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Non-invasive Brain Stimulation may modulate motor function. One commonly 

investigated method is transcranial direct current stimulation (tDCS). In the last 

few years, a new stimulation technique has been developed and studied, namely 

transcranial random noise stimulation (tRNS). Both stimulation techniques have 

displayed a certain degree of inconsistency regarding their impact on motor 

performance. One explanation for this may be related to differences in the sex 

of the participants. Thirty healthy individuals (15 female) participated in a single-

blind counterbalanced crossover trial. All participants received three stimulation 

conditions: high frequency-tRNS, tDCS, and sham stimulation. Stimulation was 

applied for 10 min at 1.0 mA, with a frequency range of 101–640 Hz for the tRNS. 

In all stimulation conditions, the anode (for tDCS) was placed over C4 and the 

cathode over the contralateral orbit. The participants performed a sequential 

reaching motor task on a digital tablet before, during, and immediately after 

the stimulation. Movement time, reaction time, and peak velocity did not differ 

between stimulation conditions. However, within-condition analyses showed 

improvements in movement time and peak velocity following tRNS only, while 

reaction time improved in all stimulation conditions. No significant effect of sex 

was observed. While no clear advantage for a specific stimulation condition 

was statistically confirmed, these within-condition effects suggest that tRNS 

may modestly enhance motor performance and warrant further investigation. 

Additionally, in this experimental setup, sex did not influence the effects of tRNS 

and tDCS on motor performance. 
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1 Introduction 

The development of non-invasive methods for modulating 
neuroplasticity to improve functions is a major goal of clinical 
neuroscience (Peters et al., 2016). One of the main studied 
questions in this context is whether non-invasive brain stimulation 
(NIBS) techniques can be used to improve motor performance 
in healthy individuals (Patel et al., 2019; Bastani and Jaberzadeh, 
2012) as well as people with neurological conditions (Kang et al., 
2016; Van Hoornweder et al., 2021). The general assumption is 
that NIBS increases excitability in the motor cortex (Pascual-Leone 
et al., 1994; Nitsche and Paulus, 2000), which in turn could facilitate 
motor ability (Reis and Fritsch, 2011). 

One non-invasive and painless stimulation method is 
transcranial direct current stimulation (tDCS; Dubljević et al., 
2014) which delivers weak direct currents (usually 0.5–2 mA) 
through surface electrodes placed on the head. It alters cortical 
excitability by inducing subthreshold polarization of neuronal 
membranes (Nitsche and Paulus, 2000). The motor excitability 
levels [measured using motor evoked potentials (MEP)] may be 
increased or decreased among healthy participants by applying 
anodal (atDCS) or cathodal (ctDCS) tDCS, respectively. The eects 
of tDCS are complex such that anodal and cathodal stimulation 
can either increase or decrease cortical excitability, depending on 
stimulation protocols, including stimulation parameters, target 
regions, and electrodes montage (Nitsche and Paulus, 2000; Stagg 
et al., 2018; Batsikadze et al., 2013; Moliadze et al., 2015; Strube 
et al., 2016; Ehrhardt et al., 2021, Lerner et al., 2021; Masina et al., 
2021; Vergallito et al., 2022). tDCS has been shown in some studies, 
but not all, to be an eective means to improve upper limb (UL) 
motor performance in healthy individuals (Sánchez-Kuhn et al., 
2017; Patel et al., 2019) and people with stroke (Sánchez-Kuhn 
et al., 2017; Van Hoornweder et al., 2021). A recent meta-
analysis regarding tDCS eects in healthy participants showed 
an improvement in UL motor performance, as demonstrated in 
variables such as reaction time and task completion time (Patel 
et al., 2019). Recent meta-analyses among people with stroke 
showed conflicting results with respect to the eects on both 
upper and lower limb motor function (Butler et al., 2013; Kang 
et al., 2016; Tedesco Triccas et al., 2016; O’Brien et al., 2018; 
Elsner et al., 2020). 

Another related non-invasive method is transcranial random 
noise stimulation (tRNS) (Terney et al., 2008). This technique uses 
identical electrodes to tDCS but rather than applying a constant 
current, a random electrical oscillation spectrum is applied over 
the motor cortex. The current intensity of the electrical stimulation 
is generally weak, between 1.0 and 2.0 mA (Terney et al., 2008; 
Hayward et al., 2017; Abe et al., 2019; Arnao et al., 2019; Moret 
et al., 2019; Kortuem et al., 2019; Monastero et al., 2020; Splittgerber 
et al., 2020; Hoshi et al., 2021), and the frequency is randomly 
applied, with a normal bell-curve distribution within the range 
of 0.1–640 Hz. tRNS can be divided into two “sub-protocols”: 
low (0.1–100 Hz) and high (101–640 Hz) frequency (Nitsche and 
Paulus, 2000; Terney et al., 2008). Among healthy participants, 
high-frequency tRNS (hf-tRNS) has been shown to significantly 
increase MEP compared to sham, while low-frequency tRNS did 
not aect it (Terney et al., 2008). A wide range of hf-tRNS seems to 
be required, as frequencies of 100–400 Hz and 400–700 Hz did not 

modulate dierently the MEP, while a full range of 100–700 Hz did 
(Moret et al., 2019). A proposed mechanism is that tRNS shortens 
the hyperpolarization phase by inducing a repetitive opening of 
the Na+ channels (Terney et al., 2008; Chaieb et al., 2015). Other 
proposed mechanisms include reduction of GABA levels (Sánchez-
León et al., 2021) and stochastic resonance (Terney et al., 2008; 
Pavan et al., 2019). The latter relates to a phenomenon in which the 
addition of random interference (noise) in a non-linear system can 
enhance the detection of weak signals or enhance the information 
content of a signal (Moss et al., 2004; McDonnell and Abbott, 2009). 
An optimal dose of noise can lead to peak enhancement of the 
information content, but further noise will lead to degradation of 
the content or reduce its detectability (Moss et al., 2004). 

