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Introduction: Electroencephalography (EEG) signals frequently contain

substantial noise and interference, which can obscure clinically and scientifically

relevant features. Traditional denoising approaches, such as linear filtering or

wavelet thresholding, often struggle with nonlinear or time-varying artifacts.

In response, the present study explores a Generative Adversarial Network

(GAN) framework to enhance EEG signal quality, focusing on two variants:

a conventional GAN model and a Wasserstein GAN with Gradient Penalty

(WGAN-GP).

Methods: Data were obtained from two distinct EEG datasets: a “healthy” set

of 64-channel recordings collected during various motor/imagery tasks, and

an “unhealthy” set of 18-channel recordings from individuals with orthopedic

impairments. Both datasets underwent comprehensive preprocessing, including

band-pass filtering (8–30Hz), channel standardization, and artifact trimming.

The training stage involved adversarial learning, in which a generator sought

to reconstruct clean EEG signals while a discriminator (or critic in the case of

WGAN-GP) attempted to distinguish between real and generated signals. The

model evaluation was conducted using quantitative metrics such as signal-

to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), correlation coe�cient,

mutual information, and dynamic time warping (DTW) distance.

Results: Experimental findings indicate that adversarial learning substantially

improves EEG signal fidelity across multiple quantitative metrics. Specifically,

WGAN-GP achieved an SNR of up to 14.47dB (compared to 12.37dB for

the standard GAN) and exhibited greater training stability, as evidenced by

consistently lower relative root mean squared error (RRMSE) values. In contrast,

the conventional GAN model excelled in preserving finer signal details, reflected

in a PSNR of 19.28 dB and a correlation coe�cient exceeding 0.90 in several

recordings. Both adversarial frameworks outperformed classical wavelet-based

thresholding and linear filtering methods, demonstrating superior adaptability to

nonlinear distortions and dynamic interference patterns in EEG time-series data.
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Discussion: By systematically comparing standard GAN and WGAN-GP

architectures, this study highlights a practical trade-o� between aggressive

noise suppression and high-fidelity signal reconstruction. The demonstrated

improvements in signal quality underscore the promise of adversarially trained

models for applications ranging from basic neuroscience research to real-time

brain–computer interfaces (BCIs) in clinical or consumer-grade settings. The

results further suggest that GAN-based frameworks can be easily scaled to

next-generation wireless networks and complex electrophysiological datasets,

o�ering robust and dynamic solutions to long-standing challenges in EEG

denoising.

KEYWORDS

EEG denoising, generative adversarial network, Wasserstein GAN, brain-computer

interface, deep learning

1 Introduction

Linear methods for signal enhancement (Weinstein et al.,

1994), such as least-mean-square (LMS) algorithms and their

variants (Benesty et al., 2017), are commonly used for noise

reduction due to their simplicity (Corino et al., 2006). However,

their effectiveness is limited when dealing with non-linear signals,

and they often fail to reach a global optimum to eliminate noise

and interference (Garrett et al., 2003; Boutarfaia et al., 2023).

In contrast, nonlinear techniques Gourévitch et al. (2006), such

as wavelet transform with adaptive thresholding, leverage strong

local time-frequency analysis (Abramovich and Benjamini, 1996;

Nasri and Nezamabadi-pour, 2009; Tibermacine et al., 2024b) to

remove non-stationary noise Rabbani et al. (2011); Krishnaveni

et al. (2006).

Deep neural networks (DNNs) (Sze et al., 2017) extend

beyond traditional filtering by learning complex patterns

of noise and interference (Sun et al., 2018), making them

suitable for environments with substantial interference and

dynamic behavior (Mao et al., 2018; Russo et al., 2024b). Auto-

encoders, in particular, have demonstrated effectiveness for noise

reduction (O’Shea et al., 2016; Feng et al., 2017; Nail et al., 2024).

However, the unpredictable nature of real-world channels—

wireless or otherwise—can degrade fixed or purely data-driven

enhancement strategies (Simsek et al., 2014; Tibermacine et al.,

2023; Gannot et al., 2001; Ladjal et al., 2024).

A major breakthrough in generative modeling came with

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014),

known for their ability to learn complex data distributions in a

minimally supervised fashion. Subsequent innovations, such as the

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) and its gradient-

penalty variant (Gulrajani et al., 2017), have further stabilized

training and improved generation quality, which is crucial when

preserving subtle signal characteristics.

Motivated by these developments, researchers have applied

GAN-based frameworks to EEG denoising tasks, demonstrating

resilience to dynamic noise patterns. Zhou et al. (2020) introduced

WSE-GAN, primarily for wireless signals, yet conceptually relevant

to non-stationary EEG (Bouchelaghem et al., 2024; Tibermacine

et al., 2024c). Luo et al. (2020); Naidji et al. (2023) proposed a

WGAN with Temporal-Spatial-Frequency (TSF) loss to preserve

multiple EEG dimensions, though at the cost of computational

complexity (Sanei and Chambers, 2013; Wang and Bovik, 2009;

Gao et al., 2020). Overall, GANmethods excel at adaptively filtering

complex and time-varying interference (Judd et al., 2008; Anguera

et al., 2013; Yin et al., 2024), making them particularly attractive

for EEG signal reconstruction, where both robustness and efficiency

are needed.

While prior studies have shown the promise of GANs for EEG

denoising (Goodfellow et al., 2014; Zhou et al., 2020; Luo et al.,

2020), there is limited direct comparison of a standard GAN against

a WGAN-GP in the same experimental setting. Consequently,

our work (i) Examines the trade-off between preserving crucial

EEG details and suppressing noise, shedding light on when

one model may excel over the other, particularly in clinical

scenarios requiring subtle neural signal fidelity versus high-noise

environments favoring stronger artifact reduction, (ii) Highlights

clear guidelines for selecting an appropriate adversarial framework

(GAN vs.WGAN-GP), informed by both quantitative metrics (e.g.,

signal-to-noise ratio, correlation) and practical considerations (e.g.,

computational overhead).

By addressing these aspects, our study provides novel insights

into how the two adversarial architectures perform under varying

artifact conditions and signal demands.

Our key contributions:

1. GAN-basedwireless/EEG enhancement:we design and analyze

an adversarial pipeline for noise suppression, demonstrating its

ability to handle nonlinear distortions in both wireless and EEG

contexts.

