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Introduction: Borderline personality disorder (BPD) is one of the most frequently 
diagnosed disorders in psychiatric settings. Beyond the categorical diagnosis, 
borderline personality traits (BPT) are common in the general population and 
vary along a continuum from mild to severe. While prior research has reported 
functional connectivity alterations in the default mode network (DMN), the salience 
network (SN), and the central-executive network (CEN) in patients with BPD, the 
impairment of these networks in subclinical BPT remain underexplored. To fill 
this gap, this study aims to investigate dynamic functional connectivity alterations 
associated with BPT in a subclinical population. We expect to find abnormal 
connectivity inside the DMN, the SN and in regions ascribed to mentalization 
processes associated with BPT. We also expect these networks to be associated 
with psychological symptoms experienced by borderline patients such as impulsivity 
and anger issues, as well as lack of self-control and neuroticism among others.

Method: An unsupervised machine learning method known as Group-ICA, was 
applied to resting state fMRI images of 200 individuals to predict BPT from the 
temporal variability of independent macro networks.

Results: Results indicated abnormal dynamic functional connectivity inside 
the SN including areas implicated in emotional reactivity and sensitivity, and in 
a network that partially overlaps with the DMN, including regions involved in 
social cognition and mind reading. Specifically, the higher the BPT, the higher 
the temporal variability inside the SN, and the lower the temporal variability in 
a network that includes DMN and mentalization regions. Notably, the BOLD 
variability of the SN correlated with neuroticism, anger problems, lack of self- 
control, and distorted inner dialogue, all symptoms displayed by individuals with 
borderline personality.

Discussion: These findings indicate that abnormalities in resting state networks 
are visible in subclinical populations with varying degrees of borderline traits, 
with impaired DMN and SN. These insights may pave the way for designing 
interventions to prevent the development of the full disorder.
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1 Introduction

Borderline personality traits (BPT) are distributed continuously 
across the population, existing along a spectrum of psychopathological 
severity, with borderline personality disorder (BPD) representing the 
most extreme manifestation. BPD is formally recognized as a 
psychiatric disorder in the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-5), characterized by pervasive patterns of 
emotional dysregulation, impulse control issues, unstable 
interpersonal relationships, distorted inner dialogue, and an 
inconsistent self-image (American Psychiatric Association, 2013). 
These patterns often manifest through impulsive aggressive behavior, 
unstable relationships, self-harming actions, and chronic suicidal 
tendencies (Mendez-Miller et  al., 2022; Dadomo et  al., 2016). 
According to dimensional models of personality disorders (Cuthbert, 
2014; Hörz-Sagstetter et al., 2021), subclinical BPT and their neural 
correlates are likely qualitatively similar but quantitatively less severe 
than those observed in clinical cases. Therefore, there may 
be intermediate phenotypic forms of BPT in the general population 
that do not reach the threshold for clinical diagnosis, but still deserve 
attention due to their potential role as important predictors for the 
development of BPD (Wright et al., 2015; Bozzatello et al., 2021; De 
Panfilis et al., 2019). The identification of neural biomarkers that 
capture subclinical BPT could significantly clarify the mechanisms 
underlying the development of the full disorder. Traditional 
neuroscientific models of BPD attribute impulsivity and poor 
emotional regulation to prefrontal-limbic dysregulation (Perez-
Rodriguez et al., 2018; Herpertz et al., 2018; Krause-Utz et al., 2014). 
These models describe BPD dysfunction in terms of amygdala 
hyperreactivity (Donegan et  al., 2003), combined with impaired 
recruitment of the cognitive executive network (CEN), including the 
dorsolateral and dorsomedial prefrontal cortex (dlPFC, dmPFC), the 
dorsal anterior cingulate cortex (dACC), and the ventrolateral 
prefrontal cortex (vlPFC). This impaired recruitment is 
conceptualized as a failure of “top-down” regulation, where higher-
order cortical regions fail to exert control over the emotional 
responses generated by subcortical limbic structures (Taylor and 
Liberzon, 2007). However, other models of BPD do exist. Beyond the 
top-down control model of BPD, a new line of research has 
highlighted the role of three resting state macronetworks: the default 
mode network (DMN), the salience network (SN), and the central 
executive network (CEN), collectively known as the triple network 
model. Recent studies have confirmed the triple network model by 
showing abnormal functional connectivity in BPD patients when 
compared to healthy controls inside the SN, the DMN and the CEN 
(Doll et al., 2013; Ruocco and Carcone, 2016; Xiao et al., 2024). These 
findings have also been supported by research on structural 
connectivity in BPT (Quattrini et al., 2022; Langerbeck et al., 2023). 
The abnormal connectivity inside the DMN in individuals with 
borderline personality disorder (BPD), which includes anterior and 
posterior medial regions such as the medial frontal cortex and the 
precunesus, was related with an exaggerated focus on autobiographical 
or self-referential information (Beeney et al., 2016; Aguilar-Ortiz 

