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Objective: The therapeutic effect of robot-assisted training is still indecisive due 
to the lack of patient-tailored protocols and dose-matched training strategies 
when compared to traditional treatment. The objective of this study was to 
investigate the optimal robot-assisted training strategies for the upper limb 
functional recovery in hemiparetic stroke patients.

Approach: A bilateral upper limb rehabilitation robot was employed to execute 
unilateral and bilateral training. Eighteen able-bodied subjects were recruited to 
test the effective of robot-assisted training strategies before transferring them to 
stroke patients. We compared unilateral passive training (UPT), bilateral passive 
training (BPT), and unilateral active training (UAT) with various feedback types 
(visual, force, and visual-force, none). These trainings were performed on three 
kinds of virtually-guided (straight-line, circular, S-shaped) tasks. Tracking error 
(TE), interactive force (IF) and target muscle activation level were quantified to 
characterize the motion capability and active participation of subjects.

Main results: Results revealed that BPT-visual (0.63 ± 0.26) significantly increased 
muscle activation level when compared to those of BPT-none (0.45 ± 0.27) and 
UPT-visual (0.24 ± 0.05) (p < 0.01). UAT with single-modality feedback (visual/
force) enabled higher TE (22.5 ± 3.40 mm) and active participation (0.78 ± 0.12) 
when compared with UAT with multi-modality (visual-force) feedback (TE: 
6.6 ± 0.8 mm; activation level: 0.53 ± 0.13) (p  < 0.01). The relatively complex 
circular and S-shaped tasks significantly enhanced the benefits of various 
training strategies.

Significance: The current outcomes provide valuable guidelines for designing 
individualized robot-assisted training protocols, potentially promoting the 
clinical rehabilitation effect.
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1 Introduction

Currently, about 80% of post-stroke patients suffer from upper 
limb motor impairment and neurological deficits, which have a 
serious impact on their quality of life (Rodgers et al., 2019). The theory 
of neuroplasticity holds that plenty of repetitive and task-oriented 
motor learning can promote the structural and functional restoration 
of the central nervous system, thereby recovering the motor 
dysfunction of limbs (Pekna et  al., 2012; Kleim and Jones, 2008). 
However, traditional rehabilitation treatment cannot meet the 
requirements of the ever-increasing patients due to a severe shortage 
of physical therapists (Alrabghi et  al., 2018). By contrast, robot-
assisted rehabilitation has become a viable alternative due to its 
distinct advantages, such as, high-intensity repetitive training, 
personalized exercise programs, and objective assessment.

A series of end-traction (Miao et al., 2017; Lum et al., 2006; Hogan 
et al., 1992; Hesse et al., 2003) and exoskeletal (Nef et al., 2007; Pirondini 
et al., 2016; Zimmermann et al., 2023) upper limb rehabilitation robots 
have been developed to cater to different rehabilitation needs in 
different patients. Rehabilitation robots integrated with virtual reality 
(VR) can provide goal-oriented virtual task scenarios and assist the 
patients conduct a variety of functional rehabilitation exercises. 
MIT-MANUS that is regards as the first upper limb rehabilitation robot 
can assist or disturb the planar movements of an upper limb (Hogan 
et al., 1992). The Bi-Manu-Track system can conduct bilateral training 
on both upper limbs to reduce the patients’ spasticity and improve the 
motor control ability (Hesse et al., 2003). 7-DOF ARMin exoskeleton 
robot can provide shoulder-elbow-wrist cooperative training a 
unilateral upper limb (Nef et  al., 2007). Multicenter randomized 
controlled trials have confirmed the efficacy of robot-assisted training 
in facilitating functional recovery for patients, but comparative trials 
have yet to demonstrate a statistically significant advantage of robot-
assisted training over traditional rehabilitation treatment (Lo et al., 
2010; Remy-Neris et al., 2021). Hence, it is essential to study how to 
improve the effectiveness of robot-assisted training, since it has become 
a cynosure in the realm of human-machine collaborative rehabilitation 
(Zanatta et  al., 2022). The existing researches have confirmed that 
design of personalized training strategies through the combination of 
different training modes and tasks, development of assist-as-needed 
(AAN) control algorithm specially for patient individual characteristics 
and functional responses, and promotion of active participation from 
physical and psychological levels are the mission-critical tasks of 
patient-tailored robot-assisted rehabilitation (Brown and Xie, 2024).

Rehabilitation robots generally can provide multiple training 
modes, including passive training, active training, and resistance 
training. These modes are adopted for motor function rehabilitation 
of different degrees (severe or mild) of impaired limbs (Babaiasl et al., 
2016). Robot-assisted passive training is usually designed based on the 
position control algorithm, but is hard to motivate the active 
participation of the patients. Therefore, kinds of AAN-based strategies 
are extensively proposed to enhance the effectiveness of the robot-
assisted control and patients’ active participation (Li H. et al., 2022; Li 
M. et al., 2022; Sharifi et al., 2020; Luo et al., 2019; Pehlivan et al., 
2015). The principle of AAN aims to mobilize the full potential of a 
patient’s active force by providing the minimal level (appropriate) of 
robot-assisted force. In addition, if the impaired limb is unable to 
perform/follow the pre-defined trajectories of a training task due to 
spasticity or severe motor dysfunction, a time-independent control 

method based on potential field constraints is proposed to constrain 
the patients’ training exercises within a certain error ranges relative to 
the target trajectories (Feng et al., 2022a; Najafi et al., 2020), therefore 
ensure the safety and reliability of rehabilitation training.

