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Neuropsychological tests are essential tools for evaluating dementia and related 
neurocognitive disorders, with their clinical utility determined mainly by their 
validity. This paper critically reviews the diverse evidence supporting the validity 
of neuropsychological tests in dementia assessment. Criterion validity is discussed 
in relation to the tests’ ability to predict clinical diagnoses and underlying brain 
pathology, with a focus on their sensitivity to functional impairments and progressive 
neuropathological changes. Construct validity is explored through the lens of 
cognitive processes underlying test performance, using evidence from correlation 
structures and experimental paradigms. Furthermore, the paper examines the 
impact of emerging digital technologies on the evaluation of neuropsychological 
test validity, highlighting contrasts with traditional validation methods. The review 
identifies discrepancies between different types of validity evidence, emphasizing 
the need to contextualize validity within specific clinical and research applications. 
By addressing the conceptual limitations and trade-offs between validation 
approaches, this study proposes a comprehensive framework for interpreting 
validity evidence. Ultimately, it offers theoretical and practical implications for 
enhancing the robustness of neuropsychological tests in clinical practice and 
research.
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Introduction

Neuropsychological assessment includes tools for evaluating individuals with suspected 
dementia. These assessments provide evidence to determine the presence of cognitive 
impairments, differentiate observed cognitive decline from normal aging, assess the severity 
of dementia, and identify the underlying pathology causing the deficits. Neuropsychological 
tests aim to measure cognitive abilities and detect deficits associated with specific brain 
structures and functions. Over the course of their long history, neuropsychologists have 
systematically gathered psychometric evidence to validate neuropsychological tests and ensure 
they serve their intended purpose.

Validity, commonly defined as the degree to which a test measures what it claims to 
measure, is a central consideration in the development and application of psychometric 
instruments (American Educational Research Association et al., 2014; Cronbach and Meehl, 
1955). The type of validity sought for a test depends on its intended purpose and context, and 
the methods for establishing validity are similarly influenced by these objectives (Chen, 2018). 
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Evidence supporting test validity is often categorized into two primary 
dimensions: (1) whether the test is practical and useful, and (2) what 
specific attributes the test possesses (Hughes, 2017). These dimensions 
correspond to criterion-based and construct-based validation 
approaches, representing two major frameworks of scientific evidence 
in test validation. Neuropsychological tests, like psychometric 
approaches in general, derive their validity from their clinical and 
research applications, with these two types of evidence forming the 
basis for validation.

While there is a broad consensus regarding the conceptual 
framework for validity, further discussion is required to address 
specific issues arising from contemporary science. Moreover, 
advancements in technological methodologies are challenging 
traditional clinical neuropsychological approaches, necessitating new 
validation methods. This review critically examines the various types 
of evidence supporting the validity of neuropsychological tests in the 
context of dementia and related neurocognitive disorders. It highlights 
the multiplicity of clinical criteria and construct-based evidence 
expected in these contexts and explores how traditional perspectives—
such as empiricism and cognitivism—have been integrated into 
dementia assessment. Additionally, the review considers recent 
advancements in biomarker, neuroimaging, and digital marker 
research, examining how these developments have altered the 
landscape of validity evidence. Finally, it discusses potential 
discrepancies between different types of validity evidence, offering 
insights into their implications for clinical and research settings.

Criterion validity of clinical outcome

Criterion validity involves evaluating whether a psychological test 
captures practical and meaningful real-world criteria, such as daily 
functioning or occupational adjustment, to validate its use as a tool for 
clinical diagnosis (Kane, 2001). This approach represents a 
foundational principle in clinical neuropsychology and has historically 
been one of the most widely utilized methods for test validation, often 
considered the “gold standard” in psychometric evaluation (Anastasi, 
1950). Furthermore, empirical studies on the validity of 
neuropsychological test batteries frequently focus on this type of 
validation (Pawlowski et  al., 2013). In the following sections, 
we explore criterion validity by examining its temporal dimensions 
(i.e., concurrent or predictive) and levels of analysis (i.e., clinical 
outcomes or brain pathology).

Concurrent criterion validity

Concurrent criterion validity is the most rudimentary approach 
to criterion validation, where a psychological test is assessed against a 
criterion measured at the same point in time (American Educational 
Research Association et  al., 2014). This type of validity relies on 
practical judgment criteria grounded in the specific and practical 
purposes of the test, allowing its utility to be verified without heavy 
reliance on theoretical constructs.

For many individuals undergoing neuropsychological 
assessments, two primary objectives emerge: (1) determining whether 
cognitive impairments are present due to a neurological condition, 
and (2) establishing whether these impairments currently affect the 

individual’s ability to perform daily activities. Clinical diagnoses 
summarize comprehensive judgments about changes in daily 
functioning caused by cognitive impairments, serving as a robust 
reference target for assessing the utility of testing tools. For example, 
the diagnostic criteria for dementia emphasize difficulties in 
independent daily functioning (McKhann et  al., 2011), and 
neuropsychological measures of cognitive function are validated as 
reliably predicting these outcomes (Farias et al., 2003; Fields et al., 
2010; Jefferson et al., 2006).

It should be  noted, however, that two distinct aspects—
neurological condition and functioning level—are intermingled 
within the criterion of clinical diagnosis, which in turn serve as 
separate benchmarks for validating neuropsychological tests. First, a 
primary criterion for test validity is the test’s ability to detect the 
organicity of impairment that indicates a neurological condition. In 
other words, the tests are deemed sensitive if the measured property 
responds to the presence of a biological cause of a clinical syndrome. 
Until the widespread availability of neuroimaging techniques in the 
1980s, neuropsychological tests were predominantly used to identify 
the presence and track the location of brain injuries. At the time, 
validation relied on autopsy findings or neuroimaging as reference 
criteria, which formed the basis of tests as practical proxies for brain 
function measurement when direct assessment of neural damage was 
unavailable. For instance, a cluster of cognitive deficits frequently 
observed in patients with frontal lobe damage was referred to as 
“frontal lobe syndrome,” leading to the development of tests 
specifically designed to assess “frontal lobe functions” (Dubois et al., 
2000; Malloy and Richardson, 1994). These traditional frameworks of 
the neuropsychological battery have been utilized to differentiate 
neurological conditions, which remain foundational to the 
development and composition of tests (Reitan and Wolfson, 2009).

