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Objective: Post-stroke cognitive impairment (PSCI) is one of the core symptoms

following a stroke, which severely affects the prognosis of patients. This

systematic review and meta-analysis aim to explore the effectiveness and

safety of multi-site non-invasive brain stimulation (MS-NIBS) in enhancing the

cognitive function of PSCI patients.

Methods: A comprehensive search was conducted in multiple databases,

including MEDLINE (PubMed), Embase, Web of Science, China National

Knowledge Infrastructure (CNKI), Wanfang Data, VIP Database for Chinese

Technical Periodicals, and Chinese Biomedical Literature Database (CBM). The

search was performed up to 18 January 2025. The inclusion criteria for this

meta-analysis were randomized controlled trials (RCTs) of MS-NIBS for PSCI.

The primary outcome measure was the change in the global cognitive scale,

while the secondary outcomes focused on improvements in attention, memory,

visuospatial perception, and activities of daily living. The Cochrane Risk of Bias

Tool was used to assess the quality of each eligible study. Meta-analysis and bias

analysis were performed using RevMan (Version 5.3).

Results: A total of 6 RCTs involving 416 samples were included in this paper.

The findings from the primary outcomes revealed that the MS-NIBS group had

significantly higher scores on the Montreal Cognitive Assessment (MOCA) of

the cognitive composite scale (MD = 1.84, 95% CI = 1.21–2.48, p < 0.00001,

I2 = 36%) compared to the single-site non-invasive brain stimulation (SS-

NIBS) group. As for the secondary outcome measures, as shown by the

Digit Span Test (DST) forward recall (MD = 0.94, 95% CI = −1.11 to 2.98,

p = 0.37, I2 = 97%), DST backward recall (MD = 0.03, 95% CI = −0.24 to 0.29,

p = 0.85, I2 = 0%), Clock Drawing Test (CDT) (MD = 1.65, 95% CI = 0.77–2.53,

p = 0.0003, I2 = 54%), Trail Making Test (TMT) (MD = 4.2, 95% CI = 2.71–5.69,

p < 0.00001, I2 = 14%), and Modified Barthel Index (MBI) for activities of daily

living assessment (MD = 3.71, 95% CI = −4.77 to 12.20, p = 0.39, I2 = 75%),

the MS-NIBS group showed improvements in visuospatial and trail-making test

abilities. Subgroup analysis of the main outcome demonstrated that multi-site
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transcranial magnetic stimulation (MS-TMS) (MD = 2.1, 95% CI = 1.38–2.81,

p < 0.00001, I2 = 48%) and the combined treatment of TMS and transcranial

direct current stimulation (tDCS) (MD = 1.91, 95% CI = 0.81–3.01, p = 0.0007,

I2 = 0%) exhibited superior efficacy compared to SS-NIBS.

Conclusion: This meta-analysis provides evidence supporting that MS-NIBS, as

an emerging neuromodulatory tool, is superior to SS-NIBS in improving the

overall cognitive abilities of stroke patients. However, given the limited number

of included studies, it is necessary to further validate these findings through

large-scale, multi-center, double-blind, and high-quality RCTs.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,

CRD42025640015.
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1 Introduction

Stroke is a common cerebrovascular disease. The newly
published Global Burden of Disease report shows that the annual
prevalence of stroke among the Chinese population is 2,022 per
100,000 the annual incidence is 276.7 per 100,000 and the crude
mortality rate is 153.9 per 100,000 (Ma et al., 2021). Among
them, approximately half of the patients experience cognitive
impairment to varying degrees (Huang et al., 2022). The mortality
rate of patients with post-stroke cognitive impairment (PSCI) is
significantly higher than that of patients with ordinary stroke.
Moreover, the disability rate increases, which severely affects
the patients’ quality of life and health status, imposing a heavy
economic burden on families and society (Dowling et al., 2024;
Ma et al., 2024). At present, there are no approved drug therapies
specifically for PSCI or dementia. Non-drug therapies such
as cognitive rehabilitation, psychological intervention, physical
exercise, and acupuncture have shown unsatisfactory therapeutic
effects (El Husseini et al., 2023). Non-invasive brain stimulation
(NIBS), as an emerging treatment method, has been shown to
potentially improve the cognitive function of patients with PSCI
(Hara et al., 2021).

Transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS) are two of the most
representative methods within NIBS (Tereshin et al., 2022; Wang
et al., 2022). TMS utilizes the pulsed magnetic field generated
by a coil to selectively enhance or inhibit the excitability of the
cerebral cortex. This alters the activity of neurons and regulates the
functional connectivity within the brain network, thus influencing
cognition (Lefaucheur et al., 2020; Valero-Cabré et al., 2017).
Similarly, tDCS can also induce excitatory or inhibitory effects.
Specifically, anodal tDCS can increase the excitability of the
cerebral cortex in the target area, while cathodal tDCS produces
an inhibitory effect (Woods et al., 2016). These effects, in turn,
trigger changes in synaptic plasticity, such as inducing long-term
potentiation and long-term depression, enhancing neural plasticity,
and thus influencing cognition (Shepherd and Huganir, 2007).

Current evidence indicates that single-pulse TMS (including
paired-pulse paradigms) serves as a diagnostic tool for investigating
brain function, whereas repetitive TMS (rTMS) is employed to
induce neuroplastic changes that persist beyond the stimulation
period (Klomjai et al., 2015). Although a Large number of current
studies have shown that both rTMS and tDCS can improve
the cognitive function of patients with PSCI (Gao et al., 2023;
Chen et al., 2024), conflicting results have also been reported in
some studies (Park et al., 2013; Fregni et al., 2006; Kim et al.,
2010). Search for effective neuromodulatory strategies to treat
PSCI is still in the exploratory stage. Single-site non-invasive brain
stimulation (SS-NIBS) refers to a neural modulation method that
applies stimulation to a single target in the brain region through
non-invasive techniques such as TMS, tDCS, and transcranial
alternating current stimulation (tACS). Each stimulation only acts
on a predefined brain region [such as the left DLPFC or the primary
motor cortex (M1)]. It can only change local neural activities
(such as cortical excitability), rather than the interactions within
the brain network. Multi-site non-invasive brain stimulation (MS-
NIBS), by contrast, can combine various stimulation methods such
as TMS, tDCS, and tACS. It can regulate multiple brain regions
by stimulating the neural activities in these regions simultaneously
or in sequence (Guo et al., 2022). It is a non-invasive neural
modulation technique for regulating the functions of distributed
neural networks. This technique overcomes the limitations of
single-site stimulation and brings new hope to neural modulation.

In previous studies, brain-stimulation techniques typically
focused on a single target brain region. However, brain regions
do not operate in isolation but work in concert as a network
(Sporns et al., 2004). Therefore, the use of MS-NIBS to act on
a network rather than a single brain region is gaining increasing
attention (Fischer et al., 2017). To this end, several strategies
have been proposed: a. Sequential single- modality stimulation
strategy, such as cerebellar-cerebral tDCS (Grimaldi et al., 2014).
b. Synchronous single-modality stimulation strategy, for example,
using multiple electrodes in network tDCS electrode combinations
(Fischer et al., 2017). c. Simultaneous dual-modality stimulation
strategy, like applying 10 Hz rTMS to the primary motor cortex
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(iM1) and cathodal tDCS to the primary motor cortex (cM1)
(Cho et al., 2017); d. Oscillatory stimulation strategy, such as
dual-site transcranial alternating-current stimulation (tACS) to
regulate inter-regional phase synchronization (Polanía et al., 2012);
e. Cortico-cortical paired associative stimulation (cc-PAS) strategy
to modulate cortical excitability and behavior (Rizzo et al., 2009).
Multi-site stimulation may have the potential to simultaneously
promote recovery in multiple domains and their interaction even
super-additive effects.