Multiple sensory feedback, including visual, auditory, and haptic 
sensations, can be used to attract a patient’s attention and encourage 
his/her active participation in the rehabilitation training (Daniel Ona 
et al., 2019). Visual feedback contains a wealth of detailed information 
about the shapes and movements of target training areas (Welch and 
Warren, 1980). Visually-guided feedback can effectively assist a patient 
to perform rehabilitation exercises following pre-defined target 
trajectories and simultaneously remind he/she to adjust the training 
status in time. Rhythmic auditory feedback usually provides an 
attentional cueing for repetitive training and keeps the limb movement 
in the same beats (Whitall et al., 2000). In addition, force feedback, 
which can enhance the sense of presence in VR (Minogue and Jones, 
2006), is also adopted to help or disturb the execution of patients’ 
rehabilitation training. Moreover, some studies have demonstrated that 
multiple-modality feedback can improve the learning efficiency of 
training tasks when compared to single-modality feedback (Sigrist 
et al., 2015; Cuppone et al., 2018). Nevertheless, it might cause relatively 
higher mental burden on patients while complex multiple-modality 
feedback (e.g., hybrid visual-auditory-force feedback) is combined 
with different rehabilitation tasks, and then influence the effects of 
rehabilitation training. Therefore, in terms of robot-assisted upper limb 
rehabilitation, it is essential to investigate the interactive mechanism of 
the robot-assisted training modes, typical rehabilitation tasks and 
feedback types, since so far it has not been quantitatively evaluated on 
patients due to the lack of standardized protocol and optimal control 
groups (Ho et  al., 2019; Nath et  al., 2022). This is important and 
meaningful to improve the effect of robot-assisted training in practice.

In this study, we  intended to verify that typical unilateral and 
bilateral training combined with optimal virtually-guided tasks and 
visual/force feedback can effectively improve the effects of the robot-
assisted rehabilitation. To this aim, we  conducted a quantitative 
evaluation of three common robot-assisted training modes unilateral 
passive training (UPT), bilateral passive training (BPT), and unilateral 
active training (UAT) using a bilateral upper limb rehabilitation robot. 
The study tested these modes across 18 able-bodied subjects, applying 
three virtually-guided tasks (straight-line, circular, S-shaped) and four 
feedback types (visual, force, visual-force, none). Only visual feedback 
is considered in the passive training. The TE, IF and target muscle 
activation of the subjects were used to comprehensively characterize the 
subjects’ manual control capability and quantify the interaction effects 
of the robot-assisted training mode, rehabilitation task and visual/force 
feedback. The effectiveness and utility of robot-assisted training were 
also surveyed through a questionnaire. The current findings provide 
insights into patient-tailored robot-assisted training and can be directly 
applied to clinical treatment of commercial rehabilitation robot.

2 Materials and methods

2.1 Rehabilitation training and evaluation 
system

A bilateral upper limb rehabilitation robot (BULRR) was 
developed and applied in this study (Feng et al., 2022b). The BULRR 
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could perform unilateral/bilateral training as well as left and right limb 
coordination exercises. For post-stroke patients with unilateral limb 
dysfunction, the BULRR included an affected side manipulator (ASM) 
that interacted with a patient’s impaired limb (PIL), and a healthy side 
manipulator (HSM) that interacted with the patient’s normal limb 
(PNL). The ASM and HSM had identical mechanical structures, 
motors, and sensors. They could be driven by embedded motors or an 
external force, according to the requirements of robot-assisted 
rehabilitation tasks. The roles assignment of ASM and HSM depended 
upon the side of the PIL. In bilateral rehabilitation training, the ASM 
was passively driven by three motors, while the HSM was actively 
driven by the PNL. A schematic diagram of the BULRR is shown in 
Figure 1a. Figure 1b presents the integrated experimental setup for 
robot-assisted rehabilitation training and evaluation. It consisted of 
the following components: apart from the BULRR (①), a flat TV (②, 
Redmi X65T, Xiaomi Tech., China) was adopted to load and run the 
game development software (Unity3D 5.6.5., Unity Technologies, 
United States), and display the virtual rehabilitation task. To monitor 
a subject’s limb movement, the Delsys Trigno EMG System (④, Delsys. 
Inc., United States) was employed to acquire the sEMG signals of the 
target dominant muscles. A desktop (③, Dell, Intel Core i5-4590 
3.3 GHz) was used to send control commands to the BULRR and the 
flat TV, and synchronously receive behavioral data from the BULRR 
and sEMG data from Delsys Trigno EMG system, respectively. The 
synchronous communication among the desktop, flat TV, and BULRR 
was implemented via TCP/IP protocol.

2.2 Virtual rehabilitation task and force 
feedback

It has been proved that VR-based tasks can achieve immersive 
guidance and improve the performance of rehabilitation training 
(Calabrò et  al., 2017; Howard, 2017). Hence, to enhance the 
subjects’ active engagement and the effects of interactive 
rehabilitation training, target-oriented virtual rehabilitation tasks 

were developed using Unity3D in this study. Corresponding to 
visually-guided functional requirements (Meng et  al., 2023), 
we adopted three kinds of typical virtual rehabilitation tasks, i.e., 
straight-line, circular, and S-shaped visually-guided curves (target 
trajectories), to guide the subjects’ rehabilitation training, as 
depicted in Figures 2a–c. The red and green balls are the agent 
points characterize the real-time training trajectories of PIL and 
PNL, respectively. When the training starts, the red or green ball 
moves on the TV, and through visual feedback, the subject can see 
the position error between the actual trajectory and the 
target trajectory.

In addition, to keep safety and realize subject-specific 
rehabilitation training, task-oriented force feedback was integrated 
with the BULRR. The force feedback was applied through a 
potential field model (Feng et al., 2022b) according to the target 
training trajectory. As shown in Figure 2d, in the rehabilitation 
training, the normal force 1F  generated by the potential field 
prevented the endpoint of ASM deviating from the target 
trajectory in real time. The value of 1F  was positively correlated 
with the deviation distance from point A to the target trajectory. 
The position error e between points A and B was mapped to the 
force 2F , which drove the ASM parallel to the target trajectory. 1F  
and 2F  worked together to assist a PIL to perform passive training. 
1F  was used for UAT test, 1F  and 2F  were used for BPT test in 

this paper.

2.3 Rehabilitation training strategies

The BULRR could offer both unilateral and bilateral functional 
training in accordance with different upper limb rehabilitation 
demands of different patients. To investigate the effective rehabilitation 
strategies, three kinds of typical robot-assisted training modes were 
designed as follows. Note that PIL operates the ASM, and the PNL 
operates the HSM. In this paper, the subject’s right limb is defined as 
the PIL, and the left limb is defined as the PNL.

