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Introduction: There are various methods available for conducting meta-

analyses of fMRI data, with coordinate-based meta-analysis (CBMA) being a

frequently used approach due to the limited availability of effect size and

statistical maps. Since the literature has accumulated many fMRI meta-analyses,

several reports have been published to reveal the prevalence of numerous

meta-analytic software packages without investigating into the recency of their

versions used. To address this gap, a literature survey was conducted to identify

the software packages and version numbers used for fMRI meta-analyses

published between 2019 and 2024.

Methods: The online databases of Web of Science Core Collection (WOSCC)

and Scopus were queried to identify relevant papers. After screening, the analysis

consisted of data manually extracted from 820 papers.

Results: The most frequently used software was GingerALE (407 out of 820

papers, 49.6%), followed by SDM-PSI (27.4%) and Neurosynth (11.0%). Overall,

540 papers (65.9%) fully disclosed the names and version numbers of the

software packages used in their analyses, whereas 19 papers (2.3%) reported

neither the names nor the version numbers. For GingerALE, the most frequently

used versions were 2.3.6 and 3.0.2, but it should be noted that versions prior

to 2.3.6 have an issue of inflated false positive rates. For SDM-PSI, the most

frequently used versions were 5.141, 5.15, 6.21, and 6.22, but the meta-analytic

method adopted for version 6 differs from those used in prior versions.

Discussion: To ensure transparency and reproducibility in research, researchers

should clearly report the name and version number of software package used.
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coordinate based meta-analysis, GingerALE, SDM, neurosynth, NiMARE

Introduction

The fMRI literature has accumulated a number of meta-analytic studies, which
used a huge variety of software packages to conduct meta-analyses. FMRI meta-analysis
is necessary because individual fMRI studies often suffer from small sample sizes
due to the high cost of scanning, the risk of false positives arising from multiple
testing and inadequate correction methods, and variability in analysis techniques
that can lead to inconsistent results (Button et al., 2013; Yeung et al., 2023).
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FMRI meta-analysis can be broadly divided into two
approaches: the estimation of effect size versus effect location
(Fox et al., 1998). For the former, researchers may extract the effect
size reported from individual studies (e.g., percent signal change
from a region-of-interest), or other effect measures and process
with general meta-analytic software such as Review Manager
(RevMan). Since many fMRI studies reported the coordinates
of the significantly activated clusters of voxels but not the effect
size (Chen et al., 2017), the majority of fMRI meta-analyses
focus on the latter, that is effect location, with the mainstream
approach called coordinate-based meta-analysis (CBMA), aimed at
identifying robust convergence of brain activation across studies.
CBMA requires data of the activation foci in the format of brain
coordinates, or peak coordinates, with reference to a standard space
(Salimi-Khorshidi et al., 2009). Notable CBMA methods included
activation likelihood estimation (ALE), commonly performed
with the software package called GingerALE (Eickhoff et al., 2009;
Eickhoff et al., 2012; Turkeltaub et al., 2012); multilevel kernel
density analysis (MKDA), commonly performed with the MKDA
toolbox (Wager et al., 2007); and Analysis of Brain Coordinates
(ABC), commonly performed with the NeuRoi toolbox (Tench
et al., 2017; Tench et al., 2022). It is worth noting that Neurosynth
is a website/database that hosts large-scale automated CBMAs
resulted from its own methodology, and allows users to type
words to generate corresponding CBMAs (Yarkoni et al., 2011).
CBMAs have the advantages of good data accessibility (requiring
brain coordinates from published studies rather than brain
maps), broad literature coverage, data standardization (brain
coordinates in Talairach or MNI space), and ease of use; at the
same time, they have the disadvantages of data reduction (loss
of information), limited spatial precision, and publication bias
(Jennings and Van Horn, 2012; Ioannidis et al., 2014; Samartsidis
et al., 2017; Chen et al., 2022). On the other hand, if the collected
dataset contains information at the voxel-level (e.g., t-maps from
statistical parametric mapping, or SPM t-maps), then image-based

meta-analysis (IBMA) can be performed. For instance, Seed-based
d Mapping with Permutation of Subject Images (SDM-PSI) is a
hybrid method that can pool data from studies with only peak
coordinates with studies with SPM t-maps, commonly performed
with the SDM-PSI toolbox (Albajes-Eizagirre et al., 2019). Please
refer to Table 1 for a brief introduction of some representative
fMRI meta-analytic software packages.