Compared to the multitude of studies on tDCS and its eect 
on motor performance and corticospinal excitability in healthy and 
people with neurological conditions (Broeder et al., 2015, Kang 
et al., 2016, Sánchez-Kuhn et al., 2017; Patel et al., 2019), there 
is relatively limited research on the eects of tRNS on motor 
performance in both healthy individuals (Terney et al., 2008; Saiote 
et al., 2013; Prichard et al., 2014; Abe et al., 2019; Jooss et al., 
2019; Brevet-Aeby et al., 2019; Hoshi et al., 2021) and people with 
neurological conditions (Hayward et al., 2017; Arnao et al., 2019; 
Monastero et al., 2020), with a greater focus on its impact on MEP 
(Chaieb et al., 2011; Moliadze et al., 2012; Laczó et al., 2014; Chaieb 
et al., 2015; Ho et al., 2015; Inukai et al., 2016; Kortuem et al., 2019; 
Moret et al., 2019; Haeckert et al., 2020; Splittgerber et al., 2020; 
Zhang et al., 2021). Only several studies investigated the eect of 
tRNS over primary motor cortex (M1) on motor performance in 
healthy participants (Terney et al., 2008; Saiote et al., 2013; Prichard 
et al., 2014; Abe et al., 2019; Jooss et al., 2019; Hoshi et al., 2021). 
Some tRNS studies showed significant motor improvement (but 
not all, Hoshi et al., 2021), as indicated by reduced reaction times 
(Terney et al., 2008; Jooss et al., 2019), decreased error rates (Abe 
et al., 2019), and increased accuracy in UL motor performance 
(Jooss et al., 2019). Among people with stroke, findings regarding 
the eect on UL motor ability are inconsistent (Hayward et al., 
2017; Arnao et al., 2019). 

A comparison between the neurophysiological and behavioral 
eects of tDCS and tRNS has been done in several domains, 
such as pain perception (Yao et al., 2021), numerical cognition 
(Bieck et al., 2018), visual perceptive learning (Herpich et al., 
2019), and visuomotor learning (Saiote et al., 2013). To the 
best of our knowledge, only two studies compared the eects of 
tDCS and tRNS on UL motor performance (Saiote et al., 2013; 
Prichard et al., 2014), and some others compared their eects on 
MEP (Moliadze et al., 2014; Ho et al., 2015; Inukai et al., 2016; 
Haeckert et al., 2020) and phosphene thresholds as a measure of 
visual cortex excitability (Herpich et al., 2018). From a behavioral 
perspective, both hf-tRNS and ctDCS over M1 showed a trend 
toward improvements in error rates, while lf-tRNS exhibited a 
trend toward hindering error rates in a visuomotor task. No 
eects were observed for atDCS or sham treatment (Saiote et al., 
2013). Prichard et al. (2014) found that unilateral M1 tRNS and 
unilateral and bilateral M1 tDCS enhanced motor skill learning 
compared to sham stimulation. While unilateral tDCS produced 
substantial skill gains immediately following the stimulation, tRNS 
had a more gradual impact. From a neurophysiological aspect, 
when comparing the eects of 1 mA tDCS and full-spectrum 
tRNS (0.1–640 Hz) with sham stimulation at 0, 5, 10, and 
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20 min post-stimulation on MEP, only tRNS presented significant 
increases in MEP compared to sham (Inukai et al., 2016). Also, 
Haeckert et al. (2020) found that in healthy individuals, hf-tRNS 
lasting 7 min and 13 min resulted in increased MEP amplitudes, 
but in contrast tDCS did not present any significant changes. 
Interestingly, Ho et al. (2015) showed significant increases in 
MEP from baseline after 1 and 2 mA tDCS and after 2 mA hf-
tRNS with a DC oset of 1, but not after 2 mA hf-tRNS with 
no oset. 

As mentioned, the results of tDCS and tRNS studies aiming 
to improve UL motor performance in healthy and/or post-stroke 
participants by targeting M1 have been inconsistent (Bastani and 
Jaberzadeh, 2012; Abe et al., 2019; Patel et al., 2019; Elsner et al., 
2020; Hoshi et al., 2021). One possible reason may relate to the 
fact that sex was not taken into consideration in most NIBS studies 
as a factor that can influence the response to the stimulation 
(Kuo et al., 2006). Sex was found to mediate the eects of NIBS 
on cortical induced electric field current (Russell et al., 2014; 
Thomas et al., 2019), and on dierent behaviors (Kuo et al., 
2006; Gorbet and Staines, 2011; Adenzato et al., 2019; Fehring 
et al., 2021) such as visually guided reaching movements (Gorbet 
and Staines, 2011) and social cognition skills (Adenzato et al., 
2019). The responsiveness to tDCS may be related to variances in 
hormonal levels (Krause and Cohen Kadosh, 2014; Rudro et al., 
2020), neurotransmitter balances and anatomical bone density 
(Russell et al., 2014; Rudro et al., 2020) between sexes. Hormonal 
levels fluctuate significantly more in women than in men (Krause 
and Cohen Kadosh, 2014; Rudro et al., 2020). Progesterone 
appears to drive the increase of cortical inhibition, likely through 
gamma-aminobutyric acid (GABA), and estradiol enhances brain 
excitability (Smith et al., 2002; Inghilleri et al., 2004; Rudro 
et al., 2020), likely through glutamatergic mechanisms (Hanlon and 
McCalley, 2022). Modulations in GABA concentrations induced by 
active tDCS have been linked to individual dierences in motor 
learning capacity (Kim et al., 2014). With regard to bone density, 
dierent studies have shown conflicting results as to whether men 
or women receive more electrical current from tDCS (Russell 
et al., 2014, 2017; Thomas et al., 2019). Indeed, studies have 
indicated sex-related anatomical dierences in head and brain 
structures (Amunts et al., 1996; Ruigrok et al., 2014; Gennatas 
et al., 2017). For instance, modeling study showed that young 
males (but not middle-age and old-age groups) had a higher 
current density than females, only for the parietal and not frontal 
montage (Bhattacharjee et al., 2022), possibly due to more porous 
bone (a thicker spongy layer) in males than females, especially 
in the parietal rather than the frontal bone (Rampersad et al., 
2011). Sex related dierences in gray and white matter among 
healthy individuals may contribute to dierential responses to 
brain stimulation. Women exhibit a higher gyrification index in 
frontal and parietal cortices, reflecting increased cortical folding 
and greater gyral surface area (Luders et al., 2004). After controlling 
for total intracranial volume, women exhibited greater frontal and 
parietal cortex volume than men (Hanlon and McCalley, 2022). 
Unlike tDCS, the eect of sex on response to tRNS has been scarcely 
explored (Manippa et al., 2017) and has not been investigated in the 
context of the motor domain. 