Multi-site non-invasive brain stimulation, which emerges as
a novel therapeutic modality, has exhibited preliminary efficacy
in stroke rehabilitation, depression treatment, and cognitive
enhancement (Ren et al., 2024; Lefaucheur et al., 2020; Valiengo
et al., 2013). In stroke rehabilitation, research has revealed that the
bilateral rTMS group demonstrated significantly more substantial
improvement in the Brunnstrom Recovery Stage compared to the
10 Hz rTMS group (Sasaki et al., 2014). In the context of depression,
research has shown that the sequential application of both high-
frequency left-side rTMS and low-frequency rTMS to the right
prefrontal cortex exhibits substantial treatment efficacy in patients
with treatment-resistant major depression. The treatment response
accumulates to a clinically significant level over a 4 to 6 week
course of active treatment (Fitzgerald et al., 2006). In terms of
cognitive enhancement, research indicates that 10 Hz rTMS was
applied to the frontal and parietal targets within the cognitive
attention network (cingulo-frontal-parietal, CFP) of the subjects,
and then the subjects underwent functional magnetic resonance
imaging (fMRI) examination. As a result, activation of varying
degrees was observed in the brain regions related to cognition
(Feng et al., 2019). Zhang et al. (2019) selected the left DLPFC and
the left temporal lobe as the stimulation targets for patients with
Alzheimer’s disease (AD). The results showed that the cognitive
function and emotional state of the patients were improved to
varying degrees. However, there is currently no meta-analysis
evaluating the effectiveness of MS-NIBS in the treatment of PSCI.
Therefore, the aim of this study was to conduct a meta-analysis to
evaluate the impact of MS-NIBS on PSCI.

2 Data and methods

Due to the fact that this study was a systematic review of
previously published studies, neither patient consent nor ethical
approval was necessary (Higgins and Thompson, 2002). Based
on the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses guidelines (PRISMA) and previously published
protocols, this meta-analysis was carried out (Moher et al.,
2009). Details of the protocol used to perform this system
evaluation have been registered with PROSPERO (reference
number: CRD42025640015).

2.1 Search strategy

In accordance with the PRISMA statement, searches were
conducted in databases such as MEDLINE (via PubMed), Embase,
Web of Science, CNKI, Wanfang, VIP, and the CBM. The
search was conducted up to 18 January 2025, without language

restrictions. Keywords used included “stroke,” “cognitive function,”
“transcranial direct current stimulation,” “transcranial magnetic
stimulation,” etc., the specific search strategy can be found in the
Supplementary material.

2.2 Inclusion and exclusion criteria

Inclusion criteria: (1) Patients with PSCI were treated; (2) the
intervention method of the experimental group was MS-NIBS,
MS-NIBS involves stimulation of ≥ 2 brain regions and common
modalities (rTMS, tDCS); (3) the intervention method of the
control group was single-site or sham NIBS; (4) the outcome
measures in this paper are the efficacy of MS-NIBS in the treatment
of PSCI. the main index is the MOCA score of cognition after
treatment with different stimulation methods, and the secondary
indexes are the scores of the Digit Span Test (DST), Clock Drawing
Test (CDT), Trail Making Test (TMT), and Modified Barthel Index
(MBI); (5) randomized controlled trial (RCT). Exclusion criteria:
(1) insufficient data; (2) publications; (3) the literature with original
data still cannot be found after trying all methods; (4) Poor study
quality (PEDro score < 5).

2.3 Data extraction

Data extraction was conducted individually by both researchers
(HW and DZ), and disputes were resolved by a third researcher
(XW) when they arose. The data included information such as
study design, sample size, patient characteristics (age, gender, stroke
duration, lesion location, stage), treatment regimens (frequency,
intensity, number of pulses, intervention time, stimulation targets),
and outcome measures. If data were missing or unclear, attempts
were made to contact the authors to obtain them. When evaluating
multiple cognitive function assessment scales, data from commonly
used scales such as the MoCA or MMSE were prioritized for
analysis. Data extraction focused on direct retrieval of reported
outcomes (e.g., MMSE, MoCA scores) and statistical parameters
(mean, standard deviation, sample size), as most studies utilized
standardized measures compatible with meta-analysis without
requiring additional data transformation.

