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Requirement of a complex motor 
task to identify neuroplastic 
changes in motor control of the 
lower extremity in patients with 
anterior cruciate ligament 
reconstruction: a fNIRS study
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Introduction: Neuromuscular control is a crucial component in restoring 
dynamic joint stability following anterior cruciate ligament reconstruction 
(ACLR). The central nervous system, as the primary control center, is known 
to exhibit neuroplastic changes. However, motor tasks used to assess brain 
function in ACLR are often limited to simple and static movements. The current 
study aimed to compare brain activation between patients with ACLR (ACLR 
group) and healthy controls (CONT group) during both simple and complex 
motor tasks and to examine the relationship between brain activity and clinical 
functions to explore the underlying mechanisms of neuroplasticity.

Methods: A total of 35 patients with ACLR and 25 healthy controls participated 
in this study. Functional near-infrared spectroscopy was used to capture real-
time brain activation during knee flexion-extension (K-FE) and single-leg squat 
(SLS) tasks. Clinical assessments included quadriceps strength, single-leg hop, 
and self-reported functional outcomes. A two-way mixed-design ANOVA was 
conducted with one between-subject factor (group) and one within-subject 
factor (task). The dependent variable was the change in oxyhemoglobin 
concentration (ΔHbO) across six brain regions.

Results: For the affected limb tasks, the Primary Somatosensory Cortex (S1) and 
Supramarginal Gyrus (SMG) showed significant main group effects (PS1 = 0.035, 
PSMG = 0.002), whereas all brain regions showed significant main effects of task 
difficulty. A significant interaction between group and task was observed in the 
SMG (p = 0.036). For the contralateral limb tasks, no significant main effect of 
group or task was found across all brain regions. Pre-Motor Cortex (PMC), S1, 
Frontal Eye Fields (FEF), and SMG showed significant interaction effects between 
group and task (PPMC = 0.013, PS1 = 0.015, PFEF = 0.015, and PSMG = 0.018). Multiple 
negative correlations were found between increased ΔHbO and functional 
outcomes in various brain regions, depending on the limb and task.

Conclusion: Brain activation increased with task difficulty. Patients with ACLR 
showed lower somatosensory cortex activation during affected limb tasks. Their 
task adaptation was weaker than that of healthy controls, suggesting deficits in 
proprioception and a lack of neural resources for adaptation to task complexity. 
The significant interaction effects observed during the contralateral limb tasks 
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indicated the compensatory role of the contralateral limb. These conclusions 
were supported by correlations with clinical outcomes.
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anterior cruciate ligament reconstruction, real motor task, neuroplastic, difficulty 
adaptation, functional near-infrared spectroscopy

1 Introduction

Anterior Cruciate Ligament (ACL) injuries are the most common 
ligament injuries of the lower extremity, with a worldwide pooled 
incidence of 17.5 injuries per 100,000 person-years (Ponkilainen et al., 
2022). The ACL plays a critical role in maintaining anterior knee 
stability. As a result, injury to the ligament compromises joint 
mechanics, muscular strength, and overall joint function and can 
result in knee pain and effusion (Filbay and Grindem, 2019). ACL 
reconstruction (ACLR) is a standard surgical procedure that 
reconstructs the ligament to restore the stability of the knee joint. 
With over 30 years of surgical development, reconstruction surgery 
has become an effective treatment to relieve pain and restore static 
knee stability (Diermeier et al., 2021), and it is chosen by approximately 
75% of patients (Cevallos et al., 2021).