This study is the first attempt to compare the eects of tDCS 
vs. tRNS on UL motor ability while taking into consideration the 
eect of sex in healthy subjects. Previous findings generally have 

shown equal (Saiote et al., 2013; Ho et al., 2015; Yao et al., 2021) 
or better (Inukai et al., 2016; Herpich et al., 2019; Haeckert et al., 
2020) results following tRNS compared to tDCS in MEP across 
other domains (e.g., pain perception, visual perception). Therefore, 
we hypothesized that motor performance would improve after 
both hf-tRNS and tDCS compared to sham stimulation, with tRNS 
showing greater eÿcacy than tDCS. Furthermore, we expected the 
participants’ sex would mediate the eects of tDCS and tRNS. The 
exact eect is unclear, as dierent studies present dierent eects 
(Manippa et al., 2017; Yang and Banissy, 2017). Such a comparison, 
while relating to participants’ sex, may clarify the eects of tDCS vs. 
tRNS on UL motor performance. 

2 Materials and methods 

2.1 Study design 

This was a single-blind counterbalanced crossover study in 
which all participants received three stimulation conditions with 
a 1-week wash-out break (Abe et al., 2019; Jooss et al., 2019; 
Kortuem et al., 2019; Monastero et al., 2020; Hoshi et al., 2021) 
between each condition. The conditions were: (1) hf-tRNS, (2) 
tDCS, and (3) sham stimulation. The order of the stimulation 
techniques was counterbalanced within each sex. To ensure the 
blinding of participants, the stimulator monitor was hidden from 
the participants, and the sham stimulation increased and decreased 
in a ramp-like fashion at the beginning and end of the stimulation 
period. Data was collected in a brain and motor behavior laboratory 
based at Ariel University. 

2.2 Participants 

The sample size for this study was determined based on a 
power analysis calculation that was conducted using G∗Power 
version 3.1.9.7. Power analysis yielded a total sample size of 28 
individuals for the detection of a significant interaction with an 
assumed eect size of 0.25 and a power of 95%. To account for 
potential data loss, we aimed for a sample size of 30 individuals. 
The flowchart illustrating the study procedure can be found in 
Figure 1. Fifty-three participants underwent the pre-enrollment 
screening evaluation. Of those, 13 did not meet the inclusion 
criteria, 7 chose not to participate, and 3 were excluded due to 
technical diÿculties. Thirty participants (15 females, 15 males) 
participated in the study, with an average age of 24.53 ± 2.37 years, 
recruited via convenience sampling. Participants were included if 
they were between the ages 20–35, were right-hand dominant, 
according to the Edinburgh questionnaire (Oldfield, 1971), and 
self-reported as healthy. Participants were excluded if they were 
diagnosed with a neurological or psychiatric disorder, had a history 
of drug abuse, had metal implants in their head, or used psychiatric 
medications. Participants signed an informed consent form prior 
to participating in the study. All procedures were approved by 
the Ariel University Institutional Ethical Board (approval number: 
AU-HEA-SFT-20220808) and were performed in accordance with 
relevant guidelines and regulations. Participants were paid $40 for 
their participation. 
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FIGURE 1 

Trial flowchart. tRNS, transcranial random noise stimulation; tDCS, transcranial direct current stimulation. 

2.3 Stimulation 

The stimulation was administered by a battery driven electrical 
stimulator (DC-Stimulator Plus, neuroConn) through conductive 

rubber electrodes placed in two saline-soaked sponges (5 × 7 cm). 
The stimulation conditions were 1.0 mA (current density: 
0.286 A/m2) tDCS (Inukai et al., 2016), 1.0 mA peak-to-peak hf-
tRNS (current density: 0.143 A/m2) with a range of 101–640 Hz 

(Terney et al., 2008; Inukai et al., 2016; Abe et al., 2019; Hoshi 
et al., 2021) with no DC oset, and sham stimulation, as these 

parameters have been shown to have positive eects on MEP. 
All stimulation conditions were applied for 10 min. In tDCS and 

hf-tRNS conditions, the current increased and decreased in a ramp-
like fashion over the course of the first and last 30 s, respectively. 
In the sham condition, a tDCS current was ramped up to 1 mA 

over the first 30 s and ramped back down over the following 30 s. 
In the last minute of the simulation, an identical ramp up and 

ramp down occurred (for a similar approach, see Charvet et al., 
2018; Lerner et al., 2021). In all stimulation conditions, the target 
electrode was placed over C4 (anode in the case of tDCS) using 

the electroencephalogram (EEG) 10–20 referencing system with 

the reference over the contralateral orbit (cathode in the case of 
tDCS). This electrode configuration has been employed in previous 
studies involving tDCS (e.g., Nitsche and Paulus, 2000; Bastani and 

Jaberzadeh, 2012; Ehrhardt et al., 2021) and tRNS (e.g., Terney 

et al., 2008; Jooss et al., 2019; Hoshi et al., 2021). HD-Explore brain 

modeling software (Soterix Medical, New York, NY) was used to 

determine the tDCS montage for maximal focal stimulation of the 

right M1 (Figure 2). Participants were asked to report any adverse 

eects and to rank their discomfort from 1 to 10 one min after the 

stimulation began. 

