9 EEG channels by 110 
observations (22 features across five intensity levels). This round 
served as a feature selection step, aiming to identify features that 
consistently represented shared neural dynamics across EEG channels 
of all subjects. Nine canonical components were extracted 
(corresponding to the number of EEG channels), and features with the 
highest consistency across subjects were identified for further analysis.

2.4.2 Second round: detecting neural signatures
Building on the results above, the second round of MCCA focused 

on detecting the neural signatures of exercise intensity. Informative 

TABLE 1 Demographic information about the subjects included in this 
study.

Variables Values

Age 60.66 ± 7.81

Male/Female 9/5

Hoehn-Yahr 1–3

UPDRS 18.96 ±10.43

Regular exercise >100 min per week over 3 months

Montreal cognitive assessment score >24

(27.53 ± 1.92)

Beck’s depression score <13

(2.27 ± 3.63)

Beck’s anxiety score <9

(3.67 ± 3.2)

Fatigue severity scale (FSS) 20.21 ± 10.25

Positive and negative affect schedule

(PANAS)

28.42 ± 5.74

Trial Making Test (TMT) A 30.57 ± 7.98

TMT B 63.81 ± 32.72

Medication Beta-blocker “Off ”

Anti-Parkinson “On”

Handedness (Right/Left) 11/4

https://doi.org/10.3389/fnhum.2025.1571106
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Alizadeh et al. 10.3389/fnhum.2025.1571106

Frontiers in Human Neuroscience 04 frontiersin.org

features selected from the first round, evaluated for their consistency 
across subjects within components 2–4 (as detailed in the results 
section), were used to refine the data matrices. Feature selection was 
performed using Repeated-Measures ANOVA (RM-ANOVA), applied 
to components 2, 3, and 4 to assess feature consistency across subjects. 
Features that exhibited p-values < 0.001  in 2–4 components were 
considered stable and selected for further analysis. These matrices, 
structured as 9 channels by 45 observations (9 features across 5 
intensities), enabled more targeted analysis. This two-step approach 
ensured improved interpretability and computational efficiency by 
concentrating on features most relevant to exercise-induced 
neural dynamics.

2.5 Weighted signal analysis and wavelet 
transformation

To integrate the multichannel EEG data, a weighted aggregate 
signal was computed using channel weights derived from the MCCA 
analysis. To capture critical events in both the time and frequency 
domains, the Wavelet Transform was employed. Before transformation, 
EEG signals were averaged over one-second windows (corresponding 
to a single pedaling cycle at 60 RPM) to minimize noise and artifacts. 
This averaging step ensured that the signals reflected underlying 
neural activity rather than transient noise or mechanical motion.

3 Results

Table  1 summarizes the demographic and baseline clinical 
characteristics of the study participants. The mean age was 60.66 years 
(SD = 7.81), with a gender distribution of 9 males and 5 females. 
Participants demonstrated mild to moderate symptom severity based 

on Hoehn-Yahr staging (1–3) and a mean UPDRS score of 18.96 
(SD = 10.43). Cognitive and psychological assessments indicated 
overall preserved cognitive function and low levels of depression and 
anxiety. Participants also reported regular engagement in aerobic 
exercise and demonstrated relatively good functional and emotional 
status, as reflected in the FSS, PANAS, and TMT scores.

3.1 Artifact identification via principal 
component analysis

Consistent with prior studies (De Cheveigné et al., 2019) the first 
component of MCCA may still relate to residual artifacts (Jiang et al., 
2019) as illustrated in Figure 2 for one subject. We therefore excluded 
the first component and concentrated our further investigations on 
components 2–4.

3.2 MCCA-based extraction of 
intensity-linked neural signatures

MCCA analysis at the first round demonstrated nine features that 
exhibited high consistency across subjects within the meaningful 
components 2, 3, and 4. The feature values were normalized separately 
to obtain a better visual representation. Nine out of the 22 features 
exhibited consistent behavior across subjects. A detailed description 
of these nine consistent features is presented in Table 2. The results for 
component 3 are shown in Figures 3, 4, with Supplementary Figure S1 
showing the control group for comparison. Six features, as mentioned 
in the second column of Table 2, showed an increasing trend with 
rising exercise intensity, while three features showed a decreasing trend.

Moreover, by focusing on the weighted vector of EEG data 
computing by multiplying EEG by the weights of MCCA, we observed 

FIGURE 1

The pipeline displays the identification process of the most consistent features across EEG channels, highlighting those with the strongest relationship 
to exercise intensity.
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a distinct cluster of harmonics that was concentrated around the alpha 
band, as depicted in the supplementary section in 
Supplementary Figure S4.