et  al., 2020), but also with emotion dysregulation, impulsivity 
(Langerbeck et al., 2023; Grecucci et al., 2022, 2023), and a disrupted 
ability to differentiate between self and others (Sharp et al., 2013; 
Beeney et al., 2016). More precisely, the brain regions of posterior 
cingulate cortex (PCC)/precuneus, and the angular gyrus (AG) are 
affected, which are closely linked to social cognition tasks (Schilbach 
et al., 2008; Schurz et al., 2021) and self-related functions (Buckner 
and Carroll, 2007; Messina et al., 2016). These findings have been 
interpreted as a failure of mentalization and social cognition in BPD 
(Schurz et al., 2024). Mentalization refers to the ability to understand 
oneself and others by interpreting social behavior in terms of 
subjective mental states and processes, such as thoughts, feelings, and 
beliefs. This enables an understanding of others’ actions based on 
their likely inner experiences (Fonagy et al., 2011).

While DMN alterations reflect emotional dysregulation, SN 
changes may underlie emotional reactivity. The SN includes both the 
anterior and posterior insula (AI, PI) and the anterior cingulate 
cortex (ACC), and may also contribute to BPD due to its role in threat 
detection, anxiety symptoms (Baggio et al., 2023; under review), and 
for its pivotal role in switching between the CEN and the DMN 
(Goulden et al., 2014). Indeed, BPD patients seem to have difficulties 
in switching attention from baseline resting-state to external, task-
related demands (Doll et al., 2013). In addition, the SN plays a crucial 
role in processing emotions and interoception (Chong et al., 2017) 
and is associated with individual differences in the domain of socio-
emotional sensitivity (Toller et al., 2018). Consistently, the higher 
activation of SN observed in BPD is explained as the excessive 
emotional reactivity which characterize BPD (Denny et al., 2018).

For what concerns the CEN, a network of brain regions including 
the dorsolateral prefrontal cortex (dlPFC) and the lateral posterior 
parietal cortex (PPC), this network plays a key role in executive 
control during goal-oriented actions and is essential for holding and 
processing information in working memory when engaging in tasks 
that demand attention (Menon, 2011; Quattrini et al., 2022). This 
network may be related with lack of control and modulation over 
impulses and emotions, BPD suffer from.

An open question concerns the validity of the available 
neuroscientific models for describing the subclinical borderline 
personality in the form of borderline personality traits (BPT). Two 
alternative hypotheses emerge in this context. The first hypothesis 
suggests that the neural correlates of subclinical BPT are 
qualitatively similar to those observed in BPD, differing only in 
their quantitative expression. The second hypothesis posits that the 
continuum between subclinical BPT and BPD applies only to 
certain networks and the related psychological processes, while 
others may exhibit qualitative differences (Langerbeck et al., 2023). 
This second version was partially confirmed by morphometric 
studies conducted by Langerbeck et al. (2023) who showed that only 
the DMN was affected in BPT but not the SN or the CEN 
(Langerbeck et al., 2023). However, we still do not know whether 
this applies to functional resting state connectivity metrics. In other 
words, it remains unclear whether the same functional brain 
networks associated with BPD are similarly altered in individuals 
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with BPT, or whether these alterations are more restricted. One 
possibility, in line with recent structural findings by Langerbeck 
et al. (2023), is that functional alterations in BPT are confined to the 
DMN, without involving the other networks (SN and CEN). In the 
current study we test this hypothesis confirmatory. The hypothesis 
aligns with the notion that functional disruptions in BPT may differ 
qualitatively to BPD but only in certain networks. However, it is also 
possible that functional changes in BPT extend beyond the DMN 
and include the SN and CEN, resembling the broader network 
dysfunctions observed in BPD. Given the limited prior research on 
functional alterations in BPT, we are exploring this possibility in a 
more open-ended way to see if a more widespread pattern of 
dysfunction is already present at a subclinical level. This possibility 
would be consistent with the assumption that BPT do not differ 
qualitatively from BPD, but only quantitatively.

To investigate this, the first aim of the present study was to test 
the dynamic functional connectivity of all macro-networks for 
predicting BPT in a large subclinical population. We hypothesize that 
altered connectivity will be detected inside the DMN. To investigate 
the possibility of our exploratory hypothesis we also looked at the SN, 
and the CEN. We excluded the possibility of the involvement of other 
well-known macro-networks (visual, sensorimotor, attentional, 
linguistic, cerebellar). Of note, the previous attempts to study the 
brain alterations in BPT did not relate brain alterations to specific 
affective symptoms that characterize borderline personalities. 
Previous studies clearly showed that the networks that differ from 
controls are also related to affective and cognitive symptoms in both 
adults (Grecucci et al., 2022, 2023; Sorella et al., 2019) and children 
(Xiao et al., 2024) diagnosed with BPD. An interesting question is 
whether the same relationship between brain changes and affective 
symptoms observed in fully diagnosed BPD can be  found in 
individuals with borderline personality traits (BPD). Previous studies 
have shown a relationship between BPD and other personality traits 
(Hopwood and Zanarini, 2010), suggesting that at least a few similar 
patterns may occur in individuals with subclinical traits. Therefore, 
the second aim of this study is to test the hypothesis that at least some 
of these three networks may be  associated with psychological 
dysfunctions as measured by the dedicated questionnaires. 
Specifically, we  hypothesize that the higher the alteration in 
connectivity inside those networks, the higher the affective (anger, 
impulsivity), the cognitive (inner dialogue, self-control), and the 
personality symptoms (neuroticism).