2.4 Motor task 

In all participants, the non-dominant left arm was tested. After 

placing the electrodes on the head, the participants performed a 

sequential point-to-point movement task on a graphics tablet, a 

version of a similar, previously used task (Ghilardi et al., 2000; 
Ghilardi et al., 2009; Moisello et al., 2009; Lerner et al., 2021; Swissa 

et al., 2022). The stimuli consisted of a starting point and five targets 
equally spaced around it in a semicircle, all equidistant from the 

starting point (17 cm) and all with a diameter of 0.5 cm (Figure 3). 
Each movement began at the starting point. After holding the stylus 
at the starting point for 200 ms, the starting point changed its color 

from white to red, and one of the targets changed color from white 

to green, after which the participants needed to drag the stylus to 

the green target. They needed to remain there for 500 ms (until the 

target returned to its initial color), then lift the stylus and return it to 

the starting position to start the next movement. In each session, the 

participants were instructed that the targets would follow one of the 

three sequences 4-1-3-2-5, 5-2-3-1-4, 1-4-2-3-5, and to perform the 

task as fast and accurately as possible. The order of the sequences 
between conditions was counterbalanced among participants. 

During each session, participants underwent the following 

procedure for each of the three conditions (tRNS, tDCS, sham). 
Initially, the participants performed the motor task until they 

successfully completed 3 sequences without errors to familiarize 

themselves with the task. Then, they performed the pretest, which 

consisted of one block of 6 sequences (i.e., 30 movements). 
Upon completion, the stimulation was activated. One minute after 

starting the appropriate stimulation, the participants were asked 

about adverse eects. They then performed 3 blocks of 6 sequences, 
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FIGURE 2 

Current flow modeling during 1 mA transcranial direct current stimulation (tDCS) using the Explore software (Soterix Medical, New York, NY). 
Current-flow models of the right primary motor cortex (M1) are shown on 2D and 3D reconstructions of the cortical surface. Skin, skull, and 
cerebrospinal fluid (CSF) masks are suppressed to reveal the underlying gray matter mask. A head model derived from the MNI 152 dataset was used. 
The spatial profile of the current flow map is identical to that of tDCS; however, the field intensity is halved for the 1.0 mA peak-to-peak hf-tRNS. 

FIGURE 3 

Motor task. After placing the stylus on the center target (starting point) and remaining there for 200 ms, the center target’s color turned red and the 
color of one of the targets in the semicircle turned green, according to a predefined sequence. The participant dragged the pen on the target to the 
green target and held it there until its color returned to white. Note that for clarity the size of the targets shown in the figures are much larger than 
the targets used in the experiment. 

with a 30-s break between each block. After finishing the tDCS/hf-
tRNS/sham stimulation, the participants performed an immediate 
post-test, which was identical to the pretest. 

Three outcome measures were used: movement time (MT) (s), 
reaction time (RT) (s), and peak velocity (PV) (cm/s). Movement 
time was defined as the time from movement onset (first time 
the tangential velocity was greater than 5% of the peak tangential 
velocity) until the end of movement (last time the tangential 
velocity was greater than 5% of the peak tangential velocity). 
RT was defined as the time from the moment the target in the 
semicircle turned green until movement onset. PV was defined as 
the maximum tangential velocity achieved during the movement. 
Improved motor performance was indicated by a shorter MT, a 
shorter RT, and a higher PV. 

2.5 Statistical analysis 

For the kinematic measures, the assumption of a normal 
distribution was determined using the Kolmogorov–Smirnov test. 
Since RT values were not normally distributed, they were log-
transformed before this analysis (the original values are presented 
for clarity). A two-way repeated measures-ANOVA (RM-ANOVA) 
was used with time (pretest, posttest) and stimulation condition 
(tRNS, tDCS, sham) as within-subject factors. Sex (male, female) 
was added as a between-subject factor. The Bonferroni correction 

was used when there were multiple comparisons. The Greenhouse– 
Geisser Epsilon (G-GE) was used to correct the degrees of 
freedom when Mauchly’s test of sphericity was significant. 
Dierences between stimulation conditions were also investigated 
by comparing delta values between timepoints (calculated by 
subtracting pretest scores from posttest scores for each participant) 
using a RM-ANOVA with stimulation condition (tRNS, tDCS, 
sham) as within-subject factors and sex (male, female) as a between-
subject factor. The Bonferroni correction was used when there 
were multiple comparisons. The dierences between conditions 
with respect to the frequency of adverse eects were tested using 
a Cochran’s Q test with post hoc Dunn’s test (when necessary) 
and with Bonferroni correction for multiple comparisons. The 
dierences between conditions with respect to the discomfort 
from adverse eects were calculated using Friedman’s test with 
post hoc Wilcoxon signed-rank tests (if necessary) with Bonferroni 
correction for multiple comparisons. All tests were performed 
using SPSS (version 29.0) with initial significance levels of p < 0.05. 

3 Results 

Mean values of MT (s), RT (s) and PV (cm/s) are displayed 
in Table 1. Movement time, RT and PV did not dier at pretest 
between stimulation conditions (p > 0.074, for all). 
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TABLE 1 Means, standard deviations and confidence intervals of movement time, reaction time and peak velocity for stimulation conditions at 
pretest and posttest. 