Some neuroimaging meta-analytic overviews have been
published in the past. For example, (Acar et al., 2024) queried
the PubMed database in September 2023 to identify papers that
mentioned various meta-analysis methods with the term “meta-
analysis” in their title or abstract. Their investigation concluded
that ALE was the most frequently used method, with a peak of
approximately 90 papers in 2022, to be followed by SDM-PSI and
Neurosynth, with their respective peaks at approximately 40 and 30
papers in 2022, whereas few papers mentioned MKDA. There were
almost no IBMA papers. Meanwhile, a study published in 2019
analyzed neuroimaging meta-analyses on gustation and found that
20 out of 23 meta-analyses used GingerALE, whereas SDM-PSI
and MKDA were each used by one study only (Yeung et al.,
2019). Besides, an earlier paper reported that 77% of published
neuroimaging meta-analyses indexed in PubMed until 2018 used
ALE method, followed by SDM (17%) based on an undisclosed
search method (Tahmasian et al., 2019). The dominance of ALE
and SDM methods have been reaffirmed by a recent preprint,
which reported numbers of 72.7 and 21.2%, respectively, based
on an analysis of 899 papers (Oudyk et al., 2025). On a separate
note (Tench et al., 2022) mentioned that the most popular CBMA
method is probably the ALE algorithm, pointed out that the ALE
algorithm has changed over time, and proposed a new method
of their own. A research gap exists because Acar et al. (2024),
Tahmasian et al. (2019), and Oudyk et al. (2025) reported on the
prevalence of methods but not software packages, whereas Yeung
et al. (2019) reported the use of software packages for gustatory
neuroimaging research only.

TABLE 1 Brief introduction of some representative fMRI meta-analytic software packages.

Software Primary methods
paper

First
version

Latest version Type of
analysis
supported

Characteristics

GingerALE (Eickhoff et al., 2009) 1.0 (13 Apr
2007)

3.0.2 (16 May 2019) CBMA Uses the activation likelihood estimation
(ALE) algorithm. Runs with GUI.

SDM-PSI (Radua and Mataix-Cols,
2009)

1.11 (Jul 2009) 6.23 (Feb 2024) CBMA and
IBMA

Uses the seed-based d mapping (SDM)
algorithm. Runs with GUI.

Neurosynth (Yarkoni et al., 2011) ? ? CBMA Provides automatic CBMA results after
inputting a term, a brain coordinate, etc. Runs
with GUI as a website.

MKDA (Wager et al., 2007) ? ? CBMA Uses the multilevel kernel density analysis
(MKDA) algorithm. Runs as Matlab scripts.

NeuRoi (Tench et al., 2017) ? ? CBMA Has several choices of algorithms, including
analysis of brain coordinates (ABC), and
coordinate based meta-analysis of networks
(CBMAN). Runs with GUI.

NiMARE (Salo et al., 2022) 0.0.1 (20 Nov
2019)

0.4.1 (19 Nov 2024) CBMA and
IBMA

Has several choices of kernel-based algorithms
for CBMA, including ALE and MKDA; and
multiple choices for IBMA, such as Stouffer’s
and Fisher’s. SDM is not available. Runs with
CLI or API.
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This work revisits the topic and provides an update that focuses
on the current situation of the fMRI literature. It is important
to know not only which software package was used to conduct
the fMRI meta-analysis but also its version number to improve
transparency and ensure reproducible research (Niso et al., 2022).
This is particularly crucial with older versions of GingerALE, which
contain bugs that could inflate the false positive rate before version
2.3.6 (Eickhoff et al., 2017). A software package may have a long
history with multiple versions, where some updates provide minor
enhancements or additional functionality, while others fix major
errors or bugs, making it important for users to be aware of
these changes especially the latter ones. For example, readers may
refer to (Yeung, 2024) for a timeline that illustrates the various
versions of GingerALE that introduced and fixed major errors.
Field experts have made efforts to consolidate CBMA and IBMA
methods with a simple and shared interface to reduce brand
loyalty to any particular algorithm and to encourage between-
method comparisons, one of which is called Neuroimaging Meta-
Analysis Research Environment (NiMARE) with its initial release
in November 2019 (Salo et al., 2022). Hence, it would be interesting
to know whether NiMARE has had an increasing publication share
over the past few years.