To test our hypotheses, resting-state networks were identified via 
an unsupervised machine learning method known as dynamic 
independent component analysis (dICA) applied to resting state 
fMRI images. Recent evidence suggests that connectivity patterns are 
not static, but change over time (Calhoun et al., 2014; Chang and 
Glover, 2009). In line with recent research (Preti et al., 2017), our 
current study expands on previous findings by considering the 
variability of the temporal dynamics of ICA-based networks. The 
study of the dynamic fluctuations in functional connectivity (FC) 
patterns during fMRI scans, referred to as dynamic FC (dFC), has 
become increasingly prominent (Preti et al., 2017; Cavanna et al., 
2018; Shunkai et al., 2022). This method has demonstrated potential 
for predicting changes in brain functions in both normal conditions 
(Long et al., 2023a, 2023b; Omidvarnia et al., 2021; Chen et al., 2017) 
and pathological states (Long et al., 2020; Long et al., 2023a, 2023b; 
Zhang et al., 2016).

2 Methods

2.1 Participants

For this study, we used data from the Max Planck Institute sample 
(MPI-S) dataset (OpenNeuro database, accession number ds000221), 
which contains behavioral as well as structural and functional 
neuroimaging data from 321 German-speaking, healthy subjects 
(Babayan et  al., 2018). Inclusion criteria were completion of the 
questionnaires, and medical eligibility for magnetic resonance 
sessions. Exclusion criteria included the following: history of 
neurological or psychiatric diagnosis [controlled with the SCID-I 
(Wittchen et al., 1995)], drug use, medication such as cortisol, beta 
blockers, chemotherapeutic or psychopharmacological drugs. For 
this study, we  selected participants according to age (20–69), 
availability of structural T1-weighted images and 15-min eyes-open 
resting state data and availability of specific questionnaire scales. The 
final sample included 200 subjects (M = 95, F = 105), mean age of 
32.43 years (SD = 13.92). In this study we used the Personality Style 
and Disorder Inventory (PSSI) to detect the level of BPT, and the 
following questionnaire to psychologically characterize the neural 
findings: the Varieties of Inner Speech Questionnaire (VISQ, 
McCarthy-Jones and Fernyhough, 2011), the State-Trait Anger 
Expression Inventor (STAXI, Spielberger, 1996), the Big-Five 
Personality (NEO-PI, Costa and McCrae, 1992), and the Self-Control 
Scale (Tangney et al., 2004).

2.2 fMRI data

Neuroimaging data were acquired on a 3 T Siemens Magnetom 
Verio Scanner. For our analyses, we took into account T1-weighted 
images, acquired using a MP2RAGE sequence (TR = 5,000 ms, 
TE = 2.92 ms, TI1 = 700 ms, TI2 = 2,500 ms, flip angle 1 = 4, flip 
angle 2 = 5, voxel size = 1.0 mm isotropic, duration = 8.22 min), and 
the 15-min resting-state data (voxel size = 2.3 mm isotropic, 
FOV = 202,202 mm2, imaging matrix = 88 88, 64 slices with 2.3 mm 
thickness, TR = 1,400 ms, TE = 39.4 ms, flip angle = 69, echo 
spacing = 0.67 ms, bandwidth = 1776 Hz/Px, partial Fourier 7/8, no 
pre-scan normalization, multiband acceleration factor = 4, 657 
volumes, duration = 15 min 30 s).

2.3 Preprocessing

Resting state fMRI data pre-processing was conducted using 
CONN (version 2022), SPM12, and the MATLAB Toolbox (version 
2021b). The default pre-processing pipeline in CONN and SPM12’s 
default parameters were used. The pre-processing steps involved 
functional realignment and unwarping, followed by translation and 
centering. Then, Conservative functional outlier detection was 
performed. The functional data were segmented and normalized to a 
2 mm resolution, while structural data underwent translation, 
centering, segmentation, and normalization to a 2 mm resolution. 
Finally, spatial smoothing of both functional and structural data was 
applied using an 8 mm Gaussian kernel. Next, denoising was 
performed to remove confounding variables and artifacts from the 
BOLD signal. Artifacts stemmed from white matter, cerebrospinal 
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fluid (CSF) signals, parameters and outliers defined during the 
pre-processing step, and estimated motion parameters. These factors 
were included as covariates in a regression model. Finally, the time 
series was subjected to temporal bandpass filtering within the 
0.0008 Hz to infinity range.