FIGURE 1

(a) The schematic diagram of bilateral upper limb rehabilitation robot (BULRR). (b) The experimental setup for robot-assisted rehabilitation training and 
evaluation.
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2.3.1 Unilateral passive training
The PIL was fastened to the end of the ASM using straps, and the 

ASM could force the PIL to perform rehabilitation training, following 
pre-defined target trajectories. The patients do not need to apply any 
active effort during the unilateral passive training.

2.3.2 Unilateral active training
The PIL was used to actively drag the ASM to conduct the preset 

rehabilitation training task. The ASM was already gravity and friction 
compensated. The used robot can set resistance levels to adjust UAT 
difficulty through a variable virtual damping B (B = 10 was adopted 
in the current study through a prior test).

2.3.3 Bilateral passive training
This mode requires both PNL and PIL to be  involved in the 

rehabilitation training. During the BPT, the patient was asked to use his/
her PNL to actively manipulate the HSM to perform rehabilitation tasks, 
and the ASM was concurrently driven to drag the PIL to conduct identical 
passive rehabilitation training via synchronous/mirrored cooperative 
control of the BULRR, where the PIL is not actively exerting force.

2.4 Subjects

Eighteen able-bodied subjects (11 males and 7 females, mean age ± 
SD = 27 ± 7.6 years, mean height ± SD = 175 ± 7.4 cm, all right-handed) 

participated in the study. All experiments were conducted in accordance 
with the latest version of the Declaration of Helsinki and approved by the 
Ethics Committee of Human and Animal Experiments of Ningbo 
Institute of Materials Technology and Engineering, Chinese Academy of 
Sciences (Approval number: 2023C03160). All subjects were informed 
about the experimental procedure and signed the informed consent 
forms prior to participation.

2.5 Experimental protocol

2.5.1 Experiment preparations
The subject was seated in an upright position in a height-adjustable 

chair to test the rehabilitation effects of different robot-assisted training 
based on typical visually-guided tasks and multiple-modality feedback. 
According to the experimental requirements, the bilateral forearms of 
the subject were separately strapped onto the custom-made support 
brackets which were hinged with the ends of the ASM and AHM of 
BULRR. The subject could interact with the BULRR by operating two 
fixed handles of the support brackets in a comfortable position (see 
Figures 1a and 3). For all subjects, the right upper limb (right-handed) 
was assumed as the PIL, and the sEMG signals of key dominant 
muscles of PIL, including anterior deltoid, posterior deltoid, biceps, 
triceps, and radial wrist extensors were collected in the training task. 
Before mounting the sEMG sensors, all targeted skin areas were 
cleaned with alcohol pads to remove dirties and skin debris, to acquire 
high-quality sEMG data. Afterwards, three kinds of virtually-guided 
training tasks, the principle of operation and the experimental 
procedures were explained and the subject briefly practiced (3–5 min) 
manipulating BULRR, and started the formal experiment.

2.5.2 Formal experiment
The formal experiment aims to test the rehabilitation effects of 

three kinds of training modes under three types of virtually-guided 
(straight-line, circular, S-shaped) tasks and four classes of feedback 
types (visual, force, visual-force, none). It included UPT, BPT, and 
UAT tests (see Table 1).

2.5.2.1 Unilateral passive training test
Subjects participated in the UPT with their PILs (right upper 

limbs). He/she was asked to perform UPT with three kinds of pseudo-
random virtually-guided tasks (i.e., straight-line, circular, S-shaped) 
and visual feedback. A 5-min break was provided among different 
training tasks.

2.5.2.2 Bilateral passive training test
Subjects used their PNLs to drive the PILs to complete the 

BPT. Each subject was required to perform three kinds of pseudo-
random training tasks with or without visual feedback, successively. 
During the blind training tasks, the subject was blindfolded and his/
her PNL was passively tracked target trajectories, followed by his/her 
PIL performing the training tasks under the guidance of the PNL.

2.5.2.3 Unilateral active training test
The impacts of multiple-modality feedback on the UAT were 

investigated. Each subject was asked to complete three kinds of 
pseudo-random virtually-guided (i.e., circular, straight-line, S-shaped) 
tasks with visual, force, visual-force and none feedback, sequentially. 

FIGURE 2

Visually-guided rehabilitation tasks used for guide the rehabilitation 
training trajectories, including (a) straight-line, (b) circular, and (c) 
S-shaped trajectory curves. The corresponding three target 
trajectories are located in the XOY plane (Z = 0) and their dimensions 
are labelled in the figure. The red and green balls are the agent 
points for endpoint B of PIL and endpoint A of PNL, respectively. The 
target trajectory is represented by black band. (d) Schematic diagram 
of bilateral passive training. Red circle signifies target trajectory. The 
normal force F1  generated by the potential field is perpendicular to 
the target trajectory. Tangential force F2  generated by position error 
e between A and B is parallel to the target trajectory. With the help of 
F1  and F2 , the red ball tracks the green ball to complete the 
training task.
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The sequence of feedback conditions was intentionally structured to 
align with principles of motor learning and sensory integration. 
Similarly, in none feedback tasks, the subject was blindfolded and 
required to perform the training tasks by means of the pre-learning 
experiences from previous multiple-modality feedback tasks.

Each subject was asked to complete three kinds of training modes 
in sequence: UPT, BPT, and UAT. See Table 1 for the sequence of tasks. 
During the whole experiment, the breaks of 1–5 min were randomly 
given between different tests or different training tasks to allow the 
subjects to relax and physically recover. Every training task was 
repeated 10 times. The training periods of the three kinds of training 
tasks were set to 4.8 s for a straight-line task, 5 s for a circular task, and 
10 s for an S-shaped task, depending on the lengths of respective target 
trajectories, respectively.