3.3 Post-hoc analysis: investigation of the 
difference between PD and HC

To evaluate differences in pedaling intensity and compare 
individuals with PD to healthy controls (HC), we  conducted a 
repeated measures Analysis of Variance (ANOVA). We examined 
both the within-subject factor of pedaling intensity and the 
between-subject factor of groups (PD vs. HC) to understand how 
features vary under different conditions. Results showed significant 
intensity interactions within the PD group (10.25 <  F  < 514.5, 
0 <  p  < 0.004) and significant differences between groups 
(8.79 < F < 533.77, 0 < p < 0.007). HC subjects exhibited greater 
variability across intensities, while PD participants showed more 
consistent, predictable feature changes. Details are provided in 
Supplementary Table S2.

4 Discussion

This study offers new insights into the link between exercise 
intensity and brain dynamics in PD, highlighting distinct neural 
activity patterns during pedaling. The key finding is the identification 
of consistent EEG features, derived through MCCA, that reliably track 
changes in pedaling intensity. These measurable and robust neural 
responses across subjects present promising potential biomarkers for 
tailoring and optimizing exercise-based interventions for PD 

management. Recent research has also highlighted the potential of 
EEG-based biomarkers in PD, demonstrating their role in tracking 
disease progression and evaluating treatment efficacy (De Laat 
et al., 2024).

By applying the MCCA to identify consistent Catch-22 EEG 
features across subjects, we  allowed individual channel 
combinations to vary from subject-to-subject. Six features in 
Component 3 increased with intensity (FirstMin_acf, 
HistogramAMI_even_25, BinaryStats_meanlongstretch, 
PeriodicityWang, Embed2_Dist_expfit_meandiffand and 
AutoMutualInfoStats), reflecting enhanced rhythmic coordination, 
prolonged engagement, and adaptive responses. Conversely, three 
features (Hrv_classic, MotifThree_quantile, and LocalSimple_
mean3stderr) decreased, indicating reduced variability and 
increased neural efficiency, aligning with the demands of higher-
intensity exercise. These results align with prior work indicating 
that increased exercise intensity influences neural oscillations, in 
the alpha frequency range (Ciria et  al., 2018). Prior work has 
shown that cycling has been shown to both suppress beta-band 
local field potentials from Deep Brain Stimulation electrodes but 
also enhance narrowband power increases around 18 Hz (Storzer 
et al., 2017). Additionally, recent findings suggest that different 
intensities of aerobic exercise can modulate key neurotransmitter 
levels in PD, such as dopamine, norepinephrine, and serotonin, 
which could contribute to enhanced executive function and motor 
control (Tsai et al., 2024).

We observed reduced variability and flexibility in neural 
responses to increasing exercise intensity in individuals with 
PD. In PD, beta-band oscillations are excessively synchronized, 
with more consistent waveform features, such as sharper peaks 
and greater steepness asymmetry, compared to healthy controls 

FIGURE 2

Upper panel: normalized variance of each component of MCCA. Lower panel: normalized cumulative variance of components 2–9.
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(Jackson et al., 2019). In PD patients with Freezing of Gait, higher 
EEG amplitude synchronization across frequency bands (theta, 
alpha, beta, and gamma) has been observed between different 
brain regions, regardless of the motor task (Asher et al., 2021). 
These observations suggest that subjects with PD have impaired 

metastability, a critical property of the brain’s dynamics. 
Metastability reflects the brain’s ability to balance stability and 
flexibility, supporting efficient information processing, cognitive 
function, and adaptability. In the context of exercise, it enables the 
brain to transition between varying intensity levels, expanding its 

TABLE 2 Most consistent features of the Catch-22 package.

Feature no. Feature name Category Direction Description Justification for 
relevance to 
pedaling effects

4 CO_FirstMin_ac Linear autocorrelation Increasing Lag of the first minimum 

of the autocorrelation 

function

The first moment of 

decreasing signals self 

similarity, detecting 

changes in brain activity 

due to rhythmic pedaling

5 CO_HistogramAMI_even2_5 Nonlinear 

autocorrelation

Increasing Dependency between 

successive points in the 

time series

The extent of information 

sharing over intervals, 

useful for analyzing 

regular, cyclical motion 

impacts

7 MD_hrv_classic_pnn40 Successive difference Decreasing The proportion of pairs of 

successive differing more 

than 4% of standard 

deviation (a classic 

measure in heart rate 

variability studies)