Variable hf-tRNS 1.0 mA (n = 30) tDCS 1.0 mA (n = 30) Sham (n = 30) 

Pretest Posttest Pretest Posttest Pretest Posttest 

Movement time (s): 
mean ± SD [CI] 

1.05 ± 0.33 

[0.93–1.17] 
0.96 ± 0.29 

[0.86–1.07] 
0.96 ± 0.26 

[0.87–1.06] 
0.93 ± 0.24 

[0.84–1.01] 
0.98 ± 0.32 

[0.87–1.1] 
0.95 ± 0.28 

[0.85–1.06] 

Reaction time (s): 
mean ± SD [CI] 

0.86 ± 0.21 

[0.78–0.94] 
0.78 ± 0.12 

[0.73–0.81] 
0.82 ± 0.13 

[0.77–0.87] 
0.76 ± 0.11 

[0.72–0.8] 
0.86 ± 0.2 

[0.79–0.94] 
0.8 ± 0.18 

[0.73–0.87] 

Peak velocity (cm/s) 
mean ± SD [CI] 

36.03 ± 10.43 

[32.33–39.73] 
38.51 ± 10.62 

[34.77–42.24] 
38.03 ± 9.36 

[34.7–41.35] 
39.15 ± 9.14 

[35.93–42.36] 
38.53 ± 10.77 

[34.68–42.39] 
38.81 ± 10.29 

[34.96–42.66] 

Hf-tRNS, high-frequency transcranial random noise stimulation; tDCS transcranial direct current stimulation; CI, 95% confidence interval. 

3.1 Effects on movement time 

A main eect of time [F(1,28) = 13.281; p = 0.001; partial 
η2 = 0.322; observed power = 0.940] showed that across the 
dierent stimulation conditions, MT decreased significantly from 
pretest to posttest (1.00 ± 0.3 s, 0.95 ± 0.27 s, respectively). 
No significant interactions were observed [stimulation 
condition × sex: F(2,56) = 0.735; p = 0.484; time × sex: 
F(1,28) = 2.494; p = 0.126; stimulation condition × time: 
F(2,56) = 1.492; p = 0.234; stimulation condition × time × sex: 
F(2,56) = 1.251; p = 0.294]. The delta from pretest to posttest in MT 
did not dier significantly between stimulation conditions 
[F(2,56) = 1.492; p = 0.234; partial η2 = 0.051; observed 
power = 0.305]. To gain a more comprehensive understanding 
of time-related eects within each stimulation condition, we 
additionally examined whether MT significantly diered between 
time points within each condition. Therefore, despite the non-
significant interaction, we further investigated the time eects 
within each stimulation condition. This approach aligns with 
the perspective of Wei et al. (2012), who highlight the value of 
examining condition means even in the absence of interaction 
eects. A similar method was applied by Jobgen et al. (2009). 
A significant main eect of time was found only for tRNS 
[F(1,28) = 9.759; p = 0.004 (≤ pBonferroni = 0.017); partial 
η2 = 0.258; observed power = 0.854]. MT decreased significantly 
from pretest to posttest (1.05 ± 0.33 s and 0.96 ± 0.29 s, 
respectively) (Figure 4A). 

3.2 Effects on reaction time 

A main eect of time [F(1,28) = 32.161; p < 0.001; partial 
η2 = 0.535; observed power = 1] showed that across the dierent 
stimulation conditions RT decreased significantly from pretest to 
posttest (0.85 ± 0.18 s, 0.78 ± 0.14 s, respectively). No significant 
interactions were observed [stimulation condition × sex: 
F(2,56) = 0.054; p = 0.947; time × sex: F(1,28) = 0.008; p = 0.929; 
stimulation condition × time: F(2,56) = 0.223; p = 0.801; 
stimulation condition × time × sex: F(2,56) = 0.412; p = 0.665]. 
The delta from pretest to posttest in RT did not dier significantly 
between stimulation conditions [F(2,56) = 0.377; p = 0.688; 
partial η2 = 0.013; observed power = 0.108]. To gain a more 
comprehensive understanding of time-related eects within each 
stimulation condition, we additionally examined whether RT 
significantly diered between time points within each condition. 

Therefore, despite the non-significant interaction, we further 
investigated the time eects within each stimulation condition 
(Wei et al., 2012; Jobgen et al., 2009). A. Significant eects of time 
were observed among all stimulation conditions, all presenting 
decreased RT from pretest to posttest: tRNS [F(2,28) = 22.147; 
p < 0.001; (≤ pBonferroni = 0.017); partial η2 = 0.442; observed 
power = 0.995. Pretest: 0.86 ± 0.21 s, posttest: 0.78 ± 0.12 s], 
tDCS [F(1,28) = 8.921; p = 0.006; (≤ pBonferroni = 0.017); 
partial η2 = 0.242; observed power = 0.822. Pretest: 0.82 ± 0.13 s, 
posttest: 0.76 ± 0.11 s], and sham [F(1,28) = 10.002; p = 0.004; 
(≤ pBonferroni = 0.017); partial η2 = 0.263; observed 
power = 0.863. Pretest: 0.86 ± 0.2 s, posttest: 0.8 ± 0.18 s] 
(Figure 4B). 

3.3 Effects on peak velocity 

A main eect of time [F(1,28) = 5.778; p = 0.023; partial 
η2 0.171; observed power = 0.641] showed that across the 
dierent stimulation conditions PV increased significantly from 
pretest to posttest (37.53 ± 10.15 cm/s, 38.82 ± 9.93 cm/s, 
respectively). No significant interactions were observed 
[stimulation condition × sex: F(2,56) = 0.785; p = 0.461; time × sex: 
F(1,28) = 0.660; p = 0.423; stimulation condition × time: 
F(2,56) = 2.604; p = 0.083; stimulation condition × time × sex: 
F(2,56) = 2.697; p = 0.076]. The delta from pretest to posttest in PV 
did not dier significantly between stimulation conditions 
[F(2,56) = 2.604; p = 0.083; partial η2 = 0.085; observed 
power = 0.498]. To gain a more comprehensive understanding 
of time-related eects within each stimulation condition, we 
additionally examined whether PV significantly diered between 
time points within each condition. Therefore, despite the non-
significant interaction, we further investigated the time eects 
within each stimulation condition (Wei et al., 2012; Jobgen 
et al., 2009). A significant eect of time was found for only tRNS 
[F(1,28) = 6.433; p = 0.017; (≤ pBonferroni = 0.017); partial 
η2 = 0.187; observed power = 0.687]. PV increased significantly 
from pretest to posttest (36.03 ± 10.43 cm/s, 38.51 ± 10.62 cm/s, 
respectively) (Figure 4C). 