Second, the functioning level implied in the clinical diagnosis also 
serves as another concurrent criterion for validity. For older adults 
with dementia, maintaining independent daily activities is directly 
linked to their quality of life and the burden experienced by caregivers. 
In cases where caregivers are unavailable to provide assessments of 
daily functioning, neuropsychological tests become a critical source 
of clinical inference. Tests measuring episodic memory and executive 
function consistently exhibit strong correlations with levels of daily 
functional capacity (Fields et  al., 2010; Overdorp et  al., 2016). 
Furthermore, neuropsychological tests often predict the degree of 
functional impairment more accurately than biomarkers associated 
with neurological conditions (Kwak et al., 2021b).

While the criterion of brain damage or functional impairment 
provides a foundational framework for evaluating test utility, this 
approach has inherent limitations, as the meaning of the criterion 
itself can be enumerated. For example, using “frontal lobe damage” as 
a criterion for test validation is problematic as an underspecified 
definition because individual patients exhibit substantial heterogeneity 
in the location, pattern, and extent of brain injuries. Consequently, 
tasks designed to measure specific brain functions (e.g., frontal lobe 
tests) are prone to misidentifying deficits in patients with frontal lobe 
damage (Demakis, 2004; Phillips, 2004).

Similarly, using clinical diagnoses as a criterion can raise other 
issues. While diagnostic categories often provide a convenient and 
practical reference for validating test utility, they may prioritize 
symptom description over the underlying disease entity or etiology. 
Because the characteristics of a disorder’s symptoms often result from 
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complex and cumulative interactions of risk factors, the underlying 
disease stages, shared neuropathologies, and deficits in specific 
cognitive processes may remain unspecified. Even when a test 
demonstrates excellent diagnostic classification, its relationship to the 
biological or psychological construct it purports to measure may 
be  unclear, leaving its interpretability vulnerable to alternative, 
unanticipated factors (Strauss and Smith, 2009). Consequently, while 
the evidence of diagnostic validity is suggestive of a test’s practical 
utility, the intrinsic validity of the criterion itself will remain largely 
unevaluated. For the advancement of operationally defining the 
diagnosis of dementia, researchers have advocated for separating 
clinical “disorders” from biologically defined “diseases” in diagnostic 
frameworks (Jack et al., 2024). However, this distinction has not yet 
been applied in the common practice of test validation.

Another limitation of concurrent validity is its reliance on 
criterion characteristics at a single time point, failing to account for 
changes over time. For instance, the DSM-5 diagnostic criteria for 
mild and major neurocognitive disorders emphasize objective 
cognitive decline as a core requirement. This reliance on test results 
during clinical diagnosis introduces the risk of criterion 
contamination, wherein the validity criterion itself is influenced by the 
test outcomes (Noel-Storr et  al., 2014; Weuve et  al., 2015). Such 
contamination risks exaggerate a test’s diagnostic utility through 
circular reasoning. When test validation studies lack pre-planned 
designs, information gathered from patients may inadvertently 
influence clinical criteria through indirect pathways. Even if the 
diagnosis is not explicitly contaminated by the leakage of target test 
results, as with mild cognitive impairment (MCI), diagnosis criteria 
derived from similar cognitive tests can still introduce inherently 
shared elements between the test under validation and the 
reference standard.

Predictive criterion validity

One approach to maximizing the practical utility of criterion 
validity and addressing the limitations of concurrent validity is to 
evaluate predictive validity. Predictive validity assesses whether a 
psychological test provides information that can forecast future 
outcomes, distinguishing it from concurrent validity, which evaluates 
alignment with present criteria (American Educational Research 
Association et al., 2014). By using clinically meaningful benchmarks, 
predictive validity shares similarities with concurrent validity but 
emphasizes the test’s ability to predict future clinical outcomes. This 
approach mitigates issues of criterion contamination present in 
concurrent validation by prospectively evaluating whether a test can 
predict future clinical impairments.

Accumulating research highlights the significant role of 
neuropsychological tests in providing critical insights into the 
progression of dementia symptoms. Scores obtained through 
neuropsychological tests can predict the likelihood of dementia onset 
or rapid cognitive decline years in advance (Bäckman et al., 2005; 
Belleville et al., 2014; Chapman et al., 2011; Jang et al., 2017). While 
comprehensive neuropsychological tests are more time-intensive than 
screening tools, such as the Mini-Mental State Examination (MMSE), 
they offer superior accuracy in distinguishing mild cognitive 
impairment (MCI) patients who are at risk of developing dementia 
(Kim et  al., 2017). Numerous studies further indicate that 

neuropsychological assessments enhance diagnostic accuracy and 
provide additional information about longitudinal changes in daily 
functioning, particularly for conditions of MCI and stroke (Donders, 
2020). Thus, even within the same diagnostic category, 
neuropsychological tests contribute valuable explanatory power 
regarding future clinical outcomes.

It is also notable that repeated testing in follow-up assessments 
improves predictive validity by capturing changes over time. For 
example, one study has shown that older adults diagnosed with MCI 
and subsequently re-evaluated using MMSE or clinical rating scales 
showed dubiously low reversion rate from MCI to normal in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (Thomas 
et  al., 2019). In other words, a higher rate of MCI-to-Normal 
conversion implies the initial diagnosis of MCI was unreliable and less 
meaningful, which was the case when using a less valid cognitive test 
set. However, this artificial diagnostic bias could be  adjusted by 
follow-up assessments incorporating neuropsychological tests, 
particularly those measuring episodic memory (Thomas et al., 2019). 
In another similar study, subtle cognitive changes observed in 
neuropsychological tests for 12 months have been shown to predict 
dementia onset with high accuracy over subsequent follow-ups 
(18–120 months) (Nation et al., 2019). These predictions often surpass 
the prognostic capabilities of major dementia biomarkers, highlighting 
the added value of neuropsychological tests. This series of studies 
demonstrates that repeated measurements of neuropsychological 
assessments enhance sensitivity to neurological changes and 
disease progression.

Both predictive and concurrent validity rely on clinically 
meaningful benchmarks, but the time point of assessment influences 
the validity evidence obtained. For instance, a study compared how a 
brief screening test and comprehensive tests correlate with current and 
future brain structural atrophy (Kim et al., 2017). The result showed 
that in patients already diagnosed with dementia or major 
neurocognitive disorders, MMSE captures the progression of 
neuropathology as effectively as comprehensive neuropsychological 
tests (Kim et al., 2017). Conversely, comprehensive neuropsychological 
batteries were uniquely accurate in detecting subtle future 
neuropathological changes in individuals with mild cognitive 
impairments. Furthermore, while hallmark clinical symptoms of 
Alzheimer’s disease (AD) often involve deficits in long-term memory, 
preclinical stages (a decade or more before onset) are frequently 
characterized by earlier changes in immediate memory (i.e., learning), 
processing speed, and executive functions (Amieva et al., 2014; Bilgel 
et al., 2014; Mortamais et al., 2017; Younes et al., 2019). In evaluating 
dementia risk, it is crucial to distinguish between concurrent clinical 
symptoms and preclinical signs, as these may represent 
different phenomena.