2.4 Quality assessment

In this study, to ensure the reliability and scientific nature of
the included studies, the Physiotherapy Evidence Database (PEDro)
scale was used to assess the methodological quality of each included
RCT. The PEDro scale is a professional scale consisting of 11 items
and is widely applied in the field of methodological quality scoring
for RCTs (Cashin and McAuley, 2020). When using this scale for
assessment, except for the first item which is judged as either “YES”
or “NO”, for other items related to internal validity, each item is
awarded 1 point if the requirements are met, with a full score of 10
points. In the assessment of study quality, according to the generally
recognized criteria (Teasell et al., 2003), if a study scores 4 points
or more on the PEDro scale, it is regarded as a high-quality study.
However, for those studies with a score of 6 points or more, but
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with scores of 2 or 3 points, respectively, for the two key criteria of
randomization and concealed allocation, they will be downgraded
to medium-quality studies. Based on the above criteria, studies with
poor quality (scoring less than 4 points) were excluded in this study
to ensure the reliability and validity of the research results.

2.5 Statistical analysis

For studies that used the same scale to assess outcomes,
the number of participants, means, and standard deviations
(SDs) of the experimental and control groups before and after
intervention were analyzed in RevMan 5.3. For continuous
outcomes, if the measurement units were consistent across trials,
the results were presented as the weighted mean difference (MD)
with a 95% confidence interval (95% CI). If the scales were
inconsistent, the standardized mean difference (SMD) with a 95%
CI was used (Murad et al., 2019). When the meta-analysis involved
more than 10 articles, a funnel plot was used to detect publication
bias.

Sub-group analyses were conducted according to factors such
as the type of NIBS (tDCS vs. rTMS) and scales. The Cochrane
Q-test and Higgins’ I2 statistic were used to assess the heterogeneity

among studies (Higgins and Thompson, 2002). An I2 value of less
than 25% indicated low heterogeneity, 25% ≤ I2

≤ 75% indicated
moderate heterogeneity, and an I2 value greater than 75% indicated
high heterogeneity (Higgins et al., 2003). When I2 < 50%, a fixed-
effect model was adopted; otherwise, a random-effect model was
used (Borenstein et al., 2017). Egger’s linear regression test and
funnel-plot visualization were employed to evaluate publication
bias (Egger et al., 1997). Sensitivity analysis was performed to
explore the impact of excluding low-quality studies and cross-
over design studies on the effect size. The significance level for all
statistical analyses was set at p < 0.05. Finally, the effect sizes were
classified as small (0.2), medium (0.2–0.8), and large (0.8).

3 Results

3.1 Study characteristics and
methodological quality evaluation results

The screening flow chart is shown in Figure 1. A comprehensive
search strategy identified 233,113 records from databases, with no
additional records identified through other sources. After removal

FIGURE 1

The flowchart of the literature search and screening process.
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of duplicates, 13,749 records underwent title/abstract screening,
of which 12,089 were excluded due to irrelevance to the research
topic. Full-text assessment was performed for 1,660 articles, with
1,654 excluded for the following reasons: review articles (n = 362),

ongoing/uncompleted studies (n = 275), study protocols/non-RCTs
(n = 402), insufficient data (n = 543), unavailable full texts (n = 60),
and unconvertible data formats (n = 12). Ultimately, 6 studies
(Fang et al., 2022; Luo et al., 2022; Xu et al., 2022; Hu et al., 2023;

TABLE 1 Basic information of the included studies.

Reference N Age (year)
[mean
(SD)]

Gender
[male (%)]

Time post
stroke
[mean
(SD)]

Lesion
side [right

(%)]

Phase Stimulation side Parameter Outcome
messure

Bai, 2024 22 rTMS: 54.59
(14.696)

16 (72.7%) 38.5 (11.875) d NR Subacute Left DLPFC 10 Hz 80% RMT; 1200
pulses; 5 times/w; 3 w