3.4 Adverse effects 

The stimulation was well tolerated by the participants, and 
no sessions were aborted due to adverse eects. The frequency 
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FIGURE 4 

(A) Mean movement time, (B) reaction time, and (C) peak velocity for stimulation conditions in males and females at pretest and posttest. s, seconds; 
cm/s, centimeters per second; tRNS, transcranial random noise stimulation; tDCS, transcranial direct current stimulation. Error bars show the 
standard deviation. It is important to note that the asterisks (*) refer to comparisons between time points within each stimulation condition, which 
remained significant after Bonferroni correction, despite the absence of a significant Stimulation Condition × Time interaction (for justification, see 
Wei et al., 2012). 
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TABLE 2 Frequency and discomfort of adverse effects. Median values and interquartile ranges of discomfort are presented. 

Adverse effect tRNS (n = 30) tDCS (n = 30) Sham (n = 30) 

Frequency Discomfort Frequency Discomfort Frequency Discomfort 

Tingling 2 (7%) 0 (0–3) 19 (63%) 2.5 (0–9) 23 (77%) 4 (0–7) 

Itching 1 (3%) 0 (0–1) 8 (27%) 0 (0–8) 6 (20%) 0 (0–10) 

Burning 0 (0%) 0 (0–0) 2 (7%) 0 (0–4) 2 (7%) 0 (0–7) 

Other 2 (7%) 0 (0–3) 1 (3%) 0 (0–3) 1 (3%) 0 (0–2) 

tRNS, transcranial random noise stimulation; tDCS, transcranial direct current stimulation. Median values and ranges are presented. 

and level of discomfort caused by adverse eects are displayed 
in Table 2. 

3.4.1 Frequency 
Frequency of “tingling” and “itching” significantly diered 

between conditions (χ2(2) = 32.435, p < 0.001, χ2(2) = 6.5, 
p = 0.039, respectively). “Tingling” was significantly less frequent 
during tRNS compared to tDCS (p < 0.001) and sham (p < 0.001). 
“Itching” was significantly less frequent during tRNS compared to 
tDCS (p = 0.040). No other significant eects were observed. 

3.4.2 Discomfort 
Discomfort levels of “tingling” and “itching” significantly 

diered between conditions (χ2(2) = 30.414, p < 0.001, 
χ2(2) = 6.513, p = 0.039, respectively). Discomfort level of 
“tingling” was significantly lower during tRNS compared to tDCS 
(Z = −3.831; p < 0.001) and sham (Z = −4.218; p < 0.001). 
Discomfort level of “itching” was significantly lower during tRNS 
compared to tDCS (Z = −2.552; p = 0.011). No other significant 
eects were observed. 

4 Discussion 

To the best of our knowledge, this is the first study to 
compare the eects of tRNS vs. tDCS on motor performance 
in healthy participants, while taking into consideration the 
eects of sex. We found no significant Stimulation × Time or 
Stimulation × Time × Sex interactions. However, significant 
improvements from pretest to posttest were found in MT and 
PV only in the tRNS condition (RT improved in all stimulation 
conditions). These results do not oer statistically significant 
evidence to support the superiority of one stimulation condition 
over another. However, they provide support for a potential modest 
benefit of tRNS on UL motor performance. These trends warrant 
further investigation in the future. 

Similar to our findings, Saiote et al. (2013) reported no 
significant Simulation × Time interaction, but they observed a 
tendency for 1 mA of hf-tRNS to enhance motor learning (reduced 
tracking error) after 10 min. Similarly, our study applied 1 mA 
tRNS for 10 min, using a frequency range of 101–640 Hz. In 
contrast, three previous studies found significant improvements 
in motor function following hf-tRNS to M1 compared to sham 
stimulation (Prichard et al., 2014; Terney et al., 2008; Abe 
et al., 2019). These dierences may be explained by variations in 
stimulation parameters. For example, one of the above-mentioned 
studies applied stimulation for 20 min (Prichard et al., 2014) 
whereas the duration in our study was 10 min. Indeed, stimulation 

duration has been shown to modulate the eects of both tRNS 
(Haeckert et al., 2020) and tDCS (Monte-Silva et al., 2010; Haeckert 
et al., 2020). However, even among studies that employed the same 
stimulation parameters as ours (1 mA for 10 min), Terney et al. 
(2008) and Abe et al. (2019) reported enhanced motor performance 
following tRNS compared to sham stimulation. This variability 
highlights the complexity of comparing tRNS eects across 
studies, as outcomes are influenced by multiple interacting factors, 
including stimulation intensity and duration, electrode montage, 
and the resulting current flow patterns in the brain (Esmaeilpour 
et al., 2018; Peterchev et al., 2012). Additionally, individual 
anatomical variability can aect current density, potentially leading 
to variable intensity–response relationships across participants 
(Laakso et al., 2015). Task complexity may further shape the 
observed behavioral eects of stimulation, adding another layer of 
variability to inter-studies comparisons. 