Another consideration when reviewing predictive and concurrent 
validity is that, in real clinical settings, objective tests interact in 
complex ways with subjective reports (patients’ subjective cognitive 
complaints, metamemory, and caregivers’ informant-rated 
observations of functioning), such that the apparent characteristics of 
validity may be  modulated. Primarily, subjective measures of 
cognition contain predictive signals that are not captured by 
neuropsychological tests (Jessen et al., 2014; Lai, 2014; Perrotin et al., 
2015). In addition, subjective reports can index contextual factors—
such as anxiety/depression, insight, and environmental demands—
that help recalibrate the clinical meaning of identical performance 
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scores. This moderation can be observed explicitly within statistical 
models: considering neuropsychological tests in isolation may fail to 
capture clinical validity in the strict sense, whereas combining patient 
and informant reports with test scores can enhance the utility of 
certain measures (Kwak et al., 2023). Moreover, other studies show 
that baseline subjective cognitive complaints, even when only weakly 
related to concurrent objective cognitive performance, are associated 
with distinct long-term trajectories over extended follow-up 
(Morrison and Oliver, 2023). Accordingly, incorporating subjective 
reports alongside neuropsychological measures in predictive models 
leaves room to improve the predictive validity of existing test scores.

Criterion validity of brain pathology

Distinguishing whether neural damage is present and whether 
cognitive problems reported by examinees are due to neurological 
conditions rather than psychiatric states has long been a fundamental 
goal of neuropsychological testing (Bilder, 2011). Many 
neuropsychological tests have been validated based on their sensitivity 
to detecting brain damage or disease (Golden et al., 1978) and can 
indirectly indicate the risk of associated pathologies in dementia 
evaluations. Significant neurological changes precede cognitive 
impairments of dementia, and neuropsychological tests included in 
dementia assessments are often designed to capture the 
neuropathological processes underlying observable behavioral 
symptoms sensitively (Fields et al., 2011; Mortamais et al., 2017).

Traditionally, the development of clinical neuropsychological tests 
has relied on the occurrence and localization of brain lesions as 
validation criteria. However, advances in neuroimaging and biomarker 
technologies now allow specific neuropathological features to serve as 
reference standards (Bilder and Reise, 2019). Neuropathological 
attributes detected through neuroimaging provide direct and indirect 
evidence of AD pathology, neurodegeneration in other types of 
dementia (e.g., frontotemporal dementia), focal brain injuries (e.g., 
stroke, infarction, traumatic injury), and cerebrovascular disease. This 
section introduces the characteristics of neuropathologies captured by 
different neuroimaging methods and their associations with 
neuropsychological test performance.

Alzheimer’s disease pathology

Neuroimaging of AD pathology offers abundant information 
about the risk of rapidly progressing brain disease, even in cases 
without clinically observable symptoms. Positron emission 
tomography (PET) enables the quantification of Alzheimer’s-
specific pathologies, such as amyloid-beta and tau protein deposits, 
and reduced glucose metabolism in the temporoparietal regions 
(Jack et  al., 2013; Jagust, 2018). Structural magnetic resonance 
imaging (MRI) captures the extent to which these pathologies lead 
to neurodegeneration, such as atrophy in medial temporal lobe 
structures (Davatzikos et  al., 2011; Fjell et  al., 2009). These 
biomarkers often precede clinical diagnoses of dementia by 
10–20 years and reveal heterogeneous clusters of dementia 
subtypes that cannot be  easily distinguished based on clinical 
symptoms alone (Bateman et al., 2012; Dong et al., 2017). While 
the costliness of biomarkers limits their application in primary care 

settings, neuropsychological tests developed using biomarkers as 
reference criteria can improve diagnostic approaches (Glymour 
et al., 2018).

Structural and functional measurements of localized brain regions 
obtained through MRI also serve as neuropathological markers of 
AD. In the relatively advanced stages of Alzheimer’s pathology, 
structural neurodegeneration observed as global gray matter atrophy 
provides a prognosis for cognitive decline within a few years (Soldan 
et  al., 2019). Neuropsychological performance reflects functional 
deficits caused by compromised neural resources that can no longer 
maintain existing cognitive functions, as well as the demand for 
additional compensatory neural resources. For example, longitudinal 
studies tracking brain structure and cognitive performance in older 
adults diagnosed with Alzheimer’s dementia or amnestic MCI over 
1–5 years revealed that changes in neuropsychological test scores (e.g., 
dementia version of the Seoul Neuropsychological Screening Battery) 
were strongly correlated with cortical volume loss in individuals with 
MCI (Kim et al., 2017). By contrast, changes in screening tests (e.g., 
MMSE) only reflected structural changes in individuals already 
diagnosed with dementia. These findings demonstrate that precise 
neuropsychological tests, despite their higher time and cost demands, 
are more sensitive to severe neuropathological changes during early, 
asymptomatic stages than screening tools.

A systematic review demonstrated that AD pathology, particularly 
amyloid-beta accumulation, could be  detected during preclinical 
stages, even in the absence of significant impairments in episodic 
memory, semantic memory, or executive function (Mortamais et al., 
2017). Word list learning tasks have been shown to reflect structural 
changes in the medial temporal lobe, such as hippocampal and 
entorhinal cortex atrophy, and are strongly associated with amyloid-
beta deposition. Poor performance on episodic memory tests 
corresponds to longitudinal degeneration of temporal cortical and 
hippocampal structures (Farrell et  al., 2018; Fletcher et  al., 2018; 
Hanseeuw et al., 2019).

Several works have validated neuropsychological tests against 
early-stage Alzheimer’s biomarkers. For instance, studies have 
explored the validity of an interference paradigm in word list learning 
tasks (where participants learn an interfering list of non-target items) 
to reflect Alzheimer’s pathology (E Curiel, 2013; Loewenstein et al., 
2016). This paradigm showed sensitivity to medial temporal lobe 
volume changes and amyloid-beta accumulation. Composite factor 
scores combining multiple neuropsychological test measures of 
executive function have demonstrated stronger correlations with 
amyloid-beta, tau, and cortical atrophy biomarkers than individual 
test scores (Gibbons et al., 2012; Gross et al., 2012).