2.4 Group-ICA

Connectivity analysis was conducted using the data-driven group-
independent component approach (group-ICA) in CONN. The 
group-ICA process included several steps: first, variance normalization 
(pre-conditioning); followed by temporal concatenation of the BOLD 
signal; then, group-level dimensionality reduction; next, fast-ICA for 
spatial component estimation; and finally, back-projection for 
individual spatial estimation. Following default parameters, 20 
independent components were extracted (Calhoun et al., 2001), in line 
with previous studies (Zanella et al., 2022; Ghomroudi et al., 2024). 
Each IC was visually inspected and compared with CONN’s network 
atlas using a spatial match-to-template function to distinguish noise 
components from resting-state networks. The temporal variability and 
frequency of each IC were then determined by calculating the standard 
deviation of the BOLD time series. To control the risk of Type I errors, 
a cluster-size-based false discovery rate (FDR) correction was applied, 
with significance set at p < 0.05 and a voxel threshold of p < 0.001 for 
each analysis. To determine which of the 20 identified ICs were 
predictive of the BPT score, backward stepwise regression analyses 
were conducted using the regression module of JASP (Version 0.16.2; 
JASP Team, 2022). The variability and frequency of the ICs, along with 
age and gender, were included as predictors, with the BPT score as the 
dependent variable (see Figure 1).

3 Results

3.1 Resting-state analysis

Backward Stepwise Regression analysis returned a significant 
profit model (F = 4.717, p < 0.001). The BOLD variability of IC7 
(β = −0.141, p = 0.046) and of IC 10 (β = 0.237, p < 0.001) were 
predictive of BPT. See Table 1 for IC 7 and IC 10 encompass a 
cluster of regions at cluster statistical significance level of 
p < (pFDR corrected) and at the voxel significant level p < (pFDR 
corrected). IC7 includes frontal areas (e.g., middle frontal gyrus), 
temporal areas (e.g., middle temporal gyrus), the hippocampus, 
and largely overlaps with the DMN, and has a negative relationship 
with BPT, the lower the variability, the higher the BPT. IC10 
includes the insula, the cingulate, the thalamus, the amygdala, the 
inferior frontal regions among others, and overlaps with the SN, 
and has a positive relationship with BPT, the higher the variability, 
the higher the BPT. See Table 2 for IC7, and Table 3 for IC10 (see 
Figures 2, 3).

3.2 Correlations

IC10 was significantly correlated with the inner dialogue scale—
other voice subscale (ρ = 0.177 p = 0.012); Self-control scale 
(ρ = − 0.146 p = 0.039), NEO—neuroticism subscale (ρ = 0.0218 
p = 0.002), UPSS negative urgency subscale (ρ = 0.216 p = 0.002), 
Staxi anger-trait (ρ = 0.152 p = 0.032), Staxi anger-out (ρ = 0.142 
p = 0.046) and Staxi anger-control (ρ = − 0.180 p = 0.011).

IC7 was not correlated with any questionnaire considered 
(p > 0.05) (see Figure 4).

FIGURE 1

Methods CONN. Schematic diagram of the Group ICA: the resting-state data was first preprocessed, followed by the extraction of 20 independent 
components using, Group ICA.
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4 Discussion

In the present study, we  tested the competing hypotheses of 
functional alterations within the DMN and functional alteration within 
all three networks, that characterize individuals with subclinical 
BPT. The temporal dynamics of functional connectivity in resting-state 
fMRI data from 200 participants was considered to this aim. Specific 
resting-state macro networks were identified using dynamic 

TABLE 1 Result of backward regression.

Variable β SE t p 95% CI

Variability 

ICA 7

−9.413 × 10−5 4.685 × 10−5 −2.009 0.046 [−0.00019, 

−0.000002]

Variability 

ICA 10

1.689 × 10−4 5.004 × 10−5 3.375 <0.001 [0.00007, 

0.00027]

SE, standard error; CI, confidence interval.

TABLE 2 IC7.