Given this context, the purpose of this literature survey is to
identify what software packages and their version numbers that

have been used for fMRI meta-analyses published from 2019 to
2024, inclusive.

Methods

The online databases of Web of Science Core Collection
(WOSCC) and Scopus were queried on 9 May 2025. The title,
abstract and keyword fields were searched with the following search
string: (fMRI OR “functional magnetic resonance imaging” OR
“functional MRI”) AND (meta-analy∗). Papers were only included
if they were labeled as article or review, written in English, and
published during 2019–2024. The search yielded 1,065 papers from
WOSCC, and 1,512 papers from Scopus. The records of the papers
were compiled into a list and passed into Microsoft Excel for de-
duplication with reference to the Digital Object Identifiers (DOIs)
and paper titles. After de-duplication, 1,618 papers remained.
Among these 1,618 papers, 792 were excluded due to no meta-
analysis on fMRI data after accessing their full text, 5 were excluded
due to no access to the full text, and 1 was excluded due to
article retraction. For the remaining 820 papers that entered the
analysis, the name and version number of the software packages
used to perform fMRI meta-analysis were manually extracted, if
present (Figure 1). Both authors independently conducted the

FIGURE 1

Screening process of the fMRI meta-analysis literature.
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FIGURE 2

Frequency count of different software packages used to perform
fMRI meta-analysis. Out of the 820 papers that performed fMRI
meta-analysis, some used more than one software. Therefore, the
total frequency count amounted to 853.

paper screening and data extraction. Any disagreements were
resolved through discussion to reach a mutual consensus.

Results

The coded data sheet was provided as the Supplementary File 1.
Among the 820 papers that conducted fMRI meta-analyses, some
used multiple software programs. As a result, the total count of
software usage reached 853. The most frequently used software was
GingerALE (407 out of 820 papers, 49.6%), followed by SDM-PSI
(27.4%) and Neurosynth (11.0%) (Figure 2).

Meanwhile, Table 2 shows the frequency counts per year.
The temporal trends of the 3 software packages with the highest
publication share are as follows. The annual publication share of

GingerALE was always slightly over one-half until 2023, when it
dropped to 47.4% and further to 42.6% in 2024. The publication
share of SDM-PSI increased every year from 20.8% in 2019 to 32.3%
in 2024. Neurosynth had approximately 10% publication share per
year during 2019–2024.

Overall, 540 papers (65.9%) fully disclosed the names and
version numbers of the software packages used in their analyses
(Table 3). In contrast, 19 papers (2.3%) reported neither the names
nor the version numbers of the software packages used. The most
frequently used versions for GingerALE were 2.3.6 and 3.0.2,
whereas the most frequently used versions for SDM-PSI were 5.141,
5.15, 6.21, and 6.22 (Tables 4, 5).

Among GingerALE papers, the publication share of version
2.3.6 (released on 26 April 2016) decreased from 76.4% in 2019 to
7.6% in 2024, as the share of version 3.0.2 (released on 16 May 2019)
increased from 3.6% in 2019 to 81.8% in 2024 (Figure 3). Their
changes were most prominent from 2019 to 2021, and became more
mild since then. It is worth noting that two versions of GingerALE,
namely versions 2.3.7 and 3.0.3, were each reported in one paper,
but they are not officially documented. Furthermore, 15 papers
(3.7% of 407) used older versions of GingerALE (prior to 2.3.6),
which suggests a higher risk of false positive results.