Our finding that motor performance did not improve after 
tDCS compared to sham stimulation contradicts our hypothesis. In 
addition, the variables MT and PV did not improve from pretest 
and posttest following tDCS. These results contradict those of a 
previous study that used a similar task in which MT improved 
at posttest as compared to pretest (Lerner et al., 2021). This 
discrepancy may be due to dierences in studies’ protocols. The 
earlier study (Lerner et al., 2021) found this eect only after 
HD-tDCS at 1.5 mA, not at 2 mA, whereas our study applied 
conventional tDCS at 1.0 mA. Boggio et al. (2006), who utilized 
1.0 mA conventional tDCS similarly to our study, found significant 
motor improvements compared to sham. However, their study 
diered in key aspects: they employed a dierent motor task (Jebsen 
Taylor Hand Function Test), applied stimulation for 20 min, and 
included a small sample size of eight participants, all of whom were 
female. 

Unlike MT and PV which significantly improved from pretest 
to posttest in the tRNS condition only, RT significantly improved 
from pretest to posttest in all stimulation conditions. Reaction time 
reflects motor preparation, while MT and PV reflect aspects of 
movement execution. A recent meta-analysis (Kang et al., 2016) 
showed modest improvements in RT with smaller eect sizes 
than for execution time following tDCS in healthy participants 
(Sánchez-León et al., 2021). The primary motor cortex is primarily 
associated with response execution (Ghilardi et al., 2009; Moisello 
et al., 2009; Charvet et al., 2018), while the premotor cortex is 
more involved in response selection and preparation. In this study, 
the execution task involved sequential point-to-point movements 
using the non-dominant hand toward small 0.5 cm targets on 
a graphics tablet. The challenges and potential for improvement 
in the execution component of this task, combined with the 
stimulation site targeting M1 rather than premotor areas, may have 
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contributed to the observed enhancements in MT and PV from 
pretest to posttest in the tRNS condition but not in the sham 
condition. Reaction time likely improved from pretest to posttest 
across all stimulation conditions as a result of training, aligning 
with findings from similar sequence learning tasks (Ghilardi et al., 
2000, Lerner et al., 2021). Alternatively, the observed enhancement 
may reflect a generalized placebo eect associated with the 
stimulation conditions. Subjective expectations may induce a 
specific brain state that interacts with the eects of electrical 
stimulation. However, since participants’ expectations and beliefs 
were not assessed before or after the stimulation (Braga et al., 2021), 
it is diÿcult to rule out or quantify the potential contribution of 
placebo eects on motor performance. 

The current study did not reveal a clear advantage for tRNS 
over tDCS or sham on any measure, as indicated by the non-
significant Time × Stimulation interaction. However, as noted 
earlier, tRNS and not tDCS generally demonstrated significant 
dierences between pretest and posttest. It should be noted 
that baseline performance across stimulation conditions was 
comparable for all outcome measures, minimizing the likelihood 
that initial stimulation conditions dierences influenced these 
results. Similarly, Saiote et al. (2013), who compared the eects of 
10 min tRNS (low frequency (lf) tRNS: 0.1–100 Hz, hf-tRNS: 101– 
640 Hz) and 1 mA tDCS over the left M1, found a non-significant 
Time × Stimulation interaction. Their findings showed a trend 
toward accelerated learning following cathodal tDCS and hf-tRNS, 
but not after atDCS, while lf-tRNS appeared to impair the learning 
process. It is possible that in the current study, it should be noted 
that the eect of tRNS on motor ability is unlikely to be attributed 
to placebo eects because the frequency and levels of discomfort of 
tingling and itching were significantly lower during tRNS compared 
to tDCS (see Table 2). These results are consistent with previous 
studies, which have shown that blinding was less eective for tDCS 
than tRNS (Sheÿeld et al., 2022). 

The subtle behavioral dierences between pretest and posttest 
in the tDCS and tRNS conditions likely reflect distinct neural 
mechanisms underlying these stimulation modalities. In Saiote 
et al. (2013)’s study, tDCS did not significantly modulate brain 
activity, whereas hf-tRNS was associated with reduced motor task-
related activity bilaterally in the frontal cortex and precuneus, 
possibly due to hf-tRNS interacting with ongoing neuronal 
oscillations. Stochastic resonance mechanism may underline the 
modest but more pronounced behavioral improvements observed 
following tRNS compared to tDCS and sham stimulation in this 
study. According to this mechanism, the addition of random 
interference (i.e., noise) can enhance the detection of weak stimuli 
or enhance the information content of a signal (Pavan et al., 
2019; Ward, 2009). The presence of an optimal amount of neural 
noise by tRNS could enhance the sensitivity of neurons to a 
weak stimulus (Miniussi et al., 2013). Additionally, hf-tRNS may 
be associated with repetitive opening of Na+ channels, thereby 
enhancing cortical excitability (Terney et al., 2008; Antal and 
Herrmann, 2016). Future studies incorporating neurophysiological 
measures such as EEG or TMS are warranted to directly assess 
cortical excitability, connectivity, and oscillatory dynamics, thereby 
clarifying the distinct neural mechanisms associated with each 
stimulation technique. 

No significant Stimulation × Sex or Stimulation × Time × Sex 
were found in the current study. This finding contradicts our 