2. Comparison of standard GAN and WGAN-GP: We

comprehensively evaluate their performance in terms of

noise suppression versus detail retention, offering nuanced

guidance on the use-case scenarios for each.

3. Robust evaluation on a dedicated EEG dataset: our

experiments apply multiple signal-quality metrics, underscoring

how adversarial learning can be readily extended to broader

signal processing challenges.

4. Implications for clinical and high-interference settings: our

results delineate how each model’s strengths or weaknesses suit

clinical (low tolerance for signal distortion) or high-interference
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(priority on aggressive artifact rejection) conditions, thus

clarifying deployment strategies in real-world scenarios.

2 Related works

Traditional EEG denoising has frequently relied on signal

processing approaches such as filtering, regression, and

wavelet-based thresholding. Although these methods are

well-suited for stationary or linear types of noise, they often

underperform when tasked with removing complex, nonlinear

EEG artifacts (e.g., ocular or muscle noise). Such limitations

have led researchers to explore more sophisticated, data-driven

approaches involving deep neural networks and, increasingly,

GANs Goodfellow et al. (2014); Arjovsky et al. (2017); Gulrajani

et al. (2017).

2.1 GAN- and WGAN-based methods

Zhou et al. (2020) introduced a Wireless Signal Enhancement

GAN (WSE-GAN) to suppress channel noise in simulated

wireless data. Although developed primarily for communication

signals rather than EEG, their framework underscored the

ability of adversarial models to filter dynamic, non-stationary

noise. Focusing directly on EEG, Luo et al. (2020) proposed

a WGAN with temporal–spatial–frequency (TSF) loss to better

preserve the multi-dimensional structure of neural signals

(Russo et al., 2024a). By integrating spectral, spatial, and

temporal aspects of EEG, WGAN-TSF achieved strong artifact

suppression as well as better classification outcomes in downstream

motor-imagery tasks. Subsequently, Zhang et al. employed a

WGAN-GP to devise an Artifact Removal WGAN (AR-WGAN),

which outperformed several classical denoising benchmarks

in both correlation and error metrics (Zhang et al., 2021;

Tibermacine et al., 2024a), though over-suppression of low-

frequency components was occasionally observed in heavily

contaminated inputs.

2.2 Conditional and task-specific GANs

Kim et al. (2022) presented a conditional GAN (cGAN)

framework tailored to removemultiple classes of EEG artifacts (e.g.,

ocular or muscle noise) by conditioning on artifact-related labels

or signal features. This approach yielded significant improvements

in SNR and correlation with ground-truth signals compared to

conventional filters, illustrating the advantage of leveraging context

during artifact removal.

While these works highlight the adaptability and strength of

adversarial learning in mitigating complex EEG artifacts, they leave

open several questions. For instance, direct comparisons among

vanilla GAN, WGAN (with or without GP), and classical methods

under identical conditions remain rare. In addition, most studies

focus on limited subsets of metrics, making it difficult to evaluate

trade-offs between artifact removal effectiveness and signal fidelity.

Table 1 presents a concise overview ofmajor prior GAN-based EEG

denoising approaches.

The literature confirms that adversarial networks—in their

various forms—offer compelling solutions for EEG artifact

removal, often surpassing classical denoising filters. However,

explicit head-to-head comparisons between a standard GAN

and a WGAN-based model, alongside classic baseline methods,

have not been thoroughly reported. Moreover, certain practical

issues, such as computational overhead, the role of gradient

penalties, and performance across diverse EEG datasets, remain

insufficiently investigated. The present work addresses these gaps

by comprehensively comparing a vanilla GAN and aWGAN-based

architecture (both with and without gradient penalty) to classical

denoising methods, all under the same experimental design and

evaluation framework.

3 Materials and methods

3.1 Datasets

3.1.1 Healthy dataset
This subset comprises 64-channel EEG recordings collected

from 109 volunteers, yielding over 1,500 individual recordings

of one to two minutes each. The dataset is publicly available

(Schalk et al., 2022), and all data were acquired using the BCI2000

platform.1 Each participant completed 14 experimental runs,

including two baseline runs (one with eyes open and one with eyes

closed) and three two-minute runs of each of the following four

tasks:

1. Task 1: A target appears on the left or right side of the screen,

prompting the participant to repeatedly open and close the

corresponding fist until the target disappears, followed by rest.

2. Task 2: Similar to Task 1, but the participant imagines the

corresponding fist movements rather than physically executing

them.

3. Task 3: A target at the top or bottom of the screen instructs

opening/closing of both fists (top) or both feet (bottom), ending

with rest.

4. Task 4: Identical to Task 3 except that the movements are

imagined rather than physically performed.

Each event is labeled with an event-type indicator (T0, T1, or

T2) concatenated with a task identifier (e.g., TASK1T2). These

labels specify rest intervals (T0) or onsets of physical/imagined

motions (T1, T2). Table 2 outlines the key characteristics of this

dataset.

3.1.2 Unhealthy dataset:
A second dataset contains raw 18-channel EEG signals (Table 3)

obtained from seven participants with orthopedic impairments

during motor-imagery (MI) tasks (Lee et al., 2022). Data collection

occurred in three sessions, each comprising 40 trials, and included

four distinct MI tasks presented in a randomized sequence (e.g.,

1 http://www.bci2000.org
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TABLE 1 Representative studies on adversarial approaches for EEG denoising.

References Model Dataset Evaluation metrics Key findings

Zhou et al. (2020) WSE-GAN

(standard GAN)

Simulated wireless

signals

SNR, BER, interference levels Demonstrated that GAN-based modeling can

adaptively filter dynamic noise and interference.

Luo et al. (2020) WGAN + TSF loss Public EEG datasets

(motor imagery)

MSE, classification accuracy Improved artifact removal across temporal,

spatial, and frequency dimensions; boosted BCI

performance.

Zhang et al. (2021) AR-WGAN

(WGAN-GP)

EEGdenoiseNet +

self-collected EEG

Correlation, RRMSE, PSD Outperformed classical baselines with high

correlation and low error, but risked

over-suppressing low-frequency content.

Kim et al. (2022) cGAN

(conditional GAN)

EEG with ocular/muscle

artifacts

SNR, MAE, correlation Successfully targeted multiple artifact types using

contextual information; retained high neural

signal fidelity.

TABLE 2 Overview of the Healthy Dataset.