Among SDM-PSI papers, version 5.141 (released in December
2016) was the dominant version in 2019 and 2020 (at least 20%), but
the publication shares of versions 5.15 (released in April 2018) and
6.21 (released in November 2019) gradually increased and peaked
at 38.8 and 40.8% in 2023, respectively (Figure 4). The publication
share of versions 5.15 and 6.21 showed clear decline from 2023
to 2024, during which the share of version 6.22 showed a sharp
increase from 4.1 to 14.0%. The ratio of SDM-PSI papers that did
not report the version number dropped from 47.6% in 2019 to
36.0% in 2024.

TABLE 2 Annual frequency count of different software packages used to perform fMRI meta-analysis.

Software 2019 2020 2021 2022 2023 2024 Total

GingerALE 55 (54.5%) 58 (51.8%) 72 (51.8%) 83 (52.2%) 73 (47.4%) 66 (42.6%) 407 (49.6%)

SDM-PSI 21 (20.8%) 25 (22.3%) 33 (23.7%) 47 (29.6%) 49 (31.8%) 50 (32.3%) 225 (27.4%)

Neurosynth 8 (7.9%) 18 (16.1%) 14 (10.1%) 17 (10.7%) 15 (9.7%) 18 (11.6%) 90 (11.0%)

MKDA 5 (5.0%) 4 (3.6%) 2 (1.4%) 5 (3.1%) 2 (1.3%) 2 (1.3%) 20 (2.4%)

Matlab 5 (5.0%) 3 (2.7%) 5 (3.6%) 2 (1.3%) 2 (1.3%) 2 (1.3%) 19 (2.3%)

R 0 1 (0.9%) 6 (4.3%) 0 4 (2.6%) 6 (3.9%) 17 (2.1%)

NiMARE 0 0 4 (2.9%) 1 (0.6%) 4 (2.6%) 5 (3.2%) 14 (1.7%)

RevMan 0 0 1 (0.7%) 1 (0.6%) 1 (0.6%) 4 (2.6%) 7 (0.9%)

STATA 0 0 0 0 1 (0.6%) 3 (1.9%) 4 (0.5%)

CluB 1 (1.0%) 0 0 1 (0.6%) 0 2 (1.3%) 4 (0.5%)

NeuroQuery 0 0 0 1 (0.6%) 1 (0.6%) 2 (1.3%) 4 (0.5%)

NeuRoi 0 1 (0.9%) 0 2 (1.3%) 0 1 (0.6%) 4 (0.5%)

Not reported 6 (5.9%) 3 (2.7%) 4 (2.9%) 3 (1.9%) 1 (0.6%) 2 (1.3%) 19 (2.3%)

Others 7 (6.9%) 2 (1.8%) 2 (1.4%) 1 (0.6%) 6 (3.9%) 4 (2.6%) 22 (2.7%)

Annual paper
count

101 112 139 159 154 155 820

Out of the 820 papers that performed fMRI meta-analysis, some used more than one software. Therefore, the sum of percentages in each year could be > 100%.
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TABLE 3 Breakdown of the disclosure of the names and version
numbers of software packages used in the analyzed papers.

Condition Frequency (% of
820)

Reported all names and version numbers 540 (65.9%)

Reported all names but no version number 242 (29.5%)

Reported all names but missed some version
numbers

19 (2.3%)

No name and no version number 19 (2.3%)

Total 820

Discussion

This literature survey has confirmed that GingerALE was the
most frequently used software package for fMRI meta-analysis
whereas the publication share of SDM-PSI has continued to
increase from 2019 to 2024. At the same time, more and more
papers have used other software packages such as Neurosynth
and NiMARE. The fMRI meta-analytic literature has been
dominated by these 2 CBMA meta-analytic software packages.
Foundational work by Turkeltaub et al. (2002) and Chein
et al. (2002), summarized in Laird et al. (2005), established the
methodological framework for ALE, emphasizing their ability to
integrate coordinate-based data for cross-study comparisons. After

testing convergence of activation across studies, methodological
advancements have enabled meta-analytic connectivity modeling
(MACM) (Robinson et al., 2010) and co-activation-based
parcellation (CBP) (Eickhoff et al., 2011). It is unclear why the
prevalence of SDM-PSI was on the rise over the last few years,
but it does have advantages over ALE in terms of effect size
integration and handling of both positive and negative findings
(Albajes-Eizagirre and Radua, 2018; Albajes-Eizagirre et al., 2019).
However, no method is perfect. The dominance of one or two
methods may reduce the incentive for researchers to develop
alternative methods, and novice users may be more hesitant to try
these alternatives.