2.6 Data processing and evaluation metrics

2.6.1 Interactive performance metrics
A force sensor (Figure 3) was used to measure the interaction 

force interF  between the PIL and the ASM in real time. The 

behavioral training data, including the interactive force interF , and 
the trajectories of training tasks were recorded and exported from 
BULRR. The terms of tracking error (TE) and interactive force (IF) 
were defined as evaluation metrics to assess the training effect. They 
were defined as

 
( ) ( )= ∑ −

2
1TE a t
i

T i T i
N  

(1)

 
( )= ∑ inter 2

1IF
i

F i
N  

(2)

where ( )aT i  and ( )tT i  denoted the actual training trajectory and 
target trajectory of the ith (i = 1, 2…10) training trial, respectively. 
iN  denoted the length of sampling points in each training trial. In 

the current study, with certain training modes and feedback types, 
the two kinds of metrics (TE and IF) of all trials in each training 
task of each subject were separately averaged as his/her TE and IF, 
and all subjects’ TE and IF were averaged as the mean TE and IF, 
respectively.

2.6.2 Myoelectric activation index
The sEMG data were pre-processed as follows: the sEMG was 

removed mean, band-pass filtered with 5–500 Hz, then full-wave 
rectified, low pass filtered with a cutoff of 1.0 Hz. The processed 
data was used as eigenvalues of the sEMG (Potvin and 
Brown, 2004).

To further study users’ degree of active involvement, the root 
mean square (RMS) values of the five target dominant muscles were 
calculated to characterize the contribution ratio of muscle groups in 
the rehabilitation training (Jian et al., 2021).

 
( )= ∑ 21RMS sEMG ,i j

n  
(3)

where sEMG (i, j) was the preprocessed sEMG signals of the jth 
(j = 1, 2…5) muscle of the ith training trial, n represented the 
length of the sEMG signals in each training trial. RMS represented 

FIGURE 3

A subject was performing bilateral passive training on S-shaped 
trajectory with visual feedback.

TABLE 1 Summary of robot-assisted training modes and virtually-guided tasks with multiple-modality feedback.

Rehabilitation training mode Training task Feedback typea Number of repetitions

Unilateral passive training (UPT)

Straight-line Visual 10

Circular Visual 10

S-shaped Visual 10

Bilateral passive training (BPT)

Straight-line Visual/none 10

Circular Visual/none 10

S-shaped Visual/none 10

Unilateral active training (UAT)

Straight-line Visual/force/visual-force/none 10

Circular Visual/force/visual-force/none 10

S-shaped Visual/force/visual-force/none 10

aVisual/force, visual-force and none are regarded as single-, combined-modality and no feedback, respectively.
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the activation level of the ith training trial in respective 
training tasks.

To quantify the activation levels of the selected five muscles 
across all subjects, all the RMS values of the respective five muscles 
in all training tasks of each subject were firstly normalized with 
min-max normalization, and then averaged across all subjects, 
according to respective training modes, tasks and feedback types 
(Table 1), respectively.

2.7 Psycho-physiological assessments

During the experiment, a psycho-physiological self-assessment 
was administered to every subject. Firstly, a NASA-TLX questionnaire 
(Hart and Staveland, 1988) on a scale from 0 (not at all) to 10 
(completely) was conducted seven times to evaluate a subject’s mental 
burdens after each set of training (UPT/BPT/UAT) tests under 
feedback conditions, respectively. In addition, all subjects were asked 
to complete a brief evaluation questionnaire after the whole 
experiment. The questions, adapted from a previous study (Chai 
et  al., 2017), probed the utility of unilateral/bilateral training, 
visually-guided task, and multiple-modality feedback, and whether 
it was feasible and applicable to subjects with different levels of upper 
limb dysfunction.

2.8 Statistical analysis

Statistical analysis was performed using IBM SPSS STATISTICS 
22. Shapiro–Wilk test indicated that the data were not normally 
distributed. Thus, non-parametric tests (Kruskal–Wallis H test) were 
adopted to measure the significant influences of the passive training 
strategies (UPT-visual, BPT-visual, BPT-none), and training task 
(straight-line, circular and S-shaped) on the TE, IF and muscle 
activation levels, respectively. In the same way, Kruskal–Wallis H tests 
were adopted to measure the significant influences of the active 
training strategies (UPT), training task (straight-line, circular and 
S-shaped), and feedback type (visual/force /visual-force/none) on the 
TE, IF and muscle activation levels, respectively. Further pairwise 
comparisons were made using the Mann–Whitney test if necessary. 
A p-value <0.05 was considered statistically significant for all kinds 
of statistical analysis tests.

3 Results

Table 2 summarizes the mean TEs, IFs, activation level, and mean 
training time of three kinds of training tasks across all subjects in UPT, 
BPT, and UAT tests.

3.1 UPT and BPT tests

The trajectories of three kinds of training (straight-line, circular 
and S-shaped) tasks across all subjects in UPT and BPT tests are 
shown in Figure 4. The results showed that both the unilateral and 
bilateral passive training modes led to similar performances in actual 
training trajectories. All subjects were able to complete three kinds of 

unilateral/bilateral passive training tasks well with or without visual 
feedback. No differences were observed among the UPT-visual, 
BPT-visual and BPT-none tasks, respectively.

Figures 5a,b show the mean TEs (Equation 1) and IFs (Equation 2) 
of three kinds of training tasks across all subjects in UPT and BPT 
tests. Equation 3 is the definition that was used to quantify different 
muscle activation levels without adding citations. For conditions 
UPT-visual, BPT-visual and BPT-none, the mean TEs 
(1.3 mm ± 0.0 mm, 1.3 mm ± 0.0 mm, 1.3 mm ± 0.0 mm) with 
straight-line task were significantly less than those (2.5 mm ± 0.3 mm, 
2.3 mm ± 0.2 cm, 2.1 mm ± 0.3 mm) with circular task (p < 0.01) and 
those (2.4 mm ± 0.3 mm, 2.2 mm ± 0.1 mm, 2.2 mm ± 0.1 mm) with 
S-shaped task (p < 0.01), respectively. Meanwhile, for conditions 
UPT-visual, BPT-visual and BPT-none, the Kruskal–Wallis H test 
indicated that no significant differences of the IFs were displayed 
among the straight-line (5.6 N ± 1.3 N, 5.4 N ± 0.9 N, 6.8 N ± 1.4 N), 
circular (5.8 N ± 1.5 N, 6.1 N ± 1.6 N, 5.3 N ± 1.2 N), and S-shaped 
(6.2 N ± 1.5 N, 6.0 N ± 1.1 N, 6.2 N ± 1.2 N) tasks, respectively.