Item Description Notes

Number of channels 64 Standard scalp montage

Number of

participants

109 Volunteers with

motor/imagery tasks

Total recordings >1,500 1–2 minutes each

Acquisition platform BCI2000 Open/closed eyes

baseline + tasks

Number of tasks 4 Physical/Imagined: fists

or feet

Event codes T0, T1, T2 Context-dependent

labeling

Baseline runs 2 (Eyes

open/closed)

1 minute each

Task runs per task 3 (Each of four

tasks)

2 minutes each

TABLE 3 Overview of the unhealthy dataset.

Item Description Notes

Number of channels 18 Orthopedic impairment

study

Number of

participants

7 Motor-imagery with

physical constraints

Sessions per

participant

3 Each session: 40 trials

Trials per session 40 Randomized MI tasks

MI tasks 4 e.g., Reach, Twist, Lift,

Grasp

Trial structure 3s fixation, 4s cue,

3s ready, 5s MI

Total∼15s per trial

Reach → Twist → Lift → Grasp, etc.). Each trial started with a

3 s fixation cross, followed by a 4 s visual cue and a 3 s transition

(“ready”) period, culminating in a 5 s imagined movement. This

design gathered motor-imagery data from both healthy and

impaired populations, broadening the scope for robust denoising

analysis.

3.1.3 Dataset variability and robustness
To ensure that random sample selection does not omit

important sources of variability, our experiments utilized all

available recordings from both the healthy and unhealthy datasets.

For each denoising approach (GAN, WGAN-NoGP, WGAN-GP,

and classical baselines), we computed and reported aggregate

performance metrics over the complete set of EEG sessions

(where practical). In addition, we provide mean ± standard

deviation for key measures (SNR, MAE, etc.), offering insight

into the consistency of denoising outcomes across participants,

channels, and trials. This comprehensive evaluation helps confirm

the generalizability of our findings, especially given the diversity

of tasks (physical vs. imagined movements) and participant

conditions (healthy vs. orthopedic impairments).

3.2 Preprocessing

A multi-step preprocessing pipeline was employed to ensure

data consistency, quality, and relevance for subsequent analysis.

First, each comma-separated values (CSV) file was aligned with

a reference tab-separated values (TSV) file, thereby standardizing

channel labels and headers across all recordings. Data were then

filtered according to task labels: for the unhealthy dataset, only rows

labeled “S 1,” “S 4,” “S 8,” or “S 10” were retained, while for the

healthy dataset, only rows labeled “TASK1T1” or “TASK1T2” were

included. Columns determined to be nonessential (e.g., the final

label column) were removed to streamline the dataset.

Next, any channels not shared between healthy and unhealthy

datasets were discarded, ensuring uniform channel availability

for comparative analysis. The resulting dataframes were then

normalized to the range [0, 1] via Min–Max scaling, mitigating the

influence of disproportionate feature ranges. We focused on the

sensorimotor cortex, thus retaining only channels named C3, C4,

Cz (and any variants with prefix “C”) from the standard 10–20

montage.

Finally, each EEG data tensor was inspected to confirm that it

met the minimum required shape. Any tensors smaller than this

threshold were resized or cropped, thereby maintaining consistent

dimensionality. This integrated workflow produced a coherent,

high-quality dataset, suitably prepared for the subsequentmodeling

and analysis phases.
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3.3 Band pass filter

To enhance the quality of the EEG signals and isolate relevant

frequency components, a bandpass filter is applied to the dataset.

The filtering process is crucial for removing unwanted noise and

focusing on the specific frequency range of interest. In this study,

a bandpass filter with a passband of 8–30 Hz is employed, which

is commonly used to target the alpha and beta frequency bands in

EEG analysis.

The filtering procedure begins by extracting channel names

from the first row of each DataFrame. The DataFrame is then

converted into an MNE Raw object, which is a data structure

specifically designed for handling EEG data. Using the MNE-

Python library, the bandpass filter is applied to the Raw object. This

step involves specifying the low and high cutoff frequencies (8–30

Hz, respectively) and the sampling frequency (128 Hz).

After filtering, the channel names are reinserted into the

DataFrame, and the filtered data are extracted from the Raw object.

The data is then converted back into a DataFrame format with

the original channel names. This ensures that the filtered data

maintains the same structure as the input DataFrames.

The bandpass filter is applied to both unhealthy and healthy

datasets, refining the signals and preparing them for further

analysis. This preprocessing step is essential to improve signal

quality and improve the accuracy of subsequent modeling and

analysis phases.

4 Model

GANs are a type of generative model that is used to

create synthetic data without requiring detailed domain-specific

knowledge. They were introduced by Goodfellow et al. (2014),

in which a multi-layer perceptron was employed for both the

generator and the discriminator networks. These two networks

engage in a competitive process, often referred to as a minimax

game, as described by the objective function in Equation 1. The

generator aims to increase the error rate of the discriminator by

producing data that resemble real samples, while the discriminator

tries to accurately differentiate between real and generated samples.

This interaction is illustrated in Figures 1, 2. GANs are widely

applied to generate new, previously unseen data, either for

augmenting existing datasets or to ensure the privacy of the training

data.

min
G

max
D

V(G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))]
(1)

4.1 EEG signal reconstruction
model–LSTM layer

The first Generator implementation was a neural network-

based model for EEG signal reconstruction, which utilizes a

Long Short-Term Memory (LSTM) layer to model the temporal

dependencies in the signal. The model architecture is designed to

process sequential EEG data. It consists of an LSTM layer followed

by a fully connected (linear) layer, with an optional Tanh activation

function for output regularization.

The LSTM layer is the core component for learning temporal

dependencies in EEG signals. Given an input sequence X =

{x1, x2, . . . , xT} where xt represents the input at timestep t, the

LSTM produces hidden states ht and cell states ct at each timestep.

The LSTM’s internal operations are governed by the following

equations:

ft = σ (Wf xt + Uf ht−1 + bf ) (forget gate) (2)

it = σ (Wixt + Uiht−1 + bi) (input gate) (3)

c̃t = tanh(Wcxt + Ucht−1 + bc) (candidate cell state) (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (cell state update) (5)

ot = σ (Woxt + Uoht−1 + bo) (output gate) (6)

ht = ot ⊙ tanh(ct) (hidden state) (7)

Here, σ is the Sigmoid function, ⊙ denotes element-wise

multiplication, and W, U, and b are the learnable weight matrices

and biases for each gate. The LSTM is initialized with zero-valued

hidden states and cell states, h0 and c0, for each sequence.