ROI Voxels Peak statistics MNI coordinates (mm)

100% of aMTG r (middle temporal gyrus, ant R) 409 27 (+58, −2, −24)

100% of aMTG l (middle temporal gyrus, ant LL) 449 27.8 (−58, −4, −22)

100% of aITG l (inferior temporal gyrus, ant LL) 335 20.8 (−48, −6, −40)

98% of pMTG r (middle temporal gyrus, post R) 1,330 28.5 (+60, −22, −12)

98% of caudate r 511 22.4 (+14, +10, +10)

98% of caudate l 527 22.7 (−12, +10, +10)

98% of aITG r (inferior temporal gyrus, ant R) 321 21.4 (+46, −2, −40)

93% of SFG l (superior frontal gyrus L) 2,631 50.5 (−14, +20, +56)

93% of pMTG l (middle temporal gyrus, post L) 1,282 28.5 (−60, −26, −10)

90% of MidFG r (middle frontal gyrus R) 2,479 19.8 (+40, +18, +44)

89% of SFG r (superior frontal gyrus R) 2,398 35.4 (+14, +20, +56)

88% of PaCiG l (paracingulate gyrus L) 1,154 35.8 (−6, +36, +24)

88% of IFG oper l (inferior frontal gyrus, pars opercularis L) 672 20.1 (−50, +16, +16)

87% of IFG tri r (inferior frontal gyrus, pars triangularis R) 482 18.6 (+52, +28, +8)

86% of TOFusC r (temporal occipital fusiform cortex R) 703 15.6 (+34, −50, −16)

86% of PaCiG r (paracingulate gyrus R) 1,164 20.5 (+6, +36, +26)

84% of OFusG r (occipital fusiform gyrus R) 749 13.6 (+28, −74, −12)

84% of OFusG l (occipital fusiform gyrus L) 779 8.8 (−28, −76, −14)

83% of MedFC (frontal medial cortex) 817 15.6 (+0, +44, −20)

83% of AG r (angular gyrus R) 1,226 18.3 (+52, −52, +30)

80% of hippocampus r 555 10.7 (+28, −18, −16)

78% of Cereb6 r (cerebelum 6 R) 1,204 19.7 (+24, −62, −24)

78% of AG l (angular gyrus L) 740 16.7 (−50, −56, +28)

76% of pPaHC r (parahippocampal gyrus, post R) 241 10.6 (+24, −30, −18)

73% of pSTG l (superior temporal gyrus, post L) 286 25.8 (−62, −28, +2)

73% of PreCG l (precentral gyrus L) 3,202 30.1 (−36, −10, +52)

72% of PreCG r (precentral gyrus R) 3,070 17.4 (+38, −10, +52)

71% of MidFG l (middle frontal gyrus L) 2,087 31.3 (−38, +14, +44)

70% of TP l (temporal pole L) 1,654 36.3 (−44, +12, −30)

69% of TP r (temporal pole R) 1,633 37.3 (+42, +14, −32)

65% of IFG tri l (inferior frontal gyrus, pars triangularis L) 421 22.6 (−52, +26, +6)

65% of accumbens l 70 15.6 (−10, +14, −6)

62% of aSTG r (superior temporal gyrus, ant R) 171 25.1 (+56, −2, −14)

61% of hippocampus l 462 9.5 (−26, −20, −16)

61% of Cereb1 l (cerebelum crus1 L) 1,397 14.9 (−32, −72, −28)

61% of aSTG l (superior temporal gyrus, ant L) 170 24.4 (−54, −4, −12)

60% of pSTG r (superior temporal gyrus, post R) 249 26.6 (+58, −24, −2)
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TABLE 3 IC10.

ROI Voxels Peak statistics MNI coordinates (mm)

100% of thalamus r 1,269 22.1 (+10, −18, +6)

100% of thalamus l 1,361 18.2 (−10, −20, +6)

100% of SMA r (juxtapositional lobule cortex-formerly supplementary 

motor cortex-R)

714 36.5 (+6, −2, +58)

100% of SMA L (juxtapositional lobule cortex-formerly supplementary 

motor cortex-L)

643 28.5 (−6, −2, +56)

100% of IFG tri r (inferior frontal gyrus, pars triangularis R) 555 40.8 (+52, +28, +8)

100% of IFG oper r (inferior frontal gyrus, pars opercularis R) 686 33.9 (+52, +16, +16)

100% of IFG oper l (inferior frontal gyrus, pars opercularis L) 766 23.8 (−50, +14, +16)

100% of ICC l (intracalcarine cortex L) 640 15.3 (−10, −76, +8)

100% of FO r (frontal operculum cortex R) 313 34.6 (+42, +18, +4)

100% of FO l (frontal operculum cortex L) 355 23.7 (−40, +18, +4)

100% of aSMG r (supramarginal gyrus, ant R) 801 26.9 (+58, −28, +38)

100% of Ver8 (vermis 8) 240 13.9 (+2, −64, −34)

99% of Ver9 (vermis 9) 164 17.1 (+0, −54, −34)

99% of pallidum r 266 16.1 (+20, −4, −2)

99% of pallidum l 299 15.3 (−20, −6, −2)

98% of Cereb6 l (cerebelum 6 L) 1,269 23.1 (−22, −58, −24)

97% of Ver45 (vermis 4 5) 607 15.1 (+2, −52, −6)

96% of Ver6 (vermis 6) 322 14 (+2, −66, −16)