MMSE
MoCA
CDT
DST
CWT
MBI

22 SS-iTBS: 51
(13.259)

19 (86.4%) 22 (11.5) d NR Left DLPFC 5 Hz 80% RMT; 1200
pulses; 5 times/w; 3 w

22 MS-iTBS:
50.68 (13.185)

18 (81.8%) 40.5 (13.25) d NR Left DLPFC; Left
prefrontal lobe; Broca

5 Hz 80% RMT; 1200
pulses; 5 times/w; 3 w

22 Sham: 53.73
(14.736)

14 (63.6%) 51.5 (13.625) d NR No Rehabilitation

Hu et al., 2023 12 rTMS: 63.87
(6.31)

12 (100%) 96.25 (29.11) d NR Chronic Left DLPFC 5 Hz 80% RMT; 1200
pulses; 5 times/w; 4 w

MoCA

10 rTMS-tDCS:
64.49 (7.15)

8 (80%) 95.2 (36.16) d NR AH: A (T5/T6); UH: C
(PPC) (P3/P4) + rTMS

1.2 mA; 5 times/w; 4 w

12 Sham: 61.48
(9.08)

10 (83.3%) 105.83 (44.2) d NR No Rehabilitation

Xu et al., 2022 30 Sham: 57.25
(9.54)

18(60%) 22.86 (14.21) d NR Subacute No Rehabilitation MoCA
DST

30 rTMS: 59.45
(8.32)

19 (63.3%) 24.05 (14.61) d NR 5 HZ: PFC 5 Hz 80% RMT; 1000
pulses; 5 times/w; 4 w

30 rTMS: 58.55
(10.06)

19 (63.3%) 21.55 (11.56) d NR 1 HZ (UH: PFC); 5 HZ
(AH: PFC)

UH: 1 Hz + 5 Hz 80%
RMT; 1000 pulses; 5

times/w; 4 w

Luo et al.,
2022

29 rTMS: 68.50
(4.18)

19 (65.52%) 85.68 (7.70) d 15 (51.7%) Chronic Left DLPFCÀ 10 Hz 80% RMT; 800
pulses; 5 times/w; 8 w

MoCA
TMT
CWT

30 tDCS: 67.29
(4.91)

18 (60%) 88.93 (5.32) d 15 (50%) A (left DLPFC); C
(shoulder)Á

1.2 mA; 5 times/w; 8 w

28 rTMS + tDCS:
69.04 (5.12)

17 (60.7%) 90.74 (6.74) d 15 (53.6%) À + Á À + Áinterval 10 min

29 tDCS + rTMS:
66.73 (4.16)

17 (58.6%) 79.60 (7.69) d 13 (44.8%) Á + À Á + Àinterval 10 min

Fang et al.,
2022

20 MS-tDCS:
63.25 (7.43)

17 (85%) 1.85 (0.93) m 20 (100%) Subacute A: p4; C: p3 0.6 mA; 5 times/w; 8 w CDT
MBI

20 Sham: 61.80
(8.04)

16 (80%) 1.70 (1.08) m 20 (100%) No 30 s stop

Xu et al., 2024 18 Sham: 69.06
(8.94)

13 (72.2%) 75.42 (23.68) d 12 (66.7%) Subacute No No MoCA
MBI
TMT
DST

15 SS-rTMS:
67.53 (10.63)

12 (80.0%) 69.47 (27.84) d 8 (53.3%) Left DLPFC 10 Hz 80% RMT; 2000
pulses; 5 times/w; 4 w

15 MS-rTMS:
67.20 (10.09)

7 (46.7%) 74.63 (24.21) d 4 (26.7%) Left DLPFC + M1 M1: 10 Hz 80% RMT;
1200 pulses; 5 times/w;

4 w

Àleft DLPFC, ÁA(left DLPFC);C(shoulder).
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Bai, 2024; Xu et al., 2024) (N = 416) met all eligibility criteria
and were included in both qualitative synthesis and quantitative
meta-analysis.

The characteristics of enrolled participants and all relevant
information from studies meeting inclusion criteria are presented
in Table 1. The study protocol incorporated NIBS under different
conditions. In one study (Fang et al., 2022), the control group
was a sham-stimulation group. In another study (Luo et al., 2022),
the control group was an SS-NIBS group. In the remaining four
studies (Xu et al., 2022; Hu et al., 2023; Bai, 2024; Xu et al.,
2024), both an SS-NIBS group and a sham-stimulation group were
included.