The normalized activation levels of the five target muscles across all 
subjects in UPT and BPT tests are shown in Figure  6. For training 
conditions UAT-visual, BPT-visual and BPT-none, the results showed 
that the overall muscle activation levels (0.19 ± 0.13, 0.33 ± 0.10, 
0.18 ± 0.11) in straight-line task were significantly lower than those 
(0.26 ± 0.14, 0.77 ± 0.13, 0.44 ± 0.12) in circular task (p < 0.01) and those 
(0.28 ± 0.13, 0.79 ± 0.11, 0.72 ± 0.11) of S-shaped task (p < 0.01), but no 
significant difference displayed between the circular and S-shaped tasks, 
respectively. The Kruskal–Wallis H test indicated that there were 
significant differences among the three kinds of training conditions 
(UPT-visual, BPT-visual and BPT-none) (p < 0.01). Mann–Whitney U 
tests showed that there were significant differences of the activation levels 
within the respective training tasks with the exceptions of two pairwise 
comparisons in straight-line (UPT-visual versus BPT-none) and 
S-shaped (BPT-visual versus BPT-none) tasks, separately.

3.2 UAT test with multiple-modality 
feedback

The training trajectories across all subjects in UAT test are shown 
in Figure 7. The results displayed that the active training trajectories 
were obviously more scattered than the passive training trajectories 
(Figures  4, 7). For three kinds of training tasks, visual and force 
feedback could effectively help the subjects to track the target 
trajectories when compared to none feedback. Furthermore, the 
scatters of training trajectories with multiple-modality (visual-force) 
feedback were relatively greater than those with single-modality 
(visual or force) feedback. In particular, the subjects had difficulty 
performing the relatively complex (i.e., circular and S-shaped) 
rehabilitation tasks when sensory feedback was unavailable.

Figure 8a shows the mean TEs of three kinds of training tasks 
across all subjects in UAT test, respectively. For training conditions 
UAT-visual, UAT-force, UAT-visual-force and UAT-none, the 
results  revealed that the overall TEs (3.2 mm ± 0.3 mm, 
4.9 mm ± 1.5 mm, 3.2 mm ± 0.3 mm, 5.2 mm ± 2.8 mm) in straight-
line task were significantly smaller than those (11.8 mm ± 1.1 mm, 
22.5 mm ± 3.4 mm, 6.6 mm ± 0.8 mm, 63.5 mm ± 10.0 mm) of 
circular (p < 0.01) and those (11.5 mm ± 0.9 mm, 18.5 mm ± 3.2 mm, 
6.0 mm ± 0.4 mm, 50.9 mm ± 7.1 mm) of S-shaped (p < 0.01) tasks, 
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but no significant difference of the TEs displayed between the two 
kinds of training tasks (circular versus S-shaped). The Kruskal–Wallis 
H test manifested that there were significant differences (p < 0.01) 
among the four types of training conditions, respectively, with the 
exceptions of one pairwise comparison (UAT-visual versus 
UAT-force, p < 0.05). Mann–Whitney U tests indicated that there 
were significant differences of TEs among the four types of training 
conditions within circular (p < 0.01) and S-sharped (p < 0.01) tasks, 
while only two pairwise comparisons (UAT-visual versus UAT-force, 
UAT-force versus UAT-visual-force) appeared differences (p < 0.01) 
in straight-line task.

Figure 8b shows the mean IFs of three kinds of training tasks 
across all subjects in UAT test, respectively. For training conditions 
UAT-visual, UAT-force, UAT-visual-force and UAT-none, the results 
displayed that the overall IFs (7.4 N ± 1.1 N, 7.7 N ± 1.1 N, 
8.1 N ± 1.3 N, 8.6 N ± 1.3 N) in straight-line task were significantly 
smaller than those (11.3 N ± 1.0 N, 14.5 N ± 2.0 N, 8.8 N ± 1.0 N, 
11.9 N ± 0.7 N) of circular (p  < 0.01) and those (9.5 N ± 1.0 N, 
12.0 N ± 1.1 N, 8.8 N ± 0.7 N, 11.3 N ± 1.2 N) of S-shaped (p < 0.01) 
tasks, and significant difference of the IFs also displayed between the 
circular and S-shaped tasks (p < 0.01). The Kruskal–Wallis H test 
manifested that there were significant differences among the four 
types of training conditions (UAT-visual versus UAT-force, p < 0.05; 
UAT-force versus UAT-visual-force, p < 0.01; UAT-visual-force versus 
UAT-none, p  < 0.01; UAT-visual versus UAT-none, p  < 0.05). 

TABLE 2 Results of robot-assisted training modes and virtually-guided tasks with multiple-modality feedback.

Rehabilitation training conditions TE (mm) IF (N) Activation level Time (s)