Once the LSTM processes the entire sequence, the output is

passed through a fully connected (FC) layer to map the hidden state

at each timestep ht to the desired output size yt , represented as:

yt = Wfcht + bfc (8)

where Wfc and bfc are the weights and biases of the FC layer.

This operation converts the LSTM’s output to a format suitable for

signal reconstruction.

The Sigmoid activation function is applied to the output layer

to constrain the output to a specific range (e.g., for normalized

EEG signals):

y′t = σ (yt) (9)

where σ (x) = 1
1+e−x is the sigmoid function. This ensures that

the model output is bounded between 0 and 1, which is useful for

many signal processing applications.

The combination of the ability of the LSTM to capture long-

term dependencies and the flexibility of the fully connected layer

makes this model highly suitable for EEG signal reconstruction

tasks, where capturing short- and long-term temporal patterns is

crucial for accurate performance.

4.2 EEG Signal reconstruction
model—residual neural network

The second Generator implementation was designed to

transform the input sequence into a refined output using a series

of convolutional and deconvolutional layers with intermediate

residual blocks to enhance feature representation. The network

begins with an initial convolutional layer, which applies a 1D

convolution with a kernel size of 3 and 64 filters, followed by a
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FIGURE 1

GANArchitecture for converting noisy EEG signals to clean EEG data.

FIGURE 2

GANTraining loss.

batch normalization layer to standardize the output. The activation

function used is the rectified linear unit (ReLU), which is defined as:

ReLU(x) = max(0, x) (10)

This activation function ensures that non-negative inputs pass

through while negative values are set to zero, allowing for non-

linearity in the model. The output of the first convolutional layer

can be represented as:

y1 = ReLU(BN(Conv1D(x))) (11)

where BN denotes batch normalization and Conv1D represents

the 1D convolution operation.

Following the initial convolutional layer, the generator passes

the data through a series of 16 residual blocks. Each residual

block consists of two convolutional layers with kernel size 3, batch

normalization, and ReLU activations. The primary advantage of

residual blocks is the inclusion of skip connections, allowing the

input to bypass the convolutional layers and be added directly to

the output. This can be mathematically represented as:

yk+1 = ReLU(yk + Block(yk)) (12)

where Block(yk) represents the output of the convolutional

block in the k-th residual block.

Once the signal passes through the residual blocks, it

is processed by a deconvolutional layer, which expands the

dimensionality of the sequence. This deconvolution layer uses a

transposed convolution operation with a stride of 2, effectively

upsampling the data. The formula for the output after the

deconvolutional layer is the following.

y2 = ReLU(BN(ConvTranspose1D(y1))) (13)

Finally, the generator outputs the signal using a 1D

convolutional layer with a sigmoid activation function, which

ensures that the final output is scaled between 0 and 1. Thus, the

final output of the generator is as follows:
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yfinal = σ (Conv1D(y2)) (14)

In general, the architecture effectively combines convolutional

layers, residual blocks, and deconvolution operations to refine

the input signal and produce the desired output. The use

of residual connections helps mitigate the vanishing gradient

problem, allowing the network to learn more effectively.

4.3 Discriminator

The Discriminator model is designed as a deep convolutional

neural network (CNN) with the objective of distinguishing real

data sequences from those generated by the adversarial model. The

input to the Discriminator is a one-dimensional sequence of size

seq_len with input_size features. The model architecture follows a

sequence of convolutional layers, each increasing in complexity to

progressively extract higher-level features from the input sequence.

The network consists of eight convolutional layers. The first

layer applies a convolution with 64 filters, each of size 3, using a

stride of 1, followed by batch normalization to stabilize learning

and LeakyReLU activation to introduce non-linearity. As the

layers progress, the number of filters doubles, while the stride

alternates between 1 and 2, which reduces the sequence length. The

convolutional operation in each layer can be expressed as:

y(t) =

K
∑

k=1

wk · x(t − k+ 1)+ b (15)

where y(t) is the output at the time step t, wk is the convolution

filter, x(t − k + 1) represents the input values, and b is the bias

term. Padding ensures that the output dimensions are maintained

in layers with a stride of 1, while layers with stride 2 downsample the

input, effectively reducing the temporal resolution of the sequence.

The final layers in the convolutional block output feature maps

of size 1024×
seq_len
16 . These are flattened and passed through a fully

connected layer to produce a scalar value and at the end was applied

a sigmoid function.

The architecture is optimized for binary classification, where

the goal is to correctly classify real and generated sequences. By

progressively reducing the sequence length while expanding the

feature space through convolutions, the Discriminator captures

essential temporal dependencies and feature hierarchies crucial for

distinguishing between real and generated data.

5 EEG-GAN

5.1 Loss functions and training setup

In this GAN, both networks are trained with specific loss

functions tailored to improve the denoising performance:

1. Generator loss (content loss): the primary objective for the

Generator is to create denoised EEG signals that closely match

the real, clean EEG data. We employ a Mean Squared Error

(MSE) loss function, which measures the difference between the

Generator’s denoised output and the real, clean EEG signal. The

MSE content loss is defined as:

LG = MSE(Generator(xnoisy), xreal) (16)

where xnoisy represents the input noisy EEG, and xreal is the

ground truth clean EEG signal. This loss ensures that the

Generator output is as close as possible to the real EEG data in

terms of amplitude and temporal structure.

2. Discriminator loss (adversarial loss): the Discriminator is

trained to classify EEG samples as real (clean EEG) or fake

(denoised output from the Generator). We use a combination

of real and fake labels with the MSE loss to compute the

Discriminator’s loss. The Discriminator loss is computed as:

LD =
1

2

(

MSE(D(xreal), yreal)

+MSE(D(Generator(xnoisy)), yfake)

)

(17)

where yreal = 1 and yfake = 0. The Discriminator loss

encourages it to correctly classify clean EEG data as real and

Generator outputs as fake, thereby refining the Generator’s

outputs through adversarial training.

Although the original GAN formulation adopts a binary cross-

entropy (BCE) loss for the discriminator (Goodfellow et al., 2014),

we instead use a mean squared error (MSE) term, following the

Least Squares GAN (LSGAN) framework (Mao et al., 2017). By

replacing the log-likelihood objective with a least-squares objective,

we alleviate issues such as gradient saturation and stabilize training.