96% of ICC r (intracalcarine cortex R) 725 11.7 (+12, −74, +8)

95% of TP r (temporal pole R) 2,257 26.4 (+40, +14, −30)

95% of TOFusC l (temporal occipital fusiform cortex L) 619 13.4 (−34, −54, −16)

94% of SPL r (superior parietal lobule R) 1,382 17.1 (+28, −48, +58)

94% of IC l (insular cortex L) 1,259 23.5 (−36, +2, +0)

93% of toMTG r (middle temporal gyrus, temporooccipital part R) 1,077 29 (+58, −50, +2)

90% of IC r (insular cortex R) 1,208 26.2 (+38, +4, −2)

90% of Cereb45 r (cerebelum 4 5 R) 550 12.6 (+16, −46, −18)

89% of PO r (parietal operculum cortex R) 479 28.1 (+50, −28, +22)

88% of pSMG r (supramarginal gyrus, post R) 1,092 32.5 (+56, −40, +32)

88% of Cereb8 l (cerebelum 8 L) 1,642 26.3 (−24, −56, −48)

86% of Cereb9 l (cerebelum 9 L) 734 17.9 (−12, −50, −46)

86% of Cereb45 l (cerebelum 4 5 L) 775 13.1 (−14, −46, −16)

84% of IFG tri l (inferior frontal gyrus, pars triangularis L) 543 20.7 (−50, +28, +8)

83% of Ver7 (vermis 7) 161 14.4 (+0, −70, −26)

83% of FOrb r (frontal orbital cortex R) 1,193 37.7 (+32, +24, −16)

82% of putamen r 656 15.5 (+26, +0, +2)

82% of pPaHC r (parahippocampal gyrus, post R) 260 15.5 (+24, −32, −16)

80% of precuneous (precuneous cortex) 4,475 21 (+2, −58, +36)

79% of aSMG l (supramarginal gyrus, ant L) 750 25.3 (−58, −32, +34)

78% of SCC l (supracalcarine cortex L) 57 17.2 (−12, −66, +16)

77% of TP l (temporal pole L) 1,821 22.4 (−44, +12, −28)

77% of pTFusC l (temporal fusiform cortex, post L) 663 14.6 (−36, −34, −22)

77% of PO l (parietal operculum cortex L) 435 24.5 (−50, −32, +22)

76% of TOFusC r (temporal occipital fusiform cortex R) 619 15.1 (+36, −48, −18)

(Continued)
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independent component analysis (dICA). An unsupervised machine 
learning approach and regression analysis were then conducted to 
examine the associations between these networks and borderline traits. 
Our analyses revealed two significant patterns of connectivity associated 
with the severity of BPT. IC10, which was identified as salience network, 
and IC7, which partially overlaps with the DMN, were both associated 
with BPT severity, with IC10 showing the strongest statistical 
association. Of note, the higher the BPT the higher the IC10 and the 
lower the IC7. Interestingly, we did not find clear involvement of the 
CEN in individuals with BPT. This contrasts with our confirmatory 
hypothesis but aligns with our exploratory hypothesis, based on the 
structural findings of Langerbeck et al. (2023), which suggested that 
only some networks may be affected in BPT. One possibility is that CEN 
alterations are only visible for BPD but not for subclinical BPT. In other 
words, alterations in cognitive functions may be minimal at subclinical 
level and become visible only when the trait overcomes the diagnostic 
threshold. Whereas deficits in the DMN and the SN may be visible at 
earlies stages (subclinical BPT). These findings expand our previous 
knowledge on the structural alterations of the DMN in BPT, by showing 
that both the DMN and SN are functionally affected in BPT, but not the 
CEN. In the next sections we describe the results in detail.

4.1 The altered salience network

The strongest pattern of brain connectivity associated to BPT 
showed increased BOLD temporal variability in a set of areas 

belonging to the SN. These areas included subcortical regions (the 
amygdala, the putamen and the thalamus), the dACC, the insula, the 
AG/temporo-parietal junction (TPJ) and the inferior frontal gyrus 
(IFG). The salience network plays a critical role in identifying and 
processing emotionally relevant stimuli (Riedel et al., 2018; Seeley, 
2019), switching between internal and external attention (Goulden 
et al., 2014), and modulating emotional responses (Viviani, 2013; 
Zanella et al., 2022). Increased connectivity in this network has been 
previously linked to excessive emotional reactivity (Toller et  al., 
2018). Consistent with these findings, increased SN connectivity has 
been previously found in BPD (Beeney et al., 2016; Aguilar-Ortiz 
et al., 2020), supporting the clinical observation that individuals 
with BPD often exhibit heightened emotional sensitivity and 
reactivity—a core feature of borderline pathology (American 
Psychiatric Association, 2013). The SN is also crucial for facilitating 
the switch between executive tasks (CEN) and resting state (DMN) 
activity (Goulden et al., 2014). The interaction between the SN and 
the IFG is particularly relevant in this context, given the IFG’s role 
in regulating emotional responses (Messina et al., 2015; Morawetz 
et al., 2017). Emotional interference studies have reported that the 
anterior insula and IFG are involved in emotion-related response 
inhibition (Hung et  al., 2018; Puiu et  al., 2020). Consistently, 
functional connectivity between the insula and the IFG has been 
shown to be  negatively correlated with the efficacy of emotion 
regulation strategies (Li et al., 2021). Building on this prior research, 
sensitivity and reactivity, and their impact on maintaining executive 
control in the presence of emotional responses, seems to 