Mode Task Feedback

UPT Straight-line Visual 1.3 ± 0.0 5.6 ± 1.3 0.19 ± 0.13 4.8 ± 0.0

UPT Circular Visual 2.5 ± 0.3 5.8 ± 1.5 0.26 ± 0.14 5.0 ± 0.0

UPT S-shaped Visual 2.4 ± 0.3 6.2 ± 1.5 0.28 ± 0.13 10.0 ± 0.0

BPT Straight-line Visual 1.3 ± 0.0 5.4 ± 0.9 0.33 ± 0.10 5.0 ± 0.5

BPT Straight-line None 1.3 ± 0.0 6.8 ± 1.4 0.18 ± 0.11 4.4 ± 0.3

BPT Circular Visual 2.3 ± 0.2 6.1 ± 1.6 0.77 ± 0.13 5.2 ± 0.5

BPT Circular None 2.1 ± 0.3 5.3 ± 1.2 0.44 ± 0.12 4.6 ± 0.4

BPT S-shaped Visual 2.2 ± 0.1 6.0 ± 1.1 0.79 ± 0.11 11.3 ± 0.9

BPT S-shaped None 2.2 ± 0.1 6.2 ± 1.2 0.72 ± 0.11 9.5 ± 0.7

UAT Straight-line Visual 3.2 ± 0.3 7.4 ± 1.1 0.17 ± 0.08 3.7 ± 0.5

UAT Straight-line Force 4.9 ± 1.5 7.7 ± 1.1 0.13 ± 0.07 4.0 ± 0.5

UAT Straight-line Visual-force 3.2 ± 0.3 8.1 ± 1.3 0.10 ± 0.06 3.6 ± 0.4

UAT Straight-line None 5.2 ± 2.8 8.6 ± 1.3 0.12 ± 0.08 3.7 ± 0.4

UAT Circular Visual 11.8 ± 1.1 11.3 ± 1.0 0.78 ± 0.12 4.0 ± 0.3

UAT Circular Force 22.5 ± 3.4 14.5 ± 2.0 0.73 ± 0.10 4.0 ± 0.4

UAT Circular Visual-force 6.6 ± 0.8 8.8 ± 1.0 0.53 ± 0.13 3.5 ± 0.4

UAT Circular None 63.5 ± 10.0 11.9 ± 0.7 0.80 ± 0.08 3.7 ± 0.4

UAT S-shaped Visual 11.5 ± 0.9 9.5 ± 1.0 0.70 ± 0.14 8.1 ± 0.5

UAT S-shaped Force 18.5 ± 3.2 12.0 ± 1.1 0.69 ± 0.10 7.8 ± 0.6

UAT S-shaped Visual-force 6.0 ± 0.4 8.8 ± 0.7 0.49 ± 0.12 7.3 ± 0.6

UAT S-shaped None 50.9 ± 7.1 11.3 ± 1.2 0.68 ± 0.16 7.4 ± 0.6

FIGURE 4

The trajectories of three kinds of training (straight-line, circular and 
S-shaped) tasks across all subjects (N = 18) in UPT and BPT tests 
with/without visual feedback. Red and gray lines/curves denote the 
target and training trajectories, separately.
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FIGURE 5

(a) Mean tracking errors (TEs) and (b) mean interactive force (IFs) of 
three kinds of training (straight-line, circular and S-shaped) tasks 
across all subjects in UPT and BPT tests. Symbols “*” and “**” indicate 
significant differences with a level of (p < 0.05) and (p < 0.01), 
respectively.

FIGURE 6

Mean normalization activation levels of five muscles across all 
subjects in UPT and BPT tests. All the acronyms and symbols are the 
same as those in Figure 5.

Mann–Whitney U tests indicated that there were no significant 
differences of IFs among the four types of training conditions within 
straight-line task, while only a pairwise comparison (UAT-visual 
versus UAT-none) in circular task and two pairwise comparisons 
(UAT-visual versus UAT-visual-force, UAT-force versus UAT-none) 
in S-shaped task did not exhibit significant differences.

The normalized activation levels of the five muscles in UAT test 
are shown in Figure  9. For training conditions UAT-visual, 
UAT-force, UAT-visual-force and UAT-none, the results manifested 
that the overall activation levels of the five muscles (0.17 ± 0.08, 
0.13 ± 0.07, 0.10 ± 0.06, 0.12 ± 0.08) in straight-line task were 
significantly lower than those (0.78 ± 0.12, 0.73 ± 0.10, 0.53 ± 0.13, 
0.80 ± 0.08) of circular (p < 0.01) and those (0.70 ± 0.14, 
0.69 ± 0.10, 0.49 ± 0.12, 0.68 ± 0.16) of S-shaped (p < 0.01) tasks, 
but no significant difference showed between the circular and 
S-shaped tasks. The Kruskal–Wallis H test showed that significant 
differences displayed among three pairwise training conditions 
UAT-visual versus UAT-visual-force (p < 0.01), UAT-force versus 

UAT-visual-force (p < 0.05), UAT-visual-force versus UAT-none 
(p < 0.05). Mann–Whitney U tests showed that there were no 
significant differences of the activation levels among the four types 
of training conditions within straight-line task, while three 
pairwise comparisons (UAT-visual versus UAT-visual-force, 
UAT-force versus UAT-visual-force, UAT-visual-force versus 
UAT-none) in circular task and three pairwise comparisons 
(UAT-visual versus UAT-visual-force, UAT-force versus 
UAT-visual-force, UAT-visual-force versus UAT-none) in S-shaped 
task displayed significant differences (p < 0.01), respectively.

FIGURE 7

The trajectories of three kinds of training (straight-line, circular and 
S-shaped) tasks with four types of training conditions (UAT-visual, UAT-
force, UAT-visual-force, UAT-none) across all subjects in UAT test. 
Representations of the lines/curves are the same as those in Figure 4.

FIGURE 8

(a) Mean tracking errors (TEs) and (b) Mean interaction forces (IFs) of 
three kinds of training (straight-line, circular and S-shaped) tasks 
across all subjects in UAT test. All the acronyms and symbols are the 
same as those in Figures 5, 6.
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3.3 Evaluation of questionnaires

The mental burden index (MBI) scores across all subjects in 
all rehabilitation training tests are shown in Figure 10. The MBI 
scores were averaged based on three kinds of typical training tasks 
with seven kinds of training conditions. In passive training tests, 
the MBI score (4.3 ± 1.1) on UPT-visual was significantly lower 
than that (5.6  ± 1.2) of BPT-visual (p < 0.05) and that on 
(6.1 ± 1.2) in BPT-none (p < 0.01), separately. In active training 
tests, based on training conditions UAT-visual, UAT-force, 
UAT-visual-force, and UAT-none, the MBI scores were 4.9 ± 1.1, 
5.8 ± 1.2, 4.6 ± 0.9, 6.7 ± 1.5, respectively. The Mann–Whitney test 
showed that significant differences were displayed between the 
UAT-visual and UAT-none (p < 0.01), UAT-force and UAT-visual-
force (p < 0.05), UAT-visual-force and UAT-none (p < 0.01), 
respectively.

Furthermore, all subjects reported that the current training 
strategies (seven types of training conditions) with typical 
(straight-line, circular and S-shaped) training tasks could 
be  applied to the patients with different levels of upper limb 
dysfunction. All subjects expressed that UAT-visual-force could 
decrease the execution difficulty of training tasks. Four subjects 
(4/18) stated that BPT aroused an acceptable execution difficulty, 
and they (18/18) agreed that the current training strategies and 
training tasks were essential to robot-assisted upper limb 
functional rehabilitation.