hypothesis that sex would modulate the eects of both tRNS and 
tDCS. It also contrasts with the results of Swissa et al. (2022), who 
employed a similar motor task. Swissa et al. (2022) investigated the 
impact of 15 min HD-tDCS over M1 at 1.0 mA on a sequential 
reaching motor task in men vs. women. They found a reduction 
in RT following HD-tDCS over M1 only in men. Such sex-
related dierences were not observed in the present study. Several 
explanations may account for the discrepancy between our results 
and those of Swissa et al. (2022). First, methodological dierences 
could influence neural responsiveness, as Swissa et al. (2022) 
utilized a HD electrode montage and a longer stimulation duration. 
Second, dierences in the timing of post-test measurements may 
explain the variable findings across studies. For example, Kuo et al. 
(2006) found no sex-related dierences after 13 min of 1.0 mA 
atDCS. However, 90 min post-tDCS, they found that the excitatory 
eects of atDCS on MEPs persisted in men but not in women. In 
addition, sex-related dierences in tDCS responsiveness between 
studies may have stemmed from hormonal fluctuations and cortical 
anatomy of participants, which were not controlled in the current 
study and Swissa et al. (2022)’s study. Menstrual cycle phase may 
have influenced the outcomes, as progesterone appears to increase 
cortical inhibition and estradiol to heightened excitability (Krause 
and Cohen Kadosh, 2014; Inghilleri et al., 2004; Smith et al., 2002). 
It is important to note that, consistent with our findings, several 
studies have reported that sex does not significantly influence the 
eects of tDCS on motor abilities (Fehring et al., 2021; Hsu et al., 
2025). A recent preregistered study by Hsu et al. (2025) examined 
the dose–response relationship of tDCS on motor learning and 
cortical excitability and found no significant dierences in motor 
performance based on sex. Furthermore, sex does not appear to 
mediate all aspects of tDCS-related motor outcomes. In a study by 
Fehring et al. (2021), tDCS applied over the dorsolateral prefrontal 
cortex aected response inhibition similarly in males and females, 
although dierences emerged in response execution. 

4.1 Limitations 

The study has several limitations. First, the study was a 
single-blind crossover randomized controlled trial, in which the 
researcher, who applied the stimulation and ran the motor task, 
was aware of the stimulation condition. However, this potential 
bias was mitigated by the automatic recording and analysis 
of kinematic measures using the MATLAB program. Second, 
a common limitation to NIBS studies is the large variability 
in skull and brain anatomy across individuals (Laakso et al., 
2015), which increases the likelihood of dierent responses to 
the stimulation. Previous studies have shown that 20%–60% of 
participants exhibited an excitability increase induced by a single 
atDCS session (Chew et al., 2015; Lopez-Alonso et al., 2014, 2015; 
Nuzum et al., 2016; Strube et al., 2015; Wietho et al., 2014). The 
intensity of the induced electric field has been shown to vary with 
gender and ethnicity, with skull thickness, scalp thickness, and 
the thickness of the epidural cerebrospinal fluid identified as key 
anatomical determinants of inter-individual electric field variability 
(Ma et al., 2024). While the crossover design mitigates the impact 
of inter-individual anatomical variability on comparisons between 
stimulation conditions, such anatomical factors may still influence 
overall responsiveness to stimulation. This may have contributed 
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to increased between-subject variability and could have limited the 
ability to detect subtle dierences between stimulation conditions. 
Future studies accounting for these factors may improve the 
accuracy and consistency of stimulation outcomes by minimizing 
individual dierences. Third, a wider age range among participants 
would improve the external validity of the findings and enhance 
their applicability to a broader population. Fourth, we employed a 
widely used electrode montage in which the target electrode was 
placed over C4 (anode in the case of tDCS) and the reference 
electrode over the contralateral orbit (cathode in the case of tDCS), 
consistent with prior studies (Nitsche and Paulus, 2000; Terney 
et al., 2008; Bastani and Jaberzadeh, 2012; Jooss et al., 2019; 
Ehrhardt et al., 2021; Hoshi et al., 2021). This configuration has 
been shown to be particularly eective for modulating excitability 
in M1 (Moliadze et al., 2010; Nitsche and Paulus, 2000). However, 
it is important to acknowledge that the orbitofrontal cortex– 
located beneath the reference electrode–plays a significant role in 
emotional processing (Rolls and Grabenhorst, 2008; Rolls, 2019), 
and may therefore be aected by the stimulation. Using subjective 
assessments of mood and emotional state would have allowed 
for the monitoring of potential confounding eects resulting 
from unintended modulation of the orbitofrontal cortex. Fifth, 
dierences in perceived scalp sensation may have influenced 
motor performance. As shown in previous studies (Fertonani 
et al., 2015) and supported by our findings, anodal tDCS was 
associated with greater discomfort compared to tRNS. While 
tDCS delivers a constant current that continuously activates 
cutaneous receptors, tRNS uses fluctuating currents that are 
less likely to stimulate sensory fibers linked to discomfort. This 
heightened sensory input in the tDCS condition–independent 
of its neuromodulatory eects–may have negatively influenced 
participants’ performance. Moreover, instructing participants to 
report side eects and rate their discomfort shortly after stimulation 
onset may have heightened their awareness of these sensations, 
potentially exacerbating their impact on task performance. Notably, 
Fertonani et al. (2015) found that the perceived sensations during 
sham and real tRNS conditions were indistinguishable, whereas 
the dierence between anodal tDCS and sham was marginally 
significant (p = 0.056). To mitigate these sensory confounds, 
a within-between design could be implemented. This would 
involve comparing two stimulation groups–direct current and 
random noise–each with appropriate sham-controlled, within-
subjects conditions, to better isolate neuromodulatory eects from 
sensory artifacts. Lastly, incorporating subjective assessments of 
participants’ expectations and beliefs across the dierent conditions 
would have provided greater clarity regarding the potential 
contribution of placebo eects to motor performance. 

4.2 Conclusion 

Neither atDCS nor hf-tRNS, applied for 10 min at an 
amplitude of 1.0 mA over the right M1, significantly improved 
kinematic measures in healthy young participants compared to 
sham stimulation, and no significant dierences were found 
between the two active conditions. Delta values between pretest and 
posttest did not dier between stimulation conditions. However, 
significant improvements in MT and PV from pretest to posttest 

were observed exclusively following tRNS. Although no statistically 
significant advantage was established for any specific stimulation 
condition, the findings suggest that tRNS may be associated with 
modest improvements in motor performance and merit further 
investigation. In addition, within this experimental setup, sex does 
not appear to influence the eects of NIBS on motor performance. 
These insights may contribute to the application of tDCS and tRNS 
in neurorehabilitation settings. 
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