Additionally, composite scores from cognitive tests like word list 
and story recall, digit-symbol substitution test, and MMSE have been 
developed to detect cognitive decline in preclinical Alzheimer’s stages 
(Donohue et  al., 2014; Hahn et  al., 2020; Mormino et  al., 2017). 
Although the precise underlying causes of cognitive deficits can often 
only be inferred circumstantially, AD pathology appears to reflect not 
only cortical-level degeneration but also the aggregated effects of 
white matter microstructural deterioration. This diffuse pathology 
may explain why tasks that demand the efficiency of inter-module 
interactions—rather than targeting a specific processing unit—
consistently exhibit strong predictive validity for pathological 
progression. A prime example is the digit-symbol substitution test, 
which integrates processing speed, executive function, and motor 
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coordination, thereby effectively capturing the widespread neural 
network disruptions characteristic of AD (Pichet Binette et al., 2021).

Neurodegeneration

The mechanisms through which dementia-related pathological 
substances induce neurodegeneration vary between individuals, even 
among those with the same diagnosis (Noh et al., 2014; Tetreault et al., 
2020; Vogel et al., 2021). The prominence of neurodegeneration in 
specific regions can influence the presentation of dementia subtypes 
(Tetreault et al., 2020). High-resolution neuroimaging enables the 
assessment of structural features (e.g., gray matter volume, cortical 
thickness) and functional attributes (e.g., hemodynamic responses) of 
affected brain regions. Differences in gray matter volume and 
functional activation across brain regions indicate variations in 
information-processing resources. Neuropsychological tests sensitive 
to regional neurodegeneration provide insights into the severity of 
neural damage and its impact on specific cognitive processes (Genon 
et al., 2018, 2022).

The assumption that neuropsychological tests reflect regional 
neural attributes may align with the traditional neuropsychological 
principle of double dissociation. According to this principle, selective 
deficits in specific cognitive tasks resulting from localized brain 
damage suggest that the tasks assess the unique functions of the 
localized brain regions (Teuber, 1955; Vaidya et  al., 2019). With 
neuroimaging, this logic generalizes to subtle neuroimaging measures 
of signal intensity (i.e., voxel intensity) that are not overtly observed 
as lesions. For example, a series of works showed that long-term 
retention in word list tasks correlated with entorhinal cortex 
functionality, while visuospatial pattern recognition tasks correlated 
with dentate gyrus activity (Brickman et al., 2011, 2014). Similarly, 
recollection and recognition tasks showed double dissociation of 
correlating patterns, supporting their validity as measures of distinct 
medial temporal lobe structures (Argyropoulos et al., 2022; Yonelinas 
et al., 2022; Yonelinas et al., 2007). Additional research has revealed 
that learning and retention functions in episodic memory tasks reflect 
different neural patterns and gray matter volumes (Casaletto et al., 
2017; Chang et  al., 2010). Such findings underscore the selective 
sensitivity of neuropsychological measures to specific neural substrates 
and their utility in detecting diverse dementia pathologies during 
asymptomatic stages (Whitwell et al., 2009).

White matter pathology and 
cerebrovascular disease

White matter refers to the neural tracts connecting distant brain 
regions, supported by microvascular networks that are particularly 
susceptible to dysfunction and damage (Prins and Scheltens, 2015). 
This structural characteristic can signify neurocognitive function 
distinct from gray matter morphology or functional activation. 
Vascular impairments can lead to damage in adjacent brain structures, 
a hallmark diagnostic feature of vascular dementia. However, white 
matter pathology is not exclusive to vascular dementia. Generalized 
neuropathological changes, including amyloid-beta and tau 
accumulation (characteristic of AD) and medial temporal lobe 
atrophy, also reflect potential risks associated with white matter 

degeneration (Boyle et al., 2013; Brickman et al., 2009; Lockhart and 
DeCarli, 2014). Structural brain imaging can identify white matter 
abnormalities, such as microbleeds or localized infarcts, which appear 
as hyperintense signals on imaging and provide evidence of the extent 
of structural neuropathology.

Imaging studies sensitive to white matter lesions have 
demonstrated that even in clinically asymptomatic older adults, subtle 
white matter changes and their spatial distribution are associated with 
increased risks of cognitive impairment. Neuropsychological tests 
measuring executive function and processing speed are particularly 
sensitive to white matter integrity and lesion burden (Birdsill et al., 
2014; Debette and Markus, 2010; Habes et al., 2018; Hedden et al., 
2012). Additionally, the specific location of white matter lesions 
correlates with declines in episodic memory performance (Brickman 
et al., 2018; Lockhart et al., 2012; Parks et al., 2011; Smith et al., 2011). 
Subdividing lesion patterns based on neural tract locations allows 
researchers to identify whether strategically significant white matter 
regions contribute to declines in neuropsychological performance 
(Brugulat-Serrat et al., 2019; Duering et al., 2013; Jiang et al., 2018).

Processing speed tests, rather than working memory tests, are 
specifically observed to be the most sensitive to cerebrovascular 
disease (Vasquez and Zakzanis, 2015). Sensitivity to white matter 
pathology can vary depending on task characteristics, such as 
whether time constraints are imposed, whether the task requires 
isolated modules, or whether processing speed tasks incorporate 
executive components (Lowry et al., 2021; Papp et al., 2014). These 
differences have led to the development of screening test 
combinations incorporating processing speed and motor function 
tasks to enhance diagnostic accuracy (Brookes et al., 2015; Kang 
et al., 2009).

Another neuropathology associated with dementia is stroke, 
which includes infarctions, ischemia, and hemorrhages. These events 
result in invasive brain damage, with behavioral deficits varying 
according to the locations of the lesions. Lesion mapping methods 
account for spatial variability in stroke-related damage at the group 
level (Sperber and Karnath, 2018). By superimposing brain lesion 
maps of patients exhibiting specific neuropsychological deficits, 
researchers can identify the brain regions most consistently associated 
with these impairments. Such analyses have validated 
neuropsychological tests designed to measure frontal lobe functions 
and factor-based intelligence scores by linking them to the affected 
brain regions (Gläscher et  al., 2009, 2012). Accumulated lesion-
mapping research suggests that highly localized functions, such as 
visual and motor skills, align closely with cortical regions, whereas 
tests for complex functions requiring extensive neural collaboration 
are more indicative of subcortical structures, white matter integrity, 
and disruptions in functional neural networks (Corbetta et al., 2015; 
Siegel et al., 2016; Sperber et al., 2022).