The study interventions involved various types of NIBS. One
study (Fang et al., 2022) applied tDCS, two studies (Xu et al., 2022;
Xu et al., 2024) applied rTMS, and two studies (Luo et al., 2022; Hu
et al., 2023) applied both tDCS and rTMS. Additionally, one study
(Bai, 2024) applied MS-iTBS. Regarding the outcome measures of
cognitive function, five studies (Luo et al., 2022; Xu et al., 2022; Hu
et al., 2023; Bai, 2024; Xu et al., 2024) reported the MOCA, three
studies (Xu et al., 2022; Bai, 2024; Xu et al., 2024) reported the DST,
two studies (Fang et al., 2022; Xu et al., 2024) reported the CDT,
two studies (Luo et al., 2022; Xu et al., 2024) reported the TMT,
three studies (Fang et al., 2022; Bai, 2024; Xu et al., 2024) reported
the MBI, and only one study (Bai, 2024) reported the MMSE.

The risk of bias assessment unveiled that out of the 6 articles,
Bai (2024), Fang et al. (2022) and Xu et al. (2022) did not follow
the double-blind principle during the intervention, whereas the
remaining papers exhibited high quality (Figure 2).

3.2 Adverse effects

In this study, all participants showed good tolerance to MS-
NIBS, and no significant adverse events occurred. The researchers
did not observe any related adverse reactions, and the patients
did not report any discomfort. This indicates that MS-NIBS
demonstrated high safety and tolerability in the application of
this study, providing strong safety support for subsequent research
and applications.

3.3 Quality assessment

Table 2 presents the methodological quality assessment of the
included studies, which was evaluated using the PEDro scale. All
the included studies scored above 4 on the PEDro scale, indicating
adequate quality. The mean PEDro score was 6.67 (SD = 0.82), with
a scoring range from 6 to 8.

3.4 Meta-analysis results

By collecting post-intervention data from a total of 416
participants in 6 studies, the impact of MS-NIBS on PSCI,
as compared with SS-NIBS, was evaluated. The pooled meta-
analysis revealed that, in terms of overall cognitive function
assessment, the MS-NIBS group had significantly higher scores
on the comprehensive cognitive scale MOCA (MD = 1.84, 95%
CI = 1.21–2.48, p < 0.00001, I2 = 36%) compared with the SS-NIBS
group (Figure 3).

For secondary outcome measures, compared with SS-NIBS,
MS-NIBS demonstrated improvements in visuospatial and trail-
making test abilities, as shown in the following results: the forward
recall of the DST (MD = 0.94, 95% CI = −1.11 to 2.98, p = 0.37,
I2 = 97%) (Figure 4A), the backward recall of the DST (MD = 0.03,
95% CI = −0.24 to 0.29, p = 0.85, I2 = 0%) (Figure 4B), the CDT
(MD = 1.65, 95% CI = 0.77–2.53, p = 0.0003, I2 = 54%) (Figure 4C),
the TMT (MD = 4.2, 95% CI = 2.71–5.69, p < 0.00001, I2 = 14%)
(Figure 4D), and the MBI (MD = 3.71, 95% CI = − 4.77 to 12.20,
p = 0.39, I2 = 75%) (Figure 4E).

Subgroup analysis of the primary outcomes indicated that MS-
TMS (MD = 2.1, 95% CI = 1.38–2.81, p < 0.00001, I2 = 48%) and the
combined treatment of TMS and tDCS (MD = 1.91, 95% CI = 0.81–
3.01, p = 0.0007, I2 = 0%) demonstrated superior efficacy compared
with SS-NIBS (Figure 5).

4 Discussion

This meta-analysis aimed to comprehensively analyze and
summarize existing studies to evaluate the efficacy of MS-NIBS in

FIGURE 2

Risk of bias summary.
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treating PSCI. The research results demonstrated that, compared
with SS-NIBS, MS-NIBS could significantly improve cognitive
function. This is the first meta-analysis to comprehensively report
the improvement effect of MS-NIBS on PSCI. The results showed
that the MS-NIBS group was significantly superior to the SS-NIBS
group in overall cognitive function. Sub-group analysis revealed
that the MS-NIBS group was also superior to the SS-NIBS group in
visuospatial and trail-making test abilities. Moreover, both the MS-
TMS group and the MS-tDCS group were superior to the SS-NIBS
group in overall cognition.