TABLE 3 (Continued)

ROI Voxels Peak statistics MNI coordinates (mm)

76% of Cereb10 l (cerebelum 10 L) 113 13.3 (−22, −36, −42)

75% of toMTG l (middle temporal gyrus, temporooccipital part L) 651 18.6 (−56, −54, +4)

73% of amygdala r 248 17.8 (+22, −4, −16)

71% of SFG r (superior frontal gyrus R) 1,906 36.3 (+12, +16, +58)

70% of PreCG l (precentral gyrus L) 3,038 24.6 (−36, −8, +46)

69% of Cereb1 l (cerebelum crus1 L) 1,591 23.9 (−32, −68, −28)

67% of SCC r (supracalcarine cortex R) 96 15.1 (+12, −64, +16)

67% of pPaHC l (parahippocampal gyrus, post L) 263 13.7 (−22, −34, −14)

67% of CO l (central opercular cortex L) 660 24.7 (−46, −6, +12)

67% of aITG r (inferior temporal gyrus, ant R) 219 12.7 (+46, +0, −40)

66% of OP l (occipital pole L) 1,734 17.2 (−20, −98, +0)

66% of Cereb6 r (cerebelum 6 R) 1,028 15 (+24, −56, −24)

65% of AC (cingulate gyrus, ant) 1,697 24.7 (+0, +10, +32)

64% of pTFusC r (temporal fusiform cortex, post R) 459 15 (+36, −28, −24)

63% of putamen l 547 11.9 (−26, −4, +4)

62% of FOrb l (frontal orbital cortex L) 1,045 23 (−36, +22, −14)

61% of pSMG l (supramarginal gyrus, post L) 653 24.6 (−58, −46, +24)

61% of PreCG r (precentral gyrus R) 2,627 34.9 (+36, −8, +46)

61% of amygdala l 201 11.2 (−22, −4, −16)

61% of AG r (angular gyrus R) 892 29 (+54, −52, +24)

60% of sLOC r (lateral occipital cortex, superior division R) 2,910 21.1 (+32, −70, +40)
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FIGURE 2

Brain plots of the BOLD temporal variability inside the IC7, partially identified as default mode network.

be distinctive feature of BPD. In the present study, this characteristic 
appears to be  observable even in subclinical presentations of 
BPT. This interpretation of our data is further supported by the 
observed correlations between alterations in the SN and self-
reported scores on various psychological dimensions. Our results 
indicate that greater BOLD temporal variability within the SN is 
associated with higher levels of trait anger and neuroticism, anger 
expression, negative urgency, and inner dialogue, while being 
inversely related to anger regulation and self-control. These findings 
suggest a coherent maladaptive emotional profile characterized by 
increased emotional sensitivity and difficulty in the inhibition of 
negative emotions. This supports the idea that alterations in SN 
functioning are not exclusive to clinical populations but extend 

along a continuum of borderline traits, reinforcing the dimensional 
nature of personality disorders.

4.2 The default mode network

While alterations in the SN reflect increased emotional 
reactivity, changes in the DMN may relate to difficulties in emotion 
regulation. Consistent with this idea, our study identified a second 
pattern of brain connectivity related to BPT, characterized by 
reduced temporal BOLD variability. This reduction was observed 
in regions partially corresponding to the anterior and temporal 
nodes of the DMN, particularly the dmPFC and the 
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temporo-parietal regions. The DMN is active during periods of rest 
and includes two main nodes: the posterior cingulate cortex (PCC) 
and the medial prefrontal cortex. Other involved regions, such as 
the hippocampus and cingulate gyrus, contribute to processing 
semantic memories and internal thought. Meanwhile, the medial 
prefrontal cortex is associated with social cognition, self-reflection, 
and emotion regulation (Menon, 2011). IC7 mainly included 
fronto-medial regions of the DMN and as such are probably 
associated with altered self-representation, emotion regulation and 
self-reflection. Unfortunately, we  did not measure these 
psychological processes, so these considerations remain speculative 
for the moment. Future studies may want to further explore these 
issues. The more temporo-parietal part of IC7 included large areas 
of the superior and middle temporal gyri, extending into the AG/
TPJ. These regions partially overlap with the DMN, but also with 
the so called “mentalizing network,” in which the dmPFC and the 