Construct validity

In psychometric traditions, construct validation has been 
emphasized alongside criterion-based approaches (Campbell and 
Fiske, 1959; Cronbach and Meehl, 1955). Psychological constructs 
may emerge from social values, linguistic conventions, or practical 
utility (e.g., composite scores for socioeconomic status). However, 
from a realist perspective, validation seeks to reflect actual physical 
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properties beyond the mere utility of the instrument (Fried, 2017). 
The process of validating a psychological test involves building 
theoretical foundations that extend beyond its practical application to 
represent meaningful psychological attributes (Cizek, 2016; 
Hughes, 2017).

Neuropsychological assessment incorporates cognitive tasks 
derived from experimental paradigms, applying theories of brain-
behavior relationships. While criterion validity focuses on utility 
(e.g., clinical diagnosis or detection of neuropathology), construct 
validity requires a focus on ontology (whether the test measures an 
existing property) and epistemology (whether the property is 
measurable). Neuropsychological tests, like other psychological 
tests, must elucidate the cognitive abilities they assess and clarify 
the attributes contributing to individual differences in performance. 
Without such clarity, even tests with strong clinical discriminative 
power may struggle to provide an interpretation of how the 
prediction occurred (Strauss and Smith, 2009). For instance, 
MMSE, Montreal Cognitive Assessment (MoCA), and Alzheimer’s 
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) 
provide a summary score of multiple item modules that are difficult 
to apply detailed theoretical interpretation. Put differently, even 
when an individual is flagged as clinically at risk by an elevated 
total score, these instruments may lack a structured delineation of 
subconstructs within cognitive domains; consequently, the fine-
grained interpretive meaning can vary with numerous extraneous 
factors (e.g., relative cognitive strengths, premorbid intellectual 
profile), making it difficult to attribute the observed global 
impairment to a specific underlying deficit. Despite the relative 
lack of evidence, construct validation is essential for explaining 
phenomena and understanding the cognitive processes underlying 
clinical outcomes (Jewsbury and Bowden, 2017; Pawlowski et al., 
2013). This review explores construct validity by examining two 
key dimensions: (1) evidence from correlations among test 
performances (internal structure) and (2) evidence derived from 
analyses of cognitive processes.

Evidence of internal structure

A common method of establishing construct validity involves 
examining the nomological network of correlations among 
variables (Embretson, 1998). This approach assumes that if 
unobservable attributes (e.g., cognitive constructs) exist, latent 
variables should causally influence observable behaviors (e.g., test 
performance), resulting in systematic covariation (Borsboom et al., 
2004). Constructs are not directly observable; instead, their 
theoretical validity is inferred from expected relationships among 
multiple measures. For example, executive control functions are 
not represented by a single test but emerge from patterns of 
correlations across tasks involving different stimuli (e.g., visual, 
auditory, interfering elements), response modes (e.g., verbal, motor 
coordination), and task instructions (e.g., response targets, 
set-shifting). These structures of covariation inform theoretical 
frameworks about constructs (Friedman and Miyake, 2017; Miyake 
et  al., 2000; Park et  al., 2012). Within a covariance model, the 
construct of executive function can be subdivided into components 
such as inhibition, set-shifting, and updating, each of which can 
be measured through specific tasks.

Factor analysis of neuropsychological tests clarifies which 
measurements belong to specific constructs and the extent to 
which individual measures represent those constructs. First, a test’s 
representativeness determines whether it validly reflects a given 
construct (Brown, 2015). This enables researchers to infer which 
tests should be  included in assessments of targeted cognitive 
domains, such as those used in diagnosing neurocognitive 
disorders or dementia, and to evaluate how well they represent 
those domains (Greenaway et al., 2009; Jones et al., 2024; Park 
et al., 2012). Inadequate representativeness results in low factor 
loadings and poor model fit, indicating that the hypothesized 
model structure fails to explain the observed covariance adequately. 
Comparing the fitness of different models helps determine whether 
tests broadly encompass constructs or require finer differentiation. 
Such cumulative evidence has informed diagnostic frameworks 
that identify behavioral impairments across distinct cognitive 
domains as defined in the criteria of neurocognitive disorder 
(Sachdev et al., 2014).

Factor models also guide the development of indices that 
enable interpretations of multidimensional measures in a 
neuropsychological battery (Jahng et al., 2015). For instance, the 
summed scores of weakly related measures form composites 
representing heterogeneous and broad constructs, whereas 
measures sharing latent factors yield theoretically coherent 
interpretations. Episodic memory, a composite cognitive ability, 
can be  represented by indices combining multiple sensory 
modalities (i.e., auditory, visual) and memory processing stages 
(i.e., immediate short-term recall, delayed long-term recall) 
(Drozdick et  al., 2011). Patterns of decline observed in these 
indices help interpret shared attributes of subtests and summarize 
refined information about constructs, thereby improving 
predictions of clinical outcomes and dementia pathology (Crane 
et al., 2012; Gibbons et al., 2012; Gross et al., 2014).

Despite its prevalent use in psychological test validation, 
expanding the interpretation of the internal structure approach can 
be challenging in the field of neuropsychological tests. One critical 
issue occurs in how much a given test can delineate finite units of 
construct by testing a structural model. When a certain test 
includes mixed cognitive elements, the measurements may not 
clearly align with distinct latent variables. For instance, fluency 
tests can be classified into varying domains, including executive 
function, processing speed, expressive language function, and 
semantic memory (Shao et  al., 2014; Whiteside et  al., 2016). 
Similarly, attentional tasks may appear to measure a unified 
cognitive domain but lack sufficient variance to support distinct 
subdomains empirically (Treviño et al., 2021). A common practice 
of factor analysis, which typically does not assume cross-loadings 
across latent constructs, may underspecify these aforementioned 
cases of multi-component nature. Moreover, the labeling of test 
scores can be critical in that how tasks are theoretically categorized 
can significantly alter interpretations of the number of impaired 
domains observed in examinees. The arbitrary categorization into 
cognitive domains can make clinical decision-making less reliable, 
as the severity, breadth, and underlying pathology of cognitive 
impairment directly affect whether deficits appear in single or 
multiple cognitive domains (Petersen et al., 2009).