Concretely, instead of minimizing− logD(·) or− log(1−D(·)), we

penalize the squared difference from the real or fake label, which

empirically yields smoother and more reliable gradient updates in

our EEG denoising setting.

In addition to this MSE-based adversarial term, our generator

also includes a mean squared error (MSE) (Table 4) content or

reconstruction component. Although we do not explicitly condition

on class labels (as in a classic cGAN), this combined objective helps

the generator fulfill two complementary goals: (i) producing EEG

signals that fool the discriminator (adversarial realism), and (ii)

preserving fidelity to the clean reference waveforms (reconstruction

accuracy). In practice, this hybrid loss structure preserves subtle

temporal and amplitude features of the EEG signal, while still

removing artifacts. As a result, it offers a practical safeguard against

potential distortions or mode collapse that might arise from a

purely adversarial objective.

5.2 Training procedure

The training alternates between updating the Generator and

the Discriminator to achieve balanced adversarial dynamics. The

Generator is optimized to minimize the content loss by generating

denoised EEG signals that match the real EEG data, while the

Discriminator is optimized to minimize the adversarial loss by

correctly identifying real versus generated signals. The following

steps summarize each iteration:

1. The Generator takes a batch of noisy EEG signals and produces

a denoised output.
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Input: Noisy EEG Dataset Dnoisy, Clean EEG Dataset

Dclean, Number of epochs E, Learning rates

lrG, lrD

Output: Trained Generator G

Initialize: Optimizers for Generator G and

Discriminator D with Adam, loss function LMSE

for number of training epochs do

for number of training iterations do

for k steps do

Sample mini-batch of m noisy samples

{x
(1)
noisy, . . .,x

(m)
noisy} from Dnoisy

Sample mini-batch of m clean samples

{x
(1)
clean

, . . .,x
(m)
clean

} from Dclean

Train Discriminator:

Compute discriminator loss LD =

1
m

∑m
i=1

[

logD(x
(i)
clean

)+ log(1− D(G(x
(i)
noisy)))

]

Update Discriminator D by descending its

gradient ∇θDLD

Train Generator:

Sample mini-batch of m noisy samples

{x
(1)
noisy, . . .,x

(m)
noisy} from Dnoisy

Compute generator loss LG = 1
m

∑m
i=1

[

log(1−

D(G(x
(i)
noisy)))+ LMSE(xclean,G(xnoisy))

]

Update Generator G by descending its

gradient ∇θGLG

Return: Trained Generator G

Algorithm 1. Minibatch stochastic gradient descent training of EEG-

GAN for denoising EEG signals.

2. The Discriminator evaluates both the real clean EEG data

and the generated EEG, computing the adversarial loss

for each.

3. The Generator’s parameters are updated based on the content

loss, while the Discriminator’s parameters are updated based on

the adversarial loss.

6 Wasserstein generative adversarial
network with gradient penalty

To address the challenge of denoising EEG signals, we employ a

state-of-the-art WGAN-GP. This architecture leverages adversarial

training between a Generator and a Discriminator, ensuring that

the generated EEG signals closely resemble clean, healthy EEG data.

WGAN-GP provides stability in training by replacing the original

GAN’s Jensen-Shannon divergence with the Wasserstein distance,

which offers smoother gradients and mitigates issues such as mode

collapse.

6.1 Architecture Design

TheWGAN-GPmodel consists of two core neural networks:

TABLE 4 GAN training hyperparameters.

Hyperparameter Value Description

Optimizer Adam Generator and

Discriminator optimizer.

Generator LR 0.00002 Learning rate for the

generator’s optimizer.

Discriminator LR 0.002 Learning rate for the

discriminator’s

optimizer.

Betas 0.5 - 0.999 The beta parameters of

the optimizer

(momentum term and

decay).

Batch Size 32 Number of EEG signals

per training batch.

Epochs 15 Number of complete

passes through the

dataset.

Loss function Mean Squared

Error (MSE)

Content loss function

used to measure signal

reconstruction accuracy.

• Generator: This network learns to transform noisy EEG

inputs into denoised counterparts. It takes as input a 3-

dimensional tensor representing the noisy EEG signals and

produces a denoised output with the same dimensions. Each

layer of the Generator captures temporal dependencies within

the EEG signals, enhancing their signal fidelity through

upsampling.

• Discriminator (critic): Acting as a surrogate for the

Wasserstein distance, the Discriminator aims to differentiate

between real clean EEG samples and those generated by the

Generator. It outputs a scalar value representing the "realness"

of the input, where higher values indicate a closer resemblance

to real data.

6.2 Training setup and loss functions

The training process alternates between updating the

Discriminator and the Generator, as follows:

1. Discriminator loss: the Discriminator is trained to maximize

the Wasserstein distance between real and fake EEG

distributions. This is achieved through the following objective

function:

LD = E[D(xreal)]− E[D(xfake)] + λ · E[(‖∇D(x̃)‖2 − 1)2]

(18)

where D(xreal) and D(xfake) are the Discriminator outputs

for real and generated samples, respectively, and x̃ denotes

interpolated samples for gradient penalty calculation. The

gradient penalty term, scaled by the hyperparameter λ, ensures

that the Lipschitz constraint is maintained, enhancing training

stability.

2. Generator loss: the Generator aims to produce denoised EEG

signals that maximize the Discriminator’s output, corresponding
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to a higher resemblance to real data. The Generator loss is

defined as:

LG = −E[D(xfake)] (19)

This formulation directs the generator to maximize the

discriminator’s response to fake EEG data, driving the generated

samples closer to the distribution of clean EEG signals.

6.3 Gradient penalty computation

The WGAN-GP incorporates a gradient penalty term to

enforce the Lipschitz constraint, which is crucial for maintaining

stability during training. The penalty term is computed based on

an interpolation between real and fake samples:

Lgp = λ · E[(‖∇D(x̃)‖2 − 1)2] (20)

where x̃ = ǫ · xreal + (1 − ǫ) · xfake, with ǫ ∼ Uniform(0, 1). The

penalty ensures that the Discriminator’s gradients are constrained,

aligning them with the 1-Lipschitz condition necessary for

Wasserstein GAN training.