4 Discussion

This study sought to demonstrate that commonly-used robot-
assisted training with optimal virtually-guided tasks and visual/force 
feedback could be applicable to individual upper limb motor function 
rehabilitation. The results of training tests revealed that unilateral and 
bilateral training strategies with single- or combined-modality 
feedback enabled the subjects to perform typical rehabilitation tasks 
at relatively low TEs and high levels of active participation. These 
outcomes indicate the effectiveness of robot-assisted training being 
used for functional recovery in patients with upper limb dysfunction.

4.1 Comparisons of unilateral/bilateral 
training

Unilateral and bilateral training modes are abundantly employed 
in rehabilitation robots to recover the damaged upper limb and nerve 
functions of post-stroke patients via extensive repetition exercises 
(Renner et al., 2020; Xu et al., 2022). The functional impairment could 
be  improved by activating the damaged hemisphere through 
coordinated movement between the most impaired arm and the less 
impaired arm (Cauraugh and Summers, 2005; Barber et al., 2008). 
However, numerous related literatures indicated that it was difficult 
to compare the effectiveness of the bilateral training and unilateral 
training due to no sufficient clinical results so far (Renner et al., 2020; 
Sheng et al., 2016; Chen et al., 2022). Both kinds of training modes 
had different functional roles according to different stroke phases of 
patients, training tasks and protocols (Chen et  al., 2022). In the 
current study, we  investigated the differences of three kinds of 
frequently-used training modes (UPT/BPT/UAT) based on consistent 
training tasks and visual/force feedback (Table 1), in combination 
with training trajectories, interactive forces and target muscle 
activation levels. The quantified results showed that the mean TEs in 
UAT (Figures 7, 8a) were obviously greater than those of two kinds of 
passive training modes (UPT and BPT) (Figures  4, 5a), but no 
significant differences displayed between UPT and BPT (Table 2). It 
was probably because the subjects had to perform the training tasks 
relying on their own upper limb motor functions under active 
training mode, while just needing to passively follow the predefined 
training trajectories both in unilateral/bilateral passive 
training modes.

The results of IF showed that the mean IFs in UAT test (Figure 8b) 
were obviously greater than those of two kinds of passive training 
modes (UPT and BPT) (Figure 5b). It indicated that the subjects put 
more efforts under active training mode when compared to unilateral/
bilateral passive training modes. Due to the subjects’ PILs did not 
actively interact with the robot, there was no significant difference of 
the mean IFs between UPT and BPT (Table 2). However, the overall 
levels of muscle activation in the BPT test were significantly higher 
than that of the UPT (Figure 6), which was in accordance with that 
the both hemispheres of the brain were activated when subjects 
performed BPT (Renner et  al., 2020). Furthermore, the muscle 
activation level on BPT-visual was significantly higher than that of the 
BPT-none (Figure 6), indicating integration of visual feedback could 
effectively promote the limb function rehabilitation. BPT with visual 
feedback might be more useful than unilateral training under the 
same conditions (Whitall et  al., 2000). Therefore, it suggests that 

FIGURE 9

Mean normalization activation levels of five muscles across all 
subjects in UAT test. All acronyms and symbols are the same as those 
in Figures 5, 6, 8.

FIGURE 10

MBI scores of seven kinds of training conditions based on three kinds 
of typical training tasks. All acronyms and symbols are the same as 
those in Figures 5, 6, 8, 9.
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despite UPT and BPT modes can regulate goal-oriented robot-assisted 
training with slight TEs that are indispensable for patients with severe 
motor dysfunctions, the active training mode is crucial to the 
efficiency and effects of rehabilitation training (Luo et  al., 2019). 
Nevertheless, the difference between the UPT and BPT modes is 
worth in-depth study by considering mirror-symmetrical bilateral 
training (Sheng et al., 2016).

4.2 Influences of multiple-modality 
feedback

Multiple-modality (e.g., visual/force or visual-force) feedback 
is crucial to robot-assisted rehabilitation training. It not only can 
provide necessary cues for patients to regulate the rehabilitation 
exercises, but also can potentially increase the effectiveness of 
rehabilitation training due to multi-sensory brain functional 
activation (Yuan et al., 2021). How to combine task-directed visual 
feedback and force feedback to improve the effects of rehabilitation 
training is an ongoing concern in the field of robot-assisted 
rehabilitation (Zheng et  al., 2023). Our comparative results 
indicated that the subjects visual could hardly complete the 
relatively complex (circular and S-shaped) UAT tasks without 
sensory feedback (Figures 7h,l). Either kind of feedback was able to 
assist the subjects to regulate the training trajectories, and the 
combined-modality (Figures  7g,k) feedback could effectively 
decrease the TEs when compared to single-modality feedbacks 
(Figures 7e,f,i,j).

The Figures 8, 9 can further interpret the influences of the two 
kinds of feedbacks on the rehabilitation training. Based on circular 
and S-shaped tasks, the TEs on condition UAT-visual were 
significantly smaller than those of the UAT-force (Figure  8a). It 
indicates that target-oriented visual feedback enables the subjects to 
adjust training trajectories more easily than force feedback. This might 
be  due to visual information could immediately response to the 
discrepancies of a training task, which helped them adjust their 
training trajectories in advance (Welch and Warren, 1980). Whereas, 
the condition UAT-force exhibited higher IFs than those of UAT-visual 
(Figure  8b). This was consistent with the training mode of force 
feedback, where real-time feedback force was positively associated 
with the magnitudes of TEs, preventing the subjects from deviating 
the target trajectories (Minogue and Jones, 2006; Feng et al., 2022b). 
Appropriate force feedback could effectively assist the subjects to 
perform the rehabilitation tasks (Zuo et  al., 2024), especially for 
patients with visual impairment.

In contrast to single-modality feedback, combining visual and 
force feedback enabled the subjects to complete the training tasks 
with the minimal TEs and IFs (Figures 8a,b, circular, S-shaped 
tasks), as well as the minimal muscle activation levels (Figure 9). 
It can be interpreted that the multiple-modality feedback allowed 
the subjects to accurately regulate the training trajectories with 
less efforts (Sigrist et al., 2015). The relatively redundant feedback 
information can reduce the execution difficulties of training tasks 
and therefore decrease the activation levels of the target muscles. 
However, in terms of a post-stroke patient’s rehabilitation, the 
physical condition, degree of limb dysfunction and the task 
difficulties should be comprehensively considered in the selection 
of single-or combined-modality feedback.