Changes induced by 

physical exertion from 

pedaling

8 SB_BinaryStats_mean_

longstretch1

Simple temporal 

statistics

Increasing Length of the longest 

sequence above the mean, 

indicative of sustained 

higher activity levels

Prolonged periods of high 

brain activity, potentially 

induced by consistent 

pedaling

10 PD_PeriodicityWang_th0_01 Others Increasing The regularity and 

periodicity in data

Directly relevant to 

detecting rhythmic 

patterns in EEG signals 

correlated with pedaling 

cadence

11 CO_Embed2_Dist_tau_d_expfit_

meandiff

Successive difference Increasing Goodness of exponential 

fit to the time series, 

capturing the average 

change over 2D 

embedded dimensions

Useful for understanding 

the adaption of brain 

dynamics over time during 

continuous pedaling

12 IN_AutoMutualInfoStatS_40_

gaussian_fmmi

Nonlinear 

autocorrelation

Increasing The first minimum of auto 

mutual information, 

reflecting the least 

predictable Point in time

Moment of maximum 

change in brain state, 

triggered by variations in 

pedaling speed or intensity

18 SB_MotifThree_quantile_hh Successive difference Decreasing Shannon entropy of three-

symbol motifs, assessing 

the predictability and 

complexity of patterns

Effective in capturing the 

complexity of brain signal 

responses to repetitive 

physical activities like 

pedaling

22 FC_LocalSimple_mean3_stderr Linear autocorrelation Decreasing Standard error of a local 

simple mean with a 

window of three, assessing 

prediction error in the 

short-term

predictability of brain 

activity during physical 

exercise

Feature numbers and names are mentioned based on numbers listed in Lubba et al. (2019).
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dynamic repertoire (Bapat et  al., 2024) and supporting the 
functional states needed for diverse motor and cognitive activities. 
Growing evidence suggests that exercise-induced neuroplasticity 
plays a key role in these adaptations, as sustained physical activity 
has been shown to promote structural and functional brain 

changes that enhance both motor and cognitive performance in 
PD (Langeskov-Christensen et al., 2024).

In this research, novel use of EEG biomarkers have been employed 
to quantify the real-time impact of exercise intensity on brain activity 
in PD. This method, unlike conventional measures, provides an 

FIGURE 3

Trend across intensity for features of component 3 of PD subjects. The figure shows the aggregated (normalized) mean and standard deviation across 
subjects.

FIGURE 4

Trends across intensity for features of component 3 of PD subjects. The figure displays (normalized) values of features for individual subjects (x-axis) for 
each feature.
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objective and dynamic quantification of neural responses, which could 
be  valuable for disease monitoring and optimizing rehabilitation. 
Additionally, this research utilizes a data-driven approach with 
MCCA, allowing for the extraction of reliable EEG features that signal 
physiological responses to exercise. This method holds promise for 
clinical use in the future, whereby personalized exercise prescriptions 
could be optimized based on neural responses, ultimately maximizing 
the outcome for motor function and quality of life for individuals 
with PD.

Future research should explore whether these acute neural 
changes are reflected in long-term functional benefits and whether 
specific exercise intensities can be  optimized to induce neural 
plasticity in PD. Additionally, the incorporation of EEG-based 
monitoring in the clinical environment could optimize rehabilitation 
protocols and provide more personalized approaches to exercise 
therapy for PD patients.

This study only evaluates the acute effects of exercise on brain 
activity rather than its long-term benefits. While our findings suggest 
that exercise intensity influences neural dynamics in PD, future research 
is needed to determine whether these neural adaptations persist over 
time and contribute to sustained motor and cognitive improvements. 
Additionally, the relatively small sample size limits the generalizability 
of our findings, highlighting the need for more extensive studies to 
validate these EEG-based biomarkers further and their potential role in 
guiding individualized exercise interventions for PD.

Nevertheless, this study has certain limitations that should 
be considered. Our analysis primarily relied on linear methods, such 
as MCCA, which may only partially capture the complexity of neural 
responses during exercise. Future studies should explore nonlinear 
approaches to better detect exercise-induced neural changes and 
uncover subtler patterns of brain activity. It is worth noting, however, 
that the Catch-22 package already includes several nonlinear measures, 
which offer a valuable starting point for these investigations. Also, the 
sample size of the study is relatively small, which may limit the 
generalizability of the findings and the strength of the conclusions 
drawn. Additionally, the use of only nine EEG electrodes limited the 
spatial resolution of the recorded brain activity, suggesting that future 
research could benefit from higher-density EEG arrays or multimodal 
neuroimaging techniques, such as combining EEG with fMRI. Further 
research could also assess the consistency of the identified features 
across varying pedaling intensities in a larger cohort, ensuring their 
robustness and relevance to motor performance and clinical outcomes. 
The potential of the Periodicity Wang feature as a biomarker could 
be  explored using other modalities, such as fMRI and ECG, to 
determine its broader applicability across neural and 
physiological contexts.

5 Conclusion

This study highlights the potential of EEG-derived features to 
monitor and assess exercise intensity in PD patients. Among these, the 
Periodicity Wang (PW) feature, which measures the autocorrelation 
of neural dynamics, showed a strong association with changes in 
pedaling intensity. By applying Catch-22 features and MCCA, 
we observed consistent neural responses across subjects at different 
intensity levels. Some features exhibited increasing trends, indicating 
enhanced rhythmic coordination and sustained neural activation, 

while others displayed decreasing trends, reflecting reduced variability 
and a transition to more stable, predictable neural patterns. These 
findings offer valuable insights for optimizing exercise-based 
interventions in PD and highlight the potential for identifying neural 
biomarkers to guide future therapeutic strategies.
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