A minority of papers that used GingerALE have either reported
the use of older versions (prior to 2.3.6) or not reported the version
number. This is not a good phenomenon, as the developer team of
GingerALE has already released a debugged version in 2016 that
fixed some major issues with inflated false positive rate, with a clear
documentation published in 2017 (Eickhoff et al., 2017). As the
surveyed meta-analytic papers were all published since 2019, ideally
all of them should be using newer versions of GingerALE that have
been debugged. The effects on the results could be potentially huge.
For instance, an fMRI meta-analysis on perceptual decision making
that used GingerALE version 2.3 originally reported 10 clusters
with significant activation for a contrast of task > control (Keuken
et al., 2014). After re-analyzing data with a debugged version of
2.3.6, all 10 clusters became non-significant (Keuken et al., 2017).
Other re-analyses showed less dramatic changes to the initial

TABLE 4 Annual publication counts of different versions of GingerALE.

Year Version number of release date Annual
sum

11-Jan-
13

30-Sep-
14

7-May-
14

19-Nov-
15

26-Apr-
16

5-Feb-
19

2-May-
19

16-May-
19

? 2.3 2.3.1 2.3.2 2.3.5 2.3.6 2.3.7* 3.0 3.0.1 3.0.2 3.0.3*

2019 3 3 1 2 0 42 1 1 0 2 0 55

2020 7 0 0 0 1 25 0 6 0 19 0 58

2021 6 2 0 2 0 12 0 1 0 48 1 72

2022 12 1 0 0 0 13 0 1 0 56 0 83

2023 3 1 0 0 0 7 0 2 1 59 0 73

2024 5 2 0 0 0 5 0 0 0 54 0 66

*Versions 2.3.7 and 3.0.3 are not officially documented. Release dates were retrieved from https://brainmap.org/ale/readme.html (accessed on 16 May 2025).

TABLE 5 Annual publication counts of different versions of SDM-PSI.

Year Version number of release date Annual
sum

May-
15

Aug-
16

Oct-
16

Dec-
16

Apr-
18

Apr-
19

Jul-
19

Nov-
19

Feb-
24

? 4.31 5* 5.1* 5.12 5.14 5.141 5.142* 5.15 6.11 6.12 6.21 6.22* 6.23

2019 10 2 0 0 1 0 5 1 2 0 0 0 0 0 21

2020 9 2 0 0 0 2 5 1 3 1 0 2 0 0 25

2021 10 0 0 1 1 0 0 0 11 0 1 9 0 0 33

2022 15 0 1 0 0 0 1 0 14 0 1 13 2 0 47

2023 8 0 0 0 0 0 0 0 19 0 0 20 2 0 49

2024 18 0 0 1 0 0 1 0 12 0 0 9 7 2 50

*Versions with unclear release dates. Release dates were retrieved from the Readme file after downloading the software from https://www.sdmproject.com/software/ (accessed on 16 May 2025).
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FIGURE 3

Change in the annual publication share of commonly used versions
of GingerALE. “? Version” refers to papers that did not report the
exact version number. The publication share is computed from
GingerALE papers, not all meta-analysis papers.

FIGURE 4

Change in the annual publication share of commonly used versions
of SDM-PSI. “? Version” refers to papers that did not report the exact
version number. The publication share is computed from SDM-PSI
papers, not all meta-analysis papers.

conclusions, such as a reduction from 36 significant clusters (Belyk
et al., 2015) to 4 (Belyk et al., 2017), from 12 significant clusters
(Garrigan et al., 2016) to 8 (Garrigan et al., 2016), and an exclusion
of three previously significant brain regions (unclear number of
significant clusters) (Smith et al., 2016; Smith and Delgado, 2017).
Readers should be aware that the examples listed here may be
affected by publication bias. It could be possible that many re-
analyses showing no significant changes from the original findings
ended up as unpublished findings.