Cognitive impairment poses a significant challenge during the
rehabilitation process of stroke patients. NIBS technology has been
widely used to improve functional deficits following neuronal
injury, and previous research (Khedr et al., 2012) has confirmed
that it has achieved certain results in the treatment of some patients.
However, the selection of stimulation parameters and stimulation
targets plays a crucial role in the efficacy of stimulation therapies
(Klomjai et al., 2015). Previous studies have shown that, compared
with SS-NIBS, MS-NIBS has better efficacy (Wang et al., 2023;
Bentwich et al., 2011; Lee et al., 2016; Long et al., 2018) shown in
Figures 3, 4, the results of this study are reliable and consistent,
strongly confirming the advantages of MS-NIBS. Even though there
were differences in the type of NIBS, the time interval since stroke
onset, and the treatment course, our trials yielded reliable and
consistent results, verifying the benefits of MS-NIBS.

However, the specific mechanisms by which MS-NIBS treats
PSCI remain unclear. Research indicates that after a stroke,
various forms of neural network reorganization occur in both
the ipsilateral and contralateral hemispheres (Eriksson et al.,
2023), and functional recovery is associated with neuroplastic
changes in the brain (Soleimani et al., 2023) changes include
neurogenesis, gliogenesis, axonal sprouting, alterations in the
excitatory/inhibitory balance, and so on. Many scientists have
explored the relationship between cognitive recovery after stroke
and cortical reorganization (Dacosta-Aguayo et al., 2014; Maja,
2013), revealing the importance of the inter-hemispheric activation
balance in the cognitive-related cortex for cognitive recovery in
stroke patients. MS-NIBS exerts its effects on PSCI patients based
on this principle (Di Pino et al., 2014).

The included study (Bai, 2024) found that multi-site
intermittent theta-burst stimulation (MS-iTBS) was superior
to single-site iTBS (SS-iTBS) in improving PSCI. This can be
attributed to the central role of neural connections between
different brain regions in the neural network of the brain in
the realization of cognitive function. MS-iTBS can enhance the
connectivity of the brain network and optimize the efficiency and
accuracy of information transmission. By stimulating brain regions
such as the DLPFC, rostral marginal prefrontal cortex, and Broca’s
area, the connections of brain networks like the frontoparietal
network and limbic system can be strengthened, thereby improving
cognitive function (Yin et al., 2020). Another study (Luo et al.,
2022) showed that the stimulation sequence of applying tDCS first
and then TMS had a better effect, outperforming the use of tDCS
or TMS alone, as well as the sequence of applying TMS first and
then tDCS. This is mainly due to the differences in the mechanisms
of action of tDCS and TMS. TDCS regulates the activity of
cerebral cortical neurons through direct current, while TMS affects
neuroelectrophysiological activities by magnetic field stimulation.
Applying tDCS first can change the resting membrane potential
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FIGURE 3

Forest plot for the meta-analysis comparing the MOCA of MS-NIBS versus SS-NIBS in treating PSCI.

FIGURE 4

Forest plot for the meta-analysis comparing the scores of various scales of MS- NIBS versus SS-NIBS in treating PSCI. (A) Frost plot of DST sequence.
(B) Frost plot of DST inverted sequence. (C) Frost plot of the CDT. (D) Frost plot of TMT. (E) Frost plot of MBI. DST sequence, digit span test forward
recall; DST inverted sequence, digit span test backward recall; CDT, clock drawing test; TMT, trail making test; MBI, modified barthel index.
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FIGURE 5

subgroup analysis of MOCA scores comparing DS-TMS and (tDCS + TMS).

of the cerebral cortex, laying a more favorable neurophysiological
foundation for the subsequent TMS stimulation and enhancing
their synergistic effect (Lefaucheur et al., 2020).