Despite ACLR, patients still face a higher risk of re-injury 
(Wiggins et al., 2016) and early-onset post-traumatic osteoarthritis 
(PTOA; Liukkonen et al., 2023) than healthy individuals, and return-
to-sport rates remain suboptimal (Lai et al., 2018; Brzeszczyński et al., 
2022). These functional impairments may be due to impaired dynamic 
joint stability, resulting from persistent neuromuscular control deficits 
post-injury or surgery (Wikstrom et  al., 2006). Such deficits may 
be induced by mechanoreceptor damage, pain, and inflammation after 
ACL injuries, tissue trauma, peripheral nerve block during surgery, 
and compensatory motor strategies in the post-rehabilitation 
program, which will affect normal dynamic joint stability and heighten 
injury risk during sport (Criss et al., 2021). Previous evidence has 
identified neuromuscular control deficits in peripheral afferent input 
and motor output, including but not limited to decreased 
somatosensory evoked potentials (SEP; Valeriani et al., 1996) and 
voluntary activation (Tayfur et  al., 2021). As the governor of the 
sensorimotor system, the central nervous system also undergoes 
changes due to altered afferent input and feedback mechanisms (Neto 
et al., 2019; Tayfur et al., 2021). Increasing evidence revealed that 
motor, sensory, and cognitive cortices in patients with ACLR showed 
significant differences compared to healthy controls during motor 
tasks (Grooms et  al., 2017; Lepley et  al., 2019; Criss et  al., 2020). 
However, depending on the selected motor task, the activation 
location or level of functional brain areas varies (An et al., 2019; Jiganti 
et  al., 2020; Kim et  al., 2023; Sherman et  al., 2023). Functional 
magnetic resonance imaging (fMRI) and electroencephalography 
(EEG) are commonly used to observe changes in brain activation. 
However, their inherent limitations restrict their use in dynamic 
motor tasks. fMRI is limited by poor temporal resolution, whereas 
EEG offers high temporal resolution but low spatial resolution. In 
addition, both techniques are vulnerable to motion artifacts, 
particularly during complex or full-body movements, which limits 
their use in simple motor tasks such as knee flexion/extension (Cutini 
and Brigadoi, 2014). Brain activation during complex and realistic 
motor tasks still needs to be explored (Miao et al., 2017).

Functional near-infrared spectroscopy (fNIRS) is a 
neuroimaging technique using optical sensors placed on the scalp 
surface to capture the brain hemodynamics, which offers a portable 
solution for quantifying the brain activation (Kohl et al., 2020). 
fNIRS offers temporal and spatial resolutions that fall in between 
fMRI and EEG, balancing the trade-off between temporal and 
spatial resolutions in quantifying the changes in brain activation 
(Lloyd-Fox et  al., 2010). Such an advantage, along with its 
portability, makes fNIRS a promising technique for studying brain 
activity during dynamic motor tasks. Previous studies have proved 
that the fNIRS outcome has a strong correspondence with the 
fMRI during a motor task (Zinos et al., 2024). Hence, this study 
employed fNIRS to explore the brain activation differences 
between patients with ACLR and healthy individuals during both 
simple-static and complex-dynamic tasks. In the meantime, 
clinical functions were assessed to correlate with cortical activity 
to explore the mechanisms underlying neuroplastic changes. 
We hypothesized that there would be differences in brain activation 
as a function of group and task. Each group was expected to exhibit 
distinct brain activation patterns in response to task difficulty, 
which can be  explained by their correlation with clinical 
functional outcomes.

2 Participants and methods

2.1 Experimental design

This study used a cross-sectional exploratory design to compare 
variables between the two groups. The independent variables included 
one between-group factor [group: ACLR group, healthy controls 
(CONT group)] and one within-subject factor [task difficulty: knee 
flexion-extension task (K-FE), single leg squat (SLS)]. The dependent 
variables were changes in hemoglobin in the detected brain areas and 
clinical functional outcomes.

2.2 Participants

The ACLR group was recruited from patients who underwent 
ACLR at Changhai Hospital via an invitation flyer. To be eligible for 
the study, the patient must be  18–45 years old, have sustained a 
unilateral ACL injury, undergone reconstruction surgery, and have 
completed at least 3 months of recovery after surgery. Patients with a 
history of other lower-limb surgeries or multi-ligament knee injuries 
were excluded. Participants with severe pain or fluid in their knees 
before the formal test were also excluded. The CONT group included 
participants without a history of severe musculoskeletal injuries or 
lower-limb surgery. The dominant leg was defined as the limb used to 
kick the ball.
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The exclusion criteria for all participants were as follows: (1) 
confirmed neurological or psychiatric illness; (2) dominant hand is 
the left hand; (3) acute musculoskeletal injury to other lower-limb 
joints within the past 3 months, resulting in at least one missed day of 
physical activity; (4) diagnosed balance or vestibular disorder affecting 
the body balance; (5) use of medications affecting cognitive functions; 
(6) pregnancy.

From December 2023 to September 2024, 44 patients with ACLR 
(25 left and 19 right) and 27 healthy participants were enrolled. 
Although participants were recruited with the aim of matching group 
sizes, the final sample differed due to eligibility screening and poor-
quality brain signal recordings. Three patients with ACLR (three left) 
were excluded due to not meeting eligibility criteria, six patients with 
ACLR (four left, two right), and two healthy subjects were excluded 
due to inadequate brain signal quality. A priori power analysis using 
G*power software indicated that a minimum of 46 participants were 
required to detect a moderate effect at p  = 0.05 with 90% power. 
Ultimately, 35 patients with ACLR (18 left, 17 right) and 25 healthy 
controls were included in the study.