Another issue arises from inconsistencies between traditional 
constructs and empirical findings, leading to reduced conceptual 
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clarity. Higher-order factors often override the attributes of 
individual tests, particularly when analyses rely on normative 
populations (Bowden, 2004; Delis et  al., 2003; Jacobson et  al., 
2004). For example, systematic variance in healthy populations 
may not align with expectations in patients with neuropathology, 
such as the hallmark long-term memory impairments seen in 
AD. Factor analyses within a normative population may obscure 
well-known distinctions between short-term and long-term 
memory structures, underestimating specific deficits caused by 
neuropathology (Holdnack et al., 2011). Only a few studies have 
explored measurement invariance across clinical status, which can 
explore whether latent factors diverge with the progression of 
neural dysfunction (Hayden et al., 2011).

The fundamental limitation of using internal structure as 
validity evidence lies in its inability to disentangle causal effects 
captured by correlations. From a perspective of realism, test scores 
are valid only if the target construct “exists” and the attributes of 
that construct causally generate the variance observed in test 
scores (Borsboom et al., 2004; Hughes, 2017). In some endeavors 
that suggest the role of working memory capacity in reasoning 
ability, studies were able to extend correlating evidence of 
structural equation modeling by experimentally manipulating 
additional task components (Engle et al., 1999; Harrison et al., 
2015). However, correlations observed in cross-sectional data may 
reflect causal effects originating from a variety of mixed sources 
and a prolonged timespan other than underlying latent factors. For 
instance, the correlations between test performances and the 
effects of latent variables could arise from cumulative interactions 
associated with long-term cognitive development and aging 
processes (Kan et al., 2019; Kievit et al., 2017; Van Der Maas et al., 
2017). It is important to acknowledge that these mechanisms can 
impose constraints on the theoretical extrapolation of causal 
interventions through latent variables. To extend the evidence of 
construct validity beyond a mere summary of information, it is 
important to note other alternative mechanisms that form the 
factor patterns of data.

Evidence of convergent and discriminant 
validity

Convergent and discriminant validity are critical components 
of construct validation. These are often demonstrated by examining 
correlation patterns among theoretically related and unrelated 
measures. Convergent validity evidence is established when test 
scores show higher correlations with measures assumed to assess 
the same construct, while discriminant validity is evidenced by 
lower correlations with measures assessing different constructs 
(Campbell and Fiske, 1959; Stern et  al., 2014; Westen and 
Rosenthal, 2003).

Specifically, tests within the same cognitive domain are 
theoretically expected to show stronger correlations with each 
other than with tests from other domains. However, the patterns 
of convergent and discriminant correlations often do not align with 
the traditional theoretical distinctions developed in 
neuropsychology based on lesion cases, and in practice, these 
domain-based correlations often lack clear distinctions 
(Dodrill, 1999).

One illustrative case is the shared variance between “hold” tests 
(which are resistant to neuropathology) and “no-hold” tests (which 
are sensitive to neuropathology), which often complicates 
interpretations despite their theoretical distinctions (Greenaway 
et al., 2009). Specifically, verbal comprehension ability is frequently 
used as a proxy for cognitive reserve. While this ability shows 
limited changes due to neuropathology and weak causal links to 
neurological conditions, it still exhibits notable correlations with 
neuropsychological measures known to be sensitive to pathology, 
such as delayed word recall (Siedlecki et al., 2009). Although factor 
structures and relative correlation patterns may be suggestive of 
distinctions between constructs, such evidence often fails to 
characterize the conceptual difference fully. This issue is 
particularly pronounced for tests that reflect both neuropathology 
sensitivity and premorbid cognitive ability.

The challenge also holds in the examination of predictive 
neuromarkers of neuropsychological tests. The finding showed that 
the multivariate model of brain functional connectivities was 
predictive of the overall domains of the test (Kwak et al., 2021a). 
In this way, the network-specific contribution to the test 
performance has been empirically tested. The finding suggests that 
meaningful brain-behavior predictability is largely comprised of 
shared intercorrelations and suggests the challenges in proposing 
discriminant validity. In other words, the brain’s functional 
characteristics predictive of a certain domain of the test are likely 
to predict all other test scores of other cognitive domains.

The lack of evidence of discriminant validity is a broader issue 
in psychometrics, where an overemphasis on convergent validity 
and proposing over-inclusive constructs paradoxically leads to 
blurred boundaries between constructs (Lilienfeld and Strother, 
2020). When a wide range of measures is not available, researchers 
frequently rely on high correlations with homologous tests to claim 
convergent validity. This approach often relies on rejecting a less 
appropriate null hypothesis (“test will show no significant 
correlation with a target measure”). However, rigorous validation 
necessitates quantifying and testing whether the test demonstrates 
significantly larger correlations with theoretically aligned measures 
than with less related constructs (Westen and Rosenthal, 2003).

Evidence of cognitive process

The foundation of construct validity lies in establishing theories 
about cognitive processes that underlie test performance (Brewer and 
Crano, 2014; Embretson, 1998). Experimental paradigms allow 
researchers to manipulate task stimuli, rules, and responses 
systematically, predicting behavioral differences and individual 
variations in cognitive processes. Such paradigms enable the 
development of tasks that capture specific cognitive impairments, 
extending theories about how certain pathological conditions affect 
behavior (Barch, 2005; Festa et al., 2005; Knight and Silverstein, 2001). 
For example, experimental tasks can measure how cognitive conflicts 
(e.g., conflicting stimuli and responses) slow reaction times. When 
systematic increases in interference conditions slow responses, the 
cognitive processes targeted by the task can be inferred. If individuals 
with specific neurological conditions exhibit amplified effects under 
experimental conditions, it suggests deficits in cognitive processes or 
resource allocation induced by the experimental manipulation.
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Although the experimental task itself is rarely included in the 
clinical assessment battery, process analysis may form the theoretical 
basis for refining or modifying existing tests (Brickman et al., 2014; 
Loewenstein et  al., 2016). For instance, tests developed through 
process-oriented approaches can identify the specific stages of 
language processing or episodic memory affected by brain damage. 
These qualitative measures not only clarify the nature of brain 
damage but also reveal disease risks not captured by composite scores 
(Delis et  al., 1987; Goodglass and Kaplan, 1983). For example, 
differences in how individuals strategically organize information 
during memory encoding (e.g., semantic clustering) or intrusive 
errors during recall provide insights into specific deficits and align 
with neuropathology-based validity evidence (Kirchhoff et al., 2014; 
Thomas et al., 2020).