4.3 Differences of virtually-guided tasks 
and questionnaires

The VR-based rehabilitation has shown its clinical potential for 
improving upper limb function and independent activities of daily 
living (ADL) in post-stroke patients when compared to intensity-
matched traditional rehabilitation (Ahn and Hwang, 2019; Nath et al., 
2022). Nevertheless, the optimal therapeutic effect of VR is still 
indecisive, owing to the lack of patient-tailored VR-based 
rehabilitation tasks, standardized protocol, optimal control group or 
quantifiable metrics to evaluate its effectiveness (Ho et al., 2019; Nath 
et al., 2022). Therefore, three kinds of visually-guided training tasks 
were compared based on consistent training modes and feedback 
conditions. The experimental results displayed that compared to 
straight-line task, the circular and S-shaped tasks led to more obvious 
TEs and target muscle activation in passive training mode (Figures 5a, 
6), and TEs, IFs and muscle activation in active training mode 
(Figures 8, 9), respectively. While no significant differences appeared 
between the circular and S-shaped tasks (except for IFs in active 
mode). It suggests that the relatively complex visually-guided tasks can 
enhance the benefits of training rehabilitation. However, in terms of 
patients with limb dysfunction, design of visually-guided training 
tasks should not only consider its guiding functions, but also a 
patient’s actual condition (physical and neurological impairments) 
and his/her motor control ability. Moreover, hand-elbow-shoulder 
should be regarded as a motion whole to reflect the actual motor 
rehabilitation state of patients (Jiang et al., 2023). The patient-specific 
serious game-based rehabilitation tasks are further required to 
enhance the actual rehabilitation effect.

The differences of robot-assisted training strategies also can 
be manifested by the MBI scores across the subjects in all rehabilitation 
training tests (Figure 10). The quantified results displayed that there 
was no significant difference of the MBI scores between the passive 
and active training modes, while the sensory feedback, especially 
multiple-modality (visual-force) feedback, could effectively decrease 
the mental burdens of the subjects. It demonstrates that the subjects 
are more confident to perform robot-assisted training with multiple-
modality feedback although maybe not the most effective training 
strategy. Moreover, despite all subjects agreed that the current training 
strategies and the training tasks were essential to upper limb 
functional rehabilitation, the actual rehabilitation training should 
patient-tailored according to different levels of upper limb dysfunction.

4.4 Implications, limitations and future 
work

The actual robot-assisted rehabilitation effects were highly related 
to the stroke phase of patients, dose-matched training protocols and 
evaluation indexes (Doumen et  al., 2023). The current study 
quantitatively evaluated the interaction mechanism of active/passive 
training modes, visually-guided training tasks and multiple-modality 
feedback on the effects of robot-assisted rehabilitation training. The 
key significance lies in that it provides potential guidelines for 
establishing patient-specific rehabilitation protocols. From an 
application perspective, the visually-guided training tasks could 
be adopted either alone or in combination according to the individual 
needs of patients. BPT-visual should be applied preferably for the 
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patients with severe upper limb motor dysfunction to obtain the 
maximum target muscle activation through high-intensity repetitions 
of passive training. UAT-visual-force is better suitable for the patients 
with limited motor control skills or those who have relatively higher 
psycho-physiological burden because of robot-assisted rehabilitation 
treatment. UAT-force can be used for high-intensity repetitive training 
on the patients with a certain level of motor dysfunction since it has a 
significant advantage in activating the patient’s active participation, 
especially for those with visual impairments. The actual performance 
of the multiple training strategies deserves to be comprehensively 
investigated by further clinical assessments.

There are still several limitations to this research. First, the narrow 
age range of participants (young subjects) may not fully represent the 
demographics typical of clinical rehabilitation populations. Second, 
the exclusive use of right-handed participants limits the 
generalizability of findings to left-handed individuals, who may 
exhibit distinct neurophysiological adaptations to training. Future 
studies should address these gaps by recruiting a broader age spectrum 
and including participants with diverse handedness to enhance the 
applicability of results to real-world clinical settings. Although the 
qualitative training protocols have been demonstrated on the healthy 
subjects, the further clinical efficacy has not been conducted on the 
dysfunction-matched individuals due to lack of eligible patients. In 
addition, it should be mentioned that we only used the myoelectric 
activations of the target muscles to characterize the subjects’ 
participation levels in training tasks. The subject’s behavioral indexes 
and the corresponding brain functional responses should be adopted 
to reflect the effects of the rehabilitation training. Effective evaluation 
indexes of electrophysiology such as, time-frequency and network 
responses of EEG, fNIRS and fMRI, should be  explored in 
further investigations.

In the follow-up work, a batch of patients with varying degrees 
of upper limb dysfunction will be recruited to test the long-term 
rehabilitation effects of the current training protocols, and 
compared to the therapist’s manual scale assessment, i.e., Fugl-
Meyer Assessment for Upper Extremity (FMA-UE). Quantifiable 
electrophysiological indexes of brain functional responses 
(i.e.,  time-frequency responses and multiple-region activation 
networks of EEG), which can represent the degrees of integration 
mechanism of visual, auditory and tactile feedback, a patient’s 
rehabilitation recovery, and allocation of cognitive resources, will 
be comprehensively investigated to objectively evaluate the merits 
and shortcomings of the robot-assisted rehabilitation treatment.

5 Conclusion

In conclusion, the current results suggested that unilateral/
bilateral training with optimal virtually-guided tasks and visual/force 
feedback could be  effectively used to robot-assisted rehabilitation 
training in patients with upper limb dysfunction. The commonly-used 
training (UPT, BPT, and UAT), typical visually-guided tasks and 
visual/force feedback were essential for establishing patient-tailored 
rehabilitation protocol. The proposed effective training strategies 
could be  applied to the patients with different degrees of upper 
limb dysfunction.
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