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Editorial on the Research Topic

Neural mechanisms of motor planning in assisted voluntary movement

Advancements in assistive robotics for motor rehabilitation have made significant

progress in recent years, with Brain-Machine Interfaces (BMIs) playing a key role in

decoding motor intentions and enhancing voluntary movement control. EEG-based

systems are the most widely studied non-invasive BMIs, while fNIRS-based approaches

are gaining interest (Lebedev and Nicolelis, 2017). Non-invasive BMIs, primarily explored

in clinical studies, aim to promote neurorehabilitation by facilitating brain plasticity

and motor recovery (Lebedev and Nicolelis, 2017). Research suggests BMIs could evolve

beyond assistive technology into a therapeutic tool for neurological recovery (Donati

et al., 2016). Effective BMIs integrate both top-down movement intention and bottom-up

sensory feedback (Scott, 2016). This editorial highlights key contributions from five articles

(four research articles, one review) featured in this Research Topic, addressing advances

and challenges in human motor neuroscience and human-machine teaming, focusing on

neurorehabilitation and the development of brain-machine interfaces for assistive robotics.

Improving humanoid robot hand dexterity enhances their ability to perform

precise tasks, such as surgical assistance and aiding individuals with disabilities. The

brain simplifies voluntary movement by organizing muscle and joint activations into

coordinated patterns called “synergies,” reducing the complexity of controlling the

hand’s numerous degrees of freedom. Studying these synergies provides insights into

brain-hand communication, motor disorders, and robotic control. Researchers have

explored kinematic synergies (Grinyagin et al., 2005; Freitas et al., 2006), to better

understand the neural activity that mediates musculoskeletal mechanics and behavioral

goals. Olikkal et al. extracted kinematic synergies from 33 American Sign Language hand

gestures using an RGB camera, MediaPipe, Gaussian functions, and Principal component

analysis (PCA), achieving 95.7% accuracy. This synergy-based approach simplifies motion

retargeting, offering potential for assistive robotics.

Accident analyses highlight run-off road incidents as a major cause of fatalities,

yet drivers’ brain responses during such events remain poorly understood. Brain

recordings capture overlapping processes such as motor control, visual processing,

and error monitoring, making their individual contributions unclear. While studies

have separated visual and motor components (Walter et al., 2001; Horikawa

et al., 2005; Garcia et al., 2017), disentangling these processes remains challenging.
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Pulferer et al. addressed this by employing passive and active

steering in error-free and error-prone conditions, demonstrating

that distinct sub-processes can be separated using time-locked

analyses of EEG data. Findings revealed increased fronto-

central activity and information flow during execution, linked to

performance monitoring in the caudal anterior cingulate cortex.

Reaching movements, fundamental to daily life and

rehabilitation, follow Fitts’ Law, which predicts longer movement

times for more difficult tasks (Fitts, 1954). While Fitts’ Law has

enhanced human-machine interactions in neurorehabilitative

devices (Zimmerli et al., 2012), the association between cortical

activation and task demands remains unclear, hindering optimal

therapeutic parameter selection (e.g., dosage, repetition, difficulty).

Ji et al. examined whether motor cortex activity correlates with

index-of-difficulty in speed-accuracy reaching tasks. Healthy

subjects performed 2D reaching movements with ID levels using

a rehabilitation robot while fNIRS recorded cortical responses.

While kinematic data aligned with Fitts’ Law, motor cortex activity

showed no direct correlation with task difficulty, implying the

influence of additional factors such as muscle activation.

Physical exercise enhances brain plasticity, crucial for

functional reorganization of the lesioned cortex and motor

recovery in patients with motor impairment (Kokotilo et al., 2009;

James and McGlinchey, 2022). However, how different movement

patterns influence somatosensory cortex reorganization across

various stages of neurorehabilitation remains poorly understood.

Understanding their specific effects on sensory-motor cortex

activity can refine training dosages (type, time, and intensity) and

deepen our understanding of exercise mechanisms. To explore the

impact of exercise training modes on sensory and motor-related

cortex excitability, Li et al. used fNIRS to study cortical activity

in healthy participants during passive, active, and resistance tasks

with an upper-limb robotic device. Active movement showed

higher contralateral M1 activation, while resistance exercise

activated both hemispheres more extensively. While these findings

provide valuable insights, further research is needed to refine

exercise therapy strategies using assistive technologies.

Human movement is defined by kinematic and kinetic

attributes. Kinematics, or “high-level control,” governs motion

parameters like location, direction, velocity, and acceleration,

shaping the desired trajectory. Kinetics, or “low-level control,”

related to the control of individual muscles and forces. Multiple

trajectories can achieve the same goal-oriented movement, and

research has examined how the sensorimotor cortex represents

these features (Branco et al., 2019; Zhou et al., 2022). However, how

the brain optimally executes voluntary movements remains a major

challenge. Ghosh et al. reviewed the neural correlates predictive

of upper limb motor intention and kinematics. This review also

highlights the potential of closed-loop EEG-based BMIs to promote

long-term rehabilitation, neural plasticity, and motor recovery.

In conclusion, the articles in this Research Topic provide

insights into the neural mechanisms of motor planning in

assisted voluntary movement and advancements in BMI-controlled

assistive robotics. However, challenges remain, including the need

for larger studies, standardized methodologies, and rigorous bias

assessments. Future BMI systems for motor rehabilitation should

focus on integrating multiple physiological signals, ensuring long-

term stability, improving user engagement, and enhancing sensory

feedback. Continued research and clinical trials are essential to

developing effective BMI systems and improving the quality of life

for patients with motor impairments.
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