However, process-based approaches face challenges when 
divorced from other validation frameworks. By focusing on within-
person variance, they often neglect inter-individual differences, 
creating a gap in practical utility. That is, systematic variance in 
behavior due to experimental conditions does not necessarily translate 
into meaningful individual differences, limiting the approach’s 
applicability for identifying cognitive attributes. This issue is 
particularly prevalent in tasks requiring complex cognitive 
integrations. For example, subtraction methods used to isolate specific 
cognitive processes (e.g., Stroop test: word reading versus color 
naming) yield stable experimental effects but often exhibit low 
psychometric reliability (Eisenberg et al., 2019; Enkavi et al., 2017). 
Measurement error, rather than targeted cognitive attributes, often 
accounts for most of the observed variance (Hedge et al., 2017).

Disagreement of validity evidence

Disagreements within criterion validity

The diversity of validity evidence extends beyond conceptual 
differences to include the critical issue of potential inconsistencies 
among different forms of evidence. For example, individuals with 
increased measures of cognitive reserve may reach functional 
thresholds at a more delayed time point in later life. This in turn leads 
to the observation that tests with concurrent criterion validity in 
predicting clinical outcomes like functional impairment in dementia 
(Tucker-Drob, 2019). However, these measures do not directly 
correspond to the progression of AD pathology. In other words, there 
is a misalignment between two criterion variables: functional 
impairment and the presence of neuropathology. Such disagreements 
are reflected in ongoing debates about the operational definitions of 
AD as a biological disorder versus a clinical syndrome (Jack et al., 
2024; Petersen et  al., 2021). As biomarkers become increasingly 
accessible, the incompatibility between clinical manifestations and 
biological markers has become more apparent. This necessitates a 
clearer delineation of the operational criteria that neuropsychological 
tests are validated against (Hazan et al., 2024).

In the case of the criterion within brain pathology, inconsistencies 
arise due to differences in the specific characteristics of pathology. For 
instance, while neuropsychological batteries used in dementia 
assessments often predict the severity and progression of dementia, 
their predictive validity for differentiating subtypes (e.g., Alzheimer’s 
vs. vascular dementia) may not align with each other. Certain subtests, 

such as constructional praxis, provide strong discriminative 
information about dementia subtypes but are less sensitive to overall 
clinical severity (Kwak et al., 2023). These discrepancies may arise 
from the qualitative differences between focal brain lesions specified 
from a classical validation design (i.e., clinical case–control) and 
diffuse disruptions seen in dementia-related neuropathology. Focal 
lesions, such as those caused by stroke, produce specific behavioral 
impairments tied to discrete brain regions. In contrast, the distributed 
nature of neuropathological changes in dementia may limit the utility 
of narrowly focused cognitive tasks in capturing widespread 
neural deficits.

The progressive and staged nature of dementia also complicates 
the validation target. Sensitivity to cognitive domains may vary across 
disease stages, even within the same dementia type (Kim et al., 2024; 
Levin et al., 2021). For example, delayed recall functions, which reflect 
retention processes, often show pronounced declines in later stages of 
dementia but may not fully capture changes during the preclinical 
phase. By contrast, executive function tasks such as the Digit Symbol 
Substitution Test can provide additional information about early-stage 
changes that memory tasks alone fail to explain.

Disagreements between construct and 
criterion validation

The mismatch between construct clarity and criterion validity 
often leads to a tradeoff in the neuropsychological test aim. Construct 
validity involves refining experimental conditions to isolate specific 
cognitive processes. For example, tasks may be designed to manipulate 
stimuli and response rules parametrically or subtract baseline 
conditions to enhance the precision of targeted constructs. By 
controlling extraneous variance, test developers aim to hone the 
clarity of the constructs being measured. However, this refinement 
may not translate into stronger ecological validity or predictive power 
for everyday functioning. Paradoxically, tasks designed to measure 
specific cognitive processes often demonstrate weaker criterion 
validity for predicting real-life outcomes (Gold et al., 2012; Sbordone, 
1997). This has been termed as two approaches of conceptual 
framework: verisimilitude and veridicality (Chaytor and Schmitter-
Edgecombe, 2003). Verisimilitude is the degree to which the cognitive 
demands of a test theoretically resemble the cognitive demands in the 
everyday environment, whereas veridicality refers to the degree to 
which existing tests are empirically related to measures of everyday 
functioning (Franzen and Wilhelm, 1996).

Specifically, a nuanced tradeoff can be  found in the case of 
cognitive ability tests. Tasks with more clear specification of the 
cognitive construct may provide less criterion-relevant information. 
For example, while general cognitive ability strongly predicts clinical 
diagnoses, specific abilities reflected in each cognitive domain often 
contribute a limited amount of incremental information (Breit et al., 
2024). Likewise, the verbal comprehension index from intelligence 
tests is reflective of cumulative developmental experiences rather than 
an explicit sampling of cognitive processes. Despite their construct 
ambiguity and unspecifiable process, these measures often show 
robust predictive validity for clinical impairment (Ackerman, 2022; 
Royall and Palmer, 2012).

This trade-off is also observed in other performance-based tests. 
The clock drawing test, for instance, requires multiple domains of the 
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process—executive function, visuospatial construction, motor skills, 
and semantic knowledge—but inevitably lacks detailed specification 
of how cognitive processes contribute to the observed functioning. 
Nonetheless, it remains effective in detecting neurocognitive 
impairments due to dementia (Tsoi et al., 2015). Similarly, real-life 
tasks like the Multiple Errands Test (MET) have demonstrated strong 
psychometric properties but remain uncertain about how specific 
cognitive domains, such as executive function, constitute the overall 
performance (Rotenberg et al., 2020).

The challenges in the divergence between construct validity and 
ecologically oriented criterion validity may become more prominent 
in tasks of complexity and multiplicity of components. It is more 
difficult to standardize and control experimental structure in tasks 
requiring a certain time for reasoning and mobilizing strategies. Some 
of the works have designed ways to assess by determining the major 
everyday cognitive ability required by the environment (Chaytor and 
Schmitter-Edgecombe, 2003). High-order cognitive abilities, however, 
often involve heterogeneous strategies and functional brain activity 
patterns, even among individuals with similar test scores (Barulli et al., 
2013; Seghier and Price, 2018). This tradeoff reflects the adaptive and 
flexible nature of real-life problem-solving, which depends on the 
dynamic integration of cognitive processes rather than the efficiency 
of a single isolated process. Consequently, it would be less surprising 
to find that cognitive tasks emphasizing ecological validity, even at the 
expense of construct refinement, may hold greater utility in dementia 
evaluations (Chaytor and Schmitter-Edgecombe, 2003; García-
Betances et al., 2015; Howett et al., 2019; Kessels, 2019).