The study was registered in the Chinese Clinical Trial Register 
portal (ChiCTR2400086199) and was approved by the Ethics 
Committee of Shanghai University of Sport (102772024RT063). All 
methods were conducted in accordance with the latest guidelines and 
regulations of the Declaration of Helsinki.

2.3 Experimental procedure

Participants were asked to get ample sleep, avoid alcohol, caffeine, 
or other stimulants within 24 h of testing, and arrive with clean, dry, 
product-free hair. Before testing, the study’s purpose and procedures 
were explained, and written informed consent was obtained. To 
prevent the influence of clinical function tests on brain activation 
during motor tasks, the testing was conducted in a standardized order 
as follows: cortical activation during motor tasks, single-leg hop, 
muscle strength, and patient-reported outcomes. All tests were 
completed in a single session.

2.4 Data acquisition

2.4.1 fNIRS data acquisition and motor tasks
A portable near-infrared brain imaging system (NIRSport 2, 

NIRx, United States) was used to record hemodynamic signals from 
localized brain regions during motor tasks. The device included 8 
emitters and 8 detectors, arranged to cover both hemispheres with 20 
connected channels (see Figure 1). The inter-optode distance was 
3 cm, and the wavelengths were 760 and 850 nm, with a sampling 
frequency of 10.2 Hz.

Based on the fNIRS Optode Location Decider (fOLD) toolbox 
and the number of optodes, the configuration was positioned to 
overlay the sensorimotor cortical areas (Jurcak et al., 2007; Zimeo 
Morais et al., 2018). Specific locations of optodes and channels are 
shown in Table 1 and Figures 1, 2. This configuration included the 
Pre-Motor and Supplementary Motor Cortex (PMC): ch1, ch3, ch5, 
ch10, ch11, ch13, ch15, ch20; Primary Somatosensory Cortex (S1): 
ch2, ch9, ch12, ch19; Includes Frontal eye fields (FEF): ch4, ch14; 
Prefrontal cortex (PFC): ch6, ch16; Somatosensory Association 

Cortex (SAC): ch7, ch17; Supramarginal gyrus (SMG): ch8, ch18. 
Supplementary Table 1 shows the Montreal Neurological Institute 
(MNI) coordinates and corresponding Brodmann area for each 
optode and channel, which were calculated using NIRS-SPM.

An elastic head cap with the international 10–10 system for EEG 
was used to ensure consistency in the placement of the optode by 
adjusting the size and shape for each subject’s head. The cranial vertex 
(Cz) was used as a marker to place the cup, which was located at the 
intersection of the line between the preauricular points and the line 
from the nasion to the inion. Additionally, the alignment along the 
midsagittal plane was visually checked. The fNIRS optodes were held 
by the cap, fixed by two bands surrounding the subject’s head. Before 
data collection from each participant, the hair beneath the optodes 
was parted, and the optodes were covered with an opaque black cloth 
to ensure the signal quality of each channel.

Participants sequentially accomplished two motor tasks while 
fNIRS signals were measured: knee flexion-extension task (K-FE) and 
single-leg squat (SLS). Both motor tasks were executed in the same 
block paradigm, consisting of the baseline state (30s) and performance 
state (160 s), as shown in Figure 3a (Yücel et al., 2021). During K-FE 
(Figure 3b), the participants were asked to sit on the bed, with hands 
placed at the body’s side, hip and knee flexed at 90°, naturally in the 
baseline state; while in the performance state, they completed 4 trials 
of 21 s knee flexion/extension with 19 s intervals in between trials for 
rest, therefore, a total of 160 s long block. Audio instructions were 
provided during the trial. Upon hearing the “ding” signal, participants 
began extending their legs to 0°, followed by flexing back to 90° within 
3 s. During the interval rest, participants performed the same as in the 
baseline state. During SLS (Figure 3c), the baseline state required the 
participants to stand on the platform with both feet as normal and rest 
two fingertips on the front handrail to help maintain balance (Ageberg 
and Cronström, 2018). Then, the same procedure described in the 
performance state of K-FE was repeated, except that the participant 
lifted and bent the non-testing leg at 90° before 2 s of every block 
started, then squatted the testing leg as deep as possible by keeping the 
trunk