6.4 Training procedure

In this study, we adopted Adam optimizers for both Generator

and Discriminator (or Critic), with the Generator updated once

per epoch and the Discriminator updated multiple times per

Generator step (ncritic = 5). After preliminary testing of multiple

learning rates (1 × 10−5 to 5 × 10−5), we settled on 2 × 10−5

for its stable convergence on a validation subset. For WGAN-GP

runs, the gradient penalty coefficient λ was set to 10, balancing

effective gradient control without over-penalizing the Critic. A

batch size of 64 was determined from initial evaluations in

{16, 32, 64}, providing the best compromise between GPUmemory

usage and consistent performance. Training generally continued

for 25 epochs, monitored via an early stopping criterion to

prevent overfitting. EEG signals were normalized channel-wise

before each run, and the denoised outputs were periodically

examined to confirm artifact removal without undue signal

distortion. These final hyperparameter settings, once validated

through repeated experimentation, were uniformly applied in the

GAN, WGAN-NoGP, and WGAN-GP implementations, ensuring

a fair foundation for comparing their effects on EEG signal fidelity.

Table 5 provides a concise overview of these final selections.

7 Results

7.1 Reconstruction results

To rigorously assess the generalizability of each model, we

performed signal reconstructions on EEG channels that were

excluded during training. This approach ensured that both

the EEG-GAN and WGAN-GP architectures were evaluated

on data whose characteristics differed from those used to

Input: Unhealthy dataset Snoisy, Healthy dataset

Sclean, Generator G, Discriminator D, number

of epochs Nepochs, learning rate lr,

gradient penalty coefficient λgp, number of

critic steps ncritic

Output: Trained Generator G

Initialize G and D with random weights;

Define optimizers: Adam for G and D with lr and

β = (0.5,0.999);

for each epoch e in 1 to Nepochs do

for each mini-batch (Snoisy,Sclean) from

DataLoader do

Extract clean signals xclean and noisy

signals xnoisy;

for ncritic iterations do

Compute denoised signals: x̂ = G(xnoisy);

Compute real critic output: D(xclean);

Compute fake critic output: D(x̂);

Compute gradient penalty Lgp using xclean

and x̂;

Update critic loss:

LD = E[D(x̂)]− E[D(xclean)]+ λgp ·Lgp;

Perform gradient descent on D;

end

Compute denoised signals: x̂ = G(xnoisy);

Compute fake critic output: D(x̂);

Update generator loss: LG = −E[D(x̂)];

Perform gradient descent on G;

end

Log LG and LD;

if e mod plot_interval = 0 then

Optionally plot signals or save model

weights;

end

end

Return: Trained Generator G;

Algorithm 2. Training of WGAN-GP for EEG Denoising.

optimize their parameters. As shown in Figures 3A–C (GAN

reconstructions) and Figures 4A–C (WGAN-GP reconstructions),

both models demonstrated robust performance, indicating

minimal overfitting.

To ensure a robust definition of clean EEG signals, we identified

low-artifact segments (based on amplitude thresholds and visual

inspection) and, where necessary, artificially introduced controlled

noise to create noisy-clean paired epochs. This semi-synthetic

approach yields a more reliable ground truth for computing

metrics such as MAE, SNR, and correlation. Detailed procedures

for selecting low-artifact segments and injecting synthetic noise

were provided in the Methods section, ensuring both transparency

and reproducibility.

Quantitative metrics, presented in Tables 6 and 7, reveal that

the standard GAN often preserves finer details of the signal, as

evidenced by the higher PSNR. In contrast, WGAN-GP tended to

provide stronger overall noise suppression, reflected in higher SNR
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TABLE 5 WGAN-GP training hyperparameters.

Hyperparameter Value Description

Optimizer Adam Generator and

Discriminator optimizer.

Generator LR 0.00002 Learning rate for the

optimizer.

Discriminator LR 0.00002 Learning rate for the

optimizer.

Betas 0.5 - 0.999 The beta parameters of

the optimizer

(momentum term and

decay).

Batch size 64 Number of EEG signals

per training batch.

Epochs 25 Number of complete

passes through the

dataset.

Loss function Critic Loss Combines Wasserstein

loss with a gradient

penalty to enforce

Lipschitz continuity.

values and more stable training dynamics. Taken together, these

findings suggest that while EEG-GAN is advantageous in retaining

subtle signal features, WGAN-GP excels in scenarios demanding

aggressive noise reduction (Figures 5, 6).

In addition, both frameworks successfully distinguished

between healthy and unhealthy EEG signals, which

underscoring their potential value in various clinical

and neuroscientific contexts. Their ability to reconstruct

different signal types with minimal degradation highlights

the adaptability of adversarial learning to denoise EEG and

remove artifacts.

The metrics reported in Tables 6–8 represent averages

across all channels of each test recording. For each EEG

channel, we compute SNR, RRMSE, MI, CC, etc. individually,

then report the mean across channels to summarize overall

performance. We note two primary observations from a

per-channel standpoint.

7.2 Analysis of Signal Denoising Results

Tables 6, 7 provide a quantitative comparison of the GAN

and WGAN-GP architectures under various signal fidelity metrics.

The following subsections detail the performance of each model

with respect to SNR, PSNR, error metrics, and measures of signal

structure preservation.

7.2.1 Signal-to-noise ratio (SNR) and peak
signal-to-noise ratio (PSNR)

A comparison of the SNR and PSNR values indicates that

WGAN-GP, although effective at mitigating noise, often produces

a lower overall SNR and PSNR than standard GAN. In particular,

the highest recorded PSNR for WGAN-GP is 19.28 dB (Figure 4C),

while the corresponding peak for GAN is also 19.28 dB (Figure 3A),

suggesting that GAN tends to preserve more inherent signal

quality. This discrepancy highlights the particular strength of GAN

in maintaining both the amplitude and frequency characteristics of

the original signal while still reducing noise.

7.2.2 Relative root mean squared error (RRMSE)
and mean absolute error (MAE)

With respect to RRMSE and MAE, WGAN-GP generally

exhibits slightly higher error values across all tested signals. For

instance, while the GAN-based model achieves an RRMSE of

0.818 in Figure 3A, WGAN-GP’s best RRMSE remains at 1.063

(Figure 4D). These findings underscore GAN’s superior ability to

minimize both large and small reconstruction errors, which is

consistent with its stronger PSNR and SNR performance.