At present, there are two theoretical models for the clinical
application of neuromodulation in rehabilitation for stroke. They
are the bilateral hemispheric competition model that advocates
inhibition in the unaffected hemisphere (UH) or excitation in
the affected hemisphere (AH) (Lefaucheur et al., 2020) and the
vicariation model that advocates excitation in residual brain
area of the AH or the UH (Di Pino et al., 2014). Given the
inconsistency between these two theoretical models in guiding
NIBS treatment, there is currently no consensus on the use of
excitatory or inhibitory modulation in UH (Long et al., 2018).
Therefore, in addition to these two models, a bimodal balance
restoration model has also been proposed (Chen et al., 2023)
model combines the advantages of the inter-hemispheric inhibitory
competition and substitution models. It posits that post-stroke
functional recovery depends not only on inter-hemispheric balance
but also on the functional reorganization and compensation of the
brain network. The model emphasizes that post-stroke recovery is
a dynamic process involving the coordinated action of multiple
brain regions. In a healthy brain, the neural activities of the
bilateral cerebral hemispheres inhibit each other through the
corpus callosum fibers, maintaining a dynamic balance. After a
unilateral stroke occurs, this balance is disrupted, with the UH
becoming over- excited and inhibiting the AH (Bertolucci et al.,
2018). The subsequent recovery process is closely related to the
connections of the brain networks between the bilateral cerebral
hemispheres (Swayne et al., 2008). Therefore, restoring the balance
between the cerebral hemispheres is the key to functional recovery
(Tang et al., 2015). MS-NIBS has significant advantages in achieving
this balance. Five out of the six included studies effectively
corrected the inter-hemispheric imbalance in inter-hemispheric
competition by exciting the AH and inhibiting the UH. Only one
study (Luo et al., 2022) used rTMS and tDCS to simultaneously
stimulate the left DLPFC region. This might be because the
benefits of rTMS in cognition mainly rely on DLPFC stimulation

(Alcalá-Lozano et al., 2018). In addition, a study has found (Lee
et al., 2016), that MS-NIBS can improve cognitive function in
AD patients, especially at the mild/early stage of the disease,
although no time × group interaction was observed. Another
study showed (Nguyen et al., 2017) that long-term treatment
(lasting more than 6 months) could clearly reduce the progression
slope of cognitive decline in these patients. However, despite
the fact that current studies have provided some insights into
the benefits of MS-NIBS for patients with cognitive impairment,
there are still significant knowledge gaps. Further observational
studies incorporating multimodal imaging and neurophysiological
techniques (Sale et al., 2015; Bergmann et al., 2016) are needed to:
(1) validate whether MS-rTMS demonstrates superior long-term
efficacy compared to conventional rTMS in targeted regions, and
(2) elucidate the underlying neural mechanisms of the effects of
MS-rTMS.

Despite the achievements of this study, there are also certain
limitations: (1) The RCTs involve a series of subjective scales
without objective indicators, which increases the heterogeneity
of the indicators; (2) The number of reported studies is limited,
and they are only from the recent 3 years, probably because this
treatment strategy has been propos; (3) There are few foreign
language literatures (only 2 out of 6 papers in this meta-analysis
are from abroad), which may be related to the fact that MS-NIBS
is not included in the latest guidelines for PSCI. Therefore, in
the future, high-quality RCTs with multi-center, large-sample, and
different combinations of stimulation parameters should be carried
out to deeply explore the optimal application schemes of MS-
NIBS at different durations after stroke. Meanwhile, research on
the mechanism of action of MS-NIBS at different targets should be
strengthened to promote the development of this field.

5 Conclusion

In terms of the overall cognitive function recovery, the
treatment effect of the MS- NIBS group was significantly better
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than that of the SS-NIBS group. Moreover, MS- NIBS was superior
to SS-NIBS in visuospatial ability and the trail making test. In
addition, MS-TMS and the combined treatment of TMS and tDCS
were more effective than single-site stimulation in the treatment
of PSCI. This study has some limitations, and further exploration
requires more objective metrics and optimal parameters to enhance
its application.
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