AG/TPJ serve as the primary components, facilitating the ability to 
represent mental states based on various types of social information 
with differing complexities (Molenberghs et al., 2016; Fehlbaum 
et al., 2022). Within this network, the dmPFC plays a pivotal role 
in integrating higher-order information from others and external 
sources into the self across cognitive domains (Martin et al., 2017; 
Arioli et al., 2021). The dmPFC works in tandem with the AG/TPJ, 
which is more involved in retrieving perceptual knowledge about 
others and reasoning from their perspectives (Van Overwalle, 2009; 
Golec-Staśkiewicz et  al., 2022). Notably, the IFG and temporal 
regions identified in this study also contribute to mentalization and 
social cognition, with the IFG playing a role in controlled retrieval, 
and the temporal areas involved in the storage of semantic 
information critical for social cognition (Schurz et  al., 2014; 
Diveica et al., 2021). This patterns of reduced connectivity within 
the mentalizing network highlight key features of borderline 

FIGURE 3

Brain plots of the BOLD temporal variability inside the IC10, identified as salience network.
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FIGURE 4

Correlations between salience network and psychological questionnaires. The salience network (IC10) was positively correlated with impulsivity 
urgency, anger trait, neuroticism, and negatively correlated with anger control, distorted inner dialogue, and self-control. Neuroticism, anger trait, 
anger outward, inner dialogue and negative urgency were positively correlated with BPT. Self control and anger control were negatively correlated 
with BPT.

personality, particularly affecting the integration and processing of 
complex social and self-referential information, which are central 
to mentalization and social cognition. This finding aligns with 
recent neurobiological models that describe alterations in brain 
functions related to mentalization and social cognition (Schurz 
et al., 2024). However, it is important to note that we did not assess 
the mentalization abilities of our participants. Given these 
limitations, as well as the modest significance of our findings, the 

implications of the mentalization network in subclinical 
participants warrant further investigation in future studies.

4.3 The central execution network

While the IC7 mostly overlaps with the DMN, some portions of 
the dlPFC and IFG, are usually ascribed to the CEN. If this is the case, 
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we may conclude that some CEN alterations are only mildly visible 
in subclinical BPT. However, in our sample we  could not find a 
separate CEN network to be associated with BPT. This could either 
be an indication of true absence in subclinical BPT, but it could also 
reflect methodical short comings, like ICA resolution, lack of power 
or statistical thresholding. Whether a functional involvement can 
be  excluded in subclinical BPT deserves further exploration in 
future studies.

5 Conclusions and limitations

Our study presents a novel predictive model for borderline 
personality traits (BPT) through the analysis of resting-state fMRI 
data, highlighting distinct patterns of functional connectivity that 
may underlie the emotional and cognitive challenges associated with 
BPT. We identified two primary networks: increased BOLD temporal 
variability within the salience network, which correlates with 
heightened emotional sensitivity and reactivity, and decreased 
variability within a part of the default mode network, which may 
hinder the integration of complex social and self-referential 
information. These findings suggest that individuals with BPT, 
including those with subclinical presentations, exhibit a maladaptive 
emotional profile characterized by difficulties in emotion regulation 
and cognitive processing. The question remains as to whether 
functional changes or structural changes occur first and mediate 
alterations in the other. If we assume, the alterations start within the 
functional networks our results fit nicely with prior studies on BPT 
and BPD (e.g., Doll et  al., 2013; Ruocco and Carcone, 2016; 
Langerbeck et al., 2023; Quattrini et al., 2022) suggesting a shift from 
subclinical to clinical presentation when structural alterations 
become visible. This view would support a partial divergence model 
between BPT and BPD, in which qualitative and quantitative 
differences are visible. This view and our results are consistent with 
the assumption that borderline personality is represented on a 
spectrum on which a shift in qualitative and quantitative changes is 
evident (e.g., from alterations in two functional and one structural 
network to alterations in all functional and all structural networks).

While this study offers valuable insights, there are some 
limitations. The first limitation relies on the use of a single 
psychometric tool to measure the Borderline trait. Future research 
could benefit from additional measures of BPT to possibly enhance 
consistency. Moreover, we focused on BOLD temporal variability, but 
other functional connectivity approaches, such as graph measures or 
ROI-to-ROI connectivity, could expand our understanding of the 
functional foundations of BPT. Incorporating self-representation and 
mentalization questionnaire could have helped capture the nuances 
of BPT profiles. In this study we could not find clear evidence for the 
CEN, indicating that the triple network model hypothesis deserves 
further exploration. Finally, longitudinal studies may reveal more 
about the stability of these BPT brain-behavior relationships over 
time. Last but not least, we  used a decomposition of 20 ICs as 
suggested by the toolbox. This is in line with previous studies that 
have shown that using 20 ICs can effectively identify large-scale RS 
networks in an optimal way. Future studies may want to test a 
different number of decomposition.
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