Though the issue of inflated false positive rate has not been
reported for SDM-PSI, it is still advisable to report version number
and use most updated version of the software package whenever
possible due to a different issue. A major change of SDM-PSI from
version 5 to version 6 was the adoption of permutation so that it
tested whether effects were non-null in a given voxel, but no longer
tested whether findings across studies tended to converge around it
(Albajes-Eizagirre and Radua, 2018; Albajes-Eizagirre et al., 2019).
According to the Readme document of SDM-PSI version 6.23, the
first officially documented version 6 of SDM-PSI was version 6.11
released in April 2019. Ideally, most of the surveyed meta-analysis
papers should have used version 6.11 or newer versions, except
those papers published in early 2019. It was largely unclear why the
publication share of version 5.15 (released in April 2018) continued

to increase year by year and nearly matched the publication share
of version 6.21 (released in November 2019). In 2024, though,
both versions declined whereas versions 6.22 and 6.23 began
to get some publication share. Comparing meta-analytic results
between studies using the old (version 5 or older) and new versions
(version 6) of SDM-PSI may be conceptually inaccurate due to the
fundamentally different methodology. Though recent guidelines
for conducting and reporting neuroimaging meta-analysis did
not explicitly recommend researchers to list the exact software
version number during reporting (Müller et al., 2018; Tahmasian
et al., 2019; Manuello et al., 2022), this general practice is highly
recommended in reporting an fMRI study (Poldrack et al., 2008).

On a separate note, not many studies in the dataset used
NiMARE to conduct fMRI meta-analysis. The concept behind
NiMARE is very good: An environment/ecosystem that allows
users to conduct multiple types of meta-analyses based on a
number of algorithms available from the literature and interact with
online databases of brain coordinates and fMRI images. However,
since NiMARE runs on Python and is operated through either
command line interface (CLI) or application programing interface
(API), some researchers may prefer to use existing toolboxes or
software packages with a guided user interface (GUI) that allow for
operation by pressing buttons, rather than typing computer code.
Specifically, those who possess extensive expertise in the domains
being meta-analyzed, such as physiology, psychology, or pathology,
may not have the programing skills necessary to efficiently utilize
CLI or API. This is particularly relevant given the interdisciplinary
nature of neuroimaging research, where specialists from diverse
backgrounds collaborate. The preference for GUIs is evident in
the continued use of software packages such as GingerALE and
SDM-PSI. However, analyses with CLI may have better provenance
and reproducibility than with GUI, as users may press buttons
wrongly and there is usually no action log. Some surveyed
studies in the dataset opted to use both GingerALE and SDM-
PSI to conduct CBMAs and compare results instead of performing
them “centrally” through NiMARE. Hence, NiMARE and similar
solutions could consider to build a simple GUI besides command
line interface, to attract users from a more diverse background.

This study has some limitations. First, the analysis was
restricted to papers published in a short period. The current
findings may not be readily applied to the past literature. Second,
some papers not indexed by WOSCC or Scopus might be omitted
by this study, though they might only account for a small share of
the literature. Third, manual data extraction is labor demanding
and may be prone to human mistakes. The future development of
text scraper with artificial intelligence and availability of literature
full texts with open access should enable a replication of this study
in a much larger-scale. Future studies can also consider more
advanced analyses, such as to reveal any relationship between the
impact factors of the journals and software selection.

Conclusion

Based on a literature survey of papers published during 2019–
2024, GingerALE was the most frequently used software package
for conducting fMRI meta-analysis, followed by SDM-PSI and
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Neurosynth. The issue of not reporting the version number of the
software package was more serious for SDM-PSI than GingerALE,
but the situation has been improving quickly for the former.
Another issue for using SDM-PSI was the continued use of its old
version together with its latest version. Unlike the old versions, its
latest version (version 6) uses permutation to test whether effects
were non-null in a given voxel, instead of whether findings across
studies tended to converge around it. The methodologies to meta-
analyze fMRI data are diverse. Researchers should clearly report
the details including the name and version number of software
packages used, so that readers can better understand what has been
done and how results could be compared across studies.
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