Choices of scoring practices also regard the tradeoff between 
clarity of construct and predictability of criterion. Neuropsychological 
tests typically exhibit positive manifolds (i.e., intercorrelations) among 
subtests, enabling the aggregation of composite scores based on shared 
variance (Agelink van Rentergem et al., 2020). A total score across 
multiple cognitive domains or summing subtests as a composite score 
often shows robust predictive validity for clinical criteria, providing 
sensitive and accurate information about impairments (Chandler 
et al., 2005; Fields et al., 2010; Wolfsgruber et al., 2014). However, this 
expansion in criterion validity may come at the expense of construct 
clarity. Neuropsychological batteries tend to have lower internal 
consistency than factor-based ability tests, such as intelligence tests, 
indicating limited homogeneity of constructs underlying total scores 
(Jones et al., 2024; Kiselica et al., 2020). This suggests that improved 
criterion validity may be  partially achieved by compromising the 
conceptual coherence of constructs.

Digital markers: redefining validation 
standards

Traditional neuropsychological assessments have relied on a 
concise set of scores to evaluate predictive validity and construct-
based interpretations. However, advances in digital markers introduce 
challenges that require alternative validation approaches (Kumar et al., 
2021). First, machine learning (ML) algorithms no longer rely on the 
linear combinations of individual scores. For instance, adding subtests 
in a battery may fail to improve criterion validity under linear models, 
whereas such addition yields significant gains in predictive accuracy 
with nonlinear ML models (Kwak et al., 2022). Such superiority of 
nonlinear algorithms is well-documented across various predictive 

domains (Schulz et  al., 2020). This indicates that the validity of 
individual test scores contributing to diagnostic information can vary 
depending on the specific ML algorithm employed.

Predictive modeling becomes increasingly critical as the 
dimensionality of available information grows (Yarkoni and 
Westfall, 2017). Digital phenotyping involves high-dimensional 
data from device logs, daily activity metrics, wearable sensors, and 
voice features (Palliya Guruge et al., 2021). Although the digital 
data typically lacks simple summary measures, they provide 
sparsely distributed predictive information across multiple features 
which overall contributes to approximating neurocognitive function 
to some extent (Hackett and Giovannetti, 2022; Harris et al., 2024; 
Holmes et al., 2022). From the perspective of validity evidence, a 
principal challenge is that these approaches yield such a profusion 
of variables that individual verification becomes infeasible, thereby 
complicating construct-based interpretations of criterion validity. 
Moreover, in such contexts, the predictive power of individual 
predictor variables and the utility of the measurement modality 
may lead to divergent inferences. For example, even if dozens of 
voice features exhibit poor criterion validity and one of numerous 
line-drawing features demonstrate excellent criterion validity, the 
feature set may nevertheless achieve superior aggregate criterion 
validity when the assessment module is evaluated at the whole set 
level. A “simulated lesion” analytic strategy—designed to assess the 
overall contribution of a specific modality set—can quantify both 
how many assessment modules (e.g., voice and drawing module) 
should be included and the magnitude of their practical usefulness 
with respect to the criterion (Hahn et  al., 2017; Kohoutová 
et al., 2020).

Conclusion

This review examined the contemporary issues underlying the 
criteria for deeming neuropsychological tests as “valid” for 
dementia assessment. It also explored how advances in 
neuroimaging and biomarker research necessitate changes from 
traditional validation processes. Unlike the conventional approach 
of validating the correspondence between constructs and criteria 
through studies on clinical cases of brain damage, the proliferation 
of biomarkers and neuroimaging technologies—capable of 
identifying diverse attributes of brain pathology (e.g., regional 
patterns, functional deficits, and types of pathology)—has 
broadened the validity criteria supporting the utility of 
neuropsychological tests. Additionally, this review underscored the 
need to re-examine the varied and assumption-specific nature of 
evidence for validity.

It is emphasized that neuropsychological tests may fail to meet 
various validity criteria in a consistent manner, not necessarily due to 
their inherent limitations of validity, but potentially because of 
fundamental discordance of the conceptual status of validity. This 
discussion highlights that validity is not monolithic and that different 
tools may meet distinct criteria depending on their specific constructs 
and intended applications.

The accompanying figure illustrates the conceptual framework 
within which the validity of neuropsychological tests for dementia 
evaluation is established. Depending on the test, the domain of 
evidence may vary, influenced by the relative strength of construct and 
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criterion validity, as well as the scope and specificity of measurement. 
For instance, tests may differ in their measurement emphasis on either 
sensitivity to pathology underlying the disease (Figure 1A), ecological 
validity and sensitivity to functional outcomes (Figure 1B), capacity 
to characterize unique attributes of brain pathology (Figure 1C), or 
their ability to capture specific processing units and explain the 
continuum from disease to disorder with robust construct validity 
(Figure 1D).

This review also invites a more refined generalization of the 
evidence-based assessment approach into the practice of 
neuropsychological test validation (Hunsley and Mash, 2007). 
However, some neuropsychological test cases can be challenged by 
fundamentally disagreeing validity evidence and trade-offs between 
the aims of evidence, where the primacy of one type of evidence may 
compromise another. In other words, the validity of neuropsychological 
tools needs to be evaluated under their specific purposes and contexts, 
rather than seeking straightforward alignment of validity evidence as 
a parallel criterion.

Ultimately, validity evidence reflects not only the inherent 
soundness of an instrument’s internal logic but also its dependence 
on external contexts. Researchers and practitioners are encouraged 
to explicitly articulate the specific contexts in which validity evidence 
is established, enabling more precise interpretations of such 
evidence. Conversely, usage guidelines can be  formulated under 
context-specific validity constraints—for example, by explicitly 
noting that validity has not yet been demonstrated in certain 
contexts, or by directing that interpretation be expressly deferred for 
particular subconstructs within a cognitive domain. This 
contextualized perspective of the validation process will be critical 
for advancing the clarity and utility of validity claims in 
neuropsychological assessment.
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FIGURE 1

Various validity positions and goals of measurement coverage of neuropsychological test. (A) Measurement coverage sensitive to brain pathology 
criterion. (B) Measurement coverage sensitive to functional impairment criterion. (C) Measurement coverage to specific neuropathology changes. 
(D) Measurement coverage corresponding to specific construct.
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