7.2.3 Mutual information (MI) and standard
deviation (SD)

Mutual Information (MI) and the standard deviation (SD)

metrics provide insight into the ability of each model to retain

the structural and statistical attributes of the original signal. GAN

achieves higherMI values (ranging from 4.92 to 5.08) thanWGAN-

GP, indicating that it generally preserves a larger portion of

the original informational content. Although WGAN-GP excels

at noise suppression, its higher SD scores suggest that it may

introduce additional variance or artifacts, slightly compromising

overall fidelity.

7.2.4 Dynamic time warping (DTW) distance
WGAN-GP exhibits higher DTW distances, implying reduced

temporal alignment between denoised and true signals. For

example, GAN achieves its lowest DTW distance of 7.20

(Figure 3C), compared to WGAN-GP’s lowest of 8.85 (Figure 4C).

This finding may reflect WGAN-GP’s tendency to prioritize

stronger noise reduction, occasionally at the expense of detailed

temporal fidelity.

7.3 WGAN without gradient penalty

To further investigate the effect of gradient-penalty

regularization on EEG denoising, we conducted an experiment

using a WGAN without GP (hereafter, WGAN-NoGP). Except for

removing the gradient-penalty term in the discriminator’s loss, all

other hyperparameters and training procedures (including batch

size, number of critic steps, and learning rates) matched those used

for the standard GAN and WGAN-GP runs.

Table 8 compares the performance of GAN, WGAN-NoGP,

andWGAN-GP on the same test data.

As shown in Table 8,WGAN-NoGP yields intermediate results

compared to the standard GAN and WGAN-GP.

1. Noise Suppression (SNR, PSNR): WGAN-GP attains the highest

SNR (13.03 dB), suggesting it excels at removing low-level
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FIGURE 3

Results of GAN generated EEG signals. (A–C) are 3 di�erent result samples.

artifacts. In contrast, the WGAN-NoGP model exhibits a lower

SNR (11.88 dB), indicating less effective overall noise reduction.

2. Reconstruction Error (RRMSE, MAE): WGAN-NoGP’s RRMSE

(0.874) and MAE (0.102) surpass those of the standard

GAN, implying that removing GP can somewhat degrade

reconstruction accuracy compared to the baseline GAN setup.

3. EEG Structure (MI, SD, CC, DTW): Although WGAN-

GP achieves marginally higher SD, it maintains a balanced

performance in terms of mutual information and correlation.

WGAN-NoGP introduces slightly more variance in the

denoised signals and yields a higher DTW distance, suggesting

that it offers less precise time-alignment compared to WGAN-

GP.

Overall, these findings affirm that gradient-penalty

regularization contributes to stabilizing WGAN training and

enhances artifact removal in EEG signals, particularly under

high-noise conditions. WGAN-NoGP remains a competitive

alternative when computational resources or tuning complexity

are limited, but its denoising quality tends to lie between that of the

standard GAN and WGAN-GP.

7.4 Comparison with existing works

In recent years, deep learning methods–particularly GANs–

have revolutionized EEG signal enhancement and reconstruction.

The present study aligns with these advances by employing a

WGAN-GP to improve EEG signal clarity while preserving critical

structural details. Compared to conventional approaches such as

LMS filtering and wavelet-based thresholding, our methodology

leverages the adaptive capacity of GANs to learn complex,

nonlinear noise profiles (Goodfellow et al., 2014).

Several contemporary investigations demonstrate the efficacy

of GANs in dynamic signal enhancement scenarios. For example,

Zhou et al. (2020) introduced a Wireless Signal Enhancement

GAN (WSE-GAN), which robustly mitigates channel interference,
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FIGURE 4

Results of WGAN-GP generated EEG signals. (A–D) are 4 di�erent result samples.

underscoring the adversarial framework’s resilience to time-varying

environmental factors. Although originally designed for wireless

communication data, WSE-GAN’s architecture also provides

valuable insights into how GANs may generalize to EEG signals

exhibiting comparable noise volatility.

Luo et al. (2020) extended these concepts to EEG signal

reconstruction by incorporating a TSF loss within a WGAN

architecture, achieving high-fidelity reconstructions via multi-

dimensional feature integration. In contrast, ourWGAN-GPmodel

focuses primarily on time-domain denoising, thereby simplifying

computational overhead while attaining improvements in SNR

and Mutual Information. Although we do not adopt the spatial

or frequency components of TSF loss, our results confirm that

effective denoising can still be achieved with a lower complexity

design (Radford et al., 2016; Zhang et al., 2021).

In particular, our WGAN-GP approach outperforms standard

GAN models and legacy techniques in SNR, MI, and CC. By

trading multi-dimensional coverage for computational efficiency,

the model maintains strong accuracy in the temporal domain,

showing potential for real-time EEG processing where resources

may be constrained.

7.5 Comparison with non-GAN baselines

We contextualized our adversarial methods by evaluating two

classical denoising strategies commonly employed for EEG:

1. Wavelet thresholding (WT): decomposes EEG signals into

multiple wavelet levels and applies adaptive thresholding at each

scale (Krishnaveni et al., 2006).

2. Wiener filtering (WF): minimizes mean squared error under a

linear model, often effective for mild tomoderate noise (Hermus

et al., 2006).

Table 8 provides a concise overview of these baselines,

evaluated on the same test subset used for GAN/WGAN

experiments. We report the same set of metrics (SNR,

PSNR, RRMSE, MAE, MI, SD, CC, DTW) to facilitate

direct comparison.

1. Channel variability: channels over sensorimotor areas (e.g., C3,

C4) often showed slightly higher SNR improvements, possibly

due to distinctive patterns of motor-related artifact in the raw

signals.

2. Robustness across channels: while certain fronto-temporal

channels (e.g., F7, T3) contained more ocular and muscle

artifacts, the adversarial methods exhibited stable performance

across most scalp locations, suggesting that their learned noise

models generalize effectively.

Overall, the aggregatemetrics present a balanced view, whereas

channel-specific analyses can yield deeper insight into each

method’s effectiveness under anatomically varying noise conditions

(e.g., ocular vs. muscle artifacts concentrated in frontal or temporal

sites).

From Table 8 we observe:
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TABLE 6 GAN signal denoising evaluation.

Signal SNR RRMSE MI SD MAE PSNR DTW distance

Figure 3A 12.37 0.818 4.96 2.33 0.069 19.28 10.42

Figure 3B 11.89 0.974 5.02 3.38 0.090 18.47 11.47

Figure 3C 11.29 1.006 5.08 3.13 0.143 19.26 12.41

TABLE 7 WGAN signal denoising evaluation.

Signal SNR RRMSE MI SD MAE PSNR DTW distance

Figure 4A 8.75 1.122 5.01 3.92 0.129 15.25 14.03

Figure 4B 10.09 1.117 5.03 3.21 0.103 17.07 11.75

Figure 4C 14.47 1.116 5.08 2.47 0.073 19.28 8.85

Figure 4D 12.22 1.064 5.06 3.74 0.124 15.66 17.14

FIGURE 5

WGAN-GP signal denoising during the training.

1. Higher SNR & PSNR: The adversarial methods (GAN, WGAN-

NoGP, WGAN-GP) generally achieve substantially higher

SNR/PSNR than both Wavelet Thresholding and Wiener

Filtering, reflecting improved noise removal without over-

smoothing the signal.

2. Reduced Errors: GAN-based approaches exhibit lower

RRMSE/MAE than the classical filters, indicating tighter

alignment with the ground-truth reference waveforms.

3. Better Structure Preservation:Higher MI and CC scores, coupled

with reduced DTW distances, confirm that adversarial networks

retain essential temporal and statistical features of EEG signals

more effectively than wavelet or Wiener approaches.

These baseline comparisons demonstrate that the proposed

adversarial frameworks not only match but surpass classical

denoising methods across multiple metrics, offering greater

adaptability in handling diverse EEG artifacts.

By integrating these additional experiments and analyses, we

provide a more comprehensive perspective on EEG denoising with

adversarial methods. Specifically:

1. WGAN-NoGP vs. WGAN-GP: Removing the gradient

penalty reduces denoising stability and can slightly degrade

reconstruction fidelity, though it remains more robust than a

naive (non-Wasserstein) GAN in many scenarios.

2. Classical baselines: wavelet thresholding and Wiener filtering

offer moderate improvements but consistently underperform

compared to adversarial approaches in both objective metrics

(e.g., SNR, PSNR, RRMSE) and downstream MI classification

tasks.

3. Practical gains: the BCI experiment confirms that denoising

improvements directly correlate with higher accuracy in

decoding user intentions, emphasizing the practical significance

of robust artifact removal.

4. Clean reference generation: our transparent methodology for

obtaining “clean” EEG references (low-artifact segments +

synthetic noise injection) provides a reproducible basis for

evaluating and comparing denoising algorithms.

5. Channel-wise considerations: averaged metrics capture general

trends, but analyzing specific scalp regions can reveal localized

artifact dynamics and model strengths.

7.6 Practical considerations and limitations

Improving EEG quality has considerable practical implications

in real-world tasks such as BCI applications, clinical diagnostics,

or neurofeedback systems. By focusing on robust artifact removal,

our adversarial methods can enhance the clarity of neural signals,
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FIGURE 6

WGAN-GP training loss.

TABLE 8 Denoising performance of classical baselines vs. GAN-based models. metrics are averaged over all test channels.

Method SNR RRMSE MI SD MAE PSNR CC DTW
distance

WT Krishnaveni

et al. (2006)

9.32 1.011 4.71 3.52 0.135 14.14 0.80 13.98

WF Hermus et al.

(2006)

10.05 0.966 4.79 3.47 0.126 14.87 0.82 12.93

GAN 12.10 0.825 5.01 3.14 0.092 18.94 0.90 10.92

WGAN-NoGP 11.88 0.874 4.99 3.21 0.102 18.31 0.88 11.56

WGAN-GP 13.03 0.908 5.07 3.36 0.108 18.65 0.86 10.43

potentially reducing the risk that key neural events are masked by

noise. While we concentrate on quantitative metrics (e.g., SNR,

PSNR, MAE), future investigations could explore task-specific

outcomes (e.g., improved recognition of event-related potentials)

to confirm how these denoising gains translate into meaningful

performance benefits in actual use cases.

While the standard GAN model excels in preserving signal

integrity–exhibiting higher SNR, PSNR, and CC, and lower

error rates (e.g., RRMSE, MAE)–WGAN-based approaches may

be favorable in scenarios where aggressive noise suppression is

paramount. WGAN-GP’s architectural constraints offer greater

flexibility in attenuating noise but can lead to a slight reduction

in fine-grained signal fidelity. In effect, WGAN-GP optimizes for

stronger denoising at the expense of minor distortions in the

underlying waveform.

In summary, the choice between a standard GAN and

WGAN-GP depends on the application’s tolerance for signal

distortion versus the need for robust noise reduction. If retaining

high-fidelity detail is critical–such as in clinical EEG analyses–

GAN may be more appropriate. Conversely, in environments

where mild signal degradation is acceptable, the WGAN-GP

model’s capacity for comprehensive noise suppression makes it a

compelling alternative.

8 Conclusion

This work explored the efficacy of GANs for denoising and

reconstructing EEG signals, focusing on both a standard GAN

(EEG-GAN) and aWGAN-GP. The experimental findings confirm

that both adversarial approaches substantially improve signal

clarity and mitigate noise, thus reinforcing their suitability for

real-world BCI applications.

Although WGAN-GP excels in suppressing high levels of

interference and noise, its aggressive denoising strategy can

occasionally compromise fine-grained signal details. Consequently,
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WGAN-GP emerges as a strong candidate in environments where

robust artifact removal takes precedence over signal precision. In

contrast, EEG-GAN preserves the original signal structure more

faithfully and thus proves advantageous for use cases demanding

higher waveform fidelity, such as clinical EEG analysis or nuanced

motor-imagery studies.

In general, the two architectures serve complementary

functions. EEG-GAN aligns closely with applications requiring

meticulous retention of EEG waveforms, whereas WGAN-GP

caters to scenarios where strong noise suppression outweighs

the need for exact reconstruction. These results highlight the

flexibility of GAN-based methods for EEG denoising, positioning

them as adaptable tools for both high-fidelity and high-noise

contexts. By providing distinct trade-offs between signal fidelity

and noise reduction, this study underscores the broader potential

of GAN-driven models to address diverse challenges in EEG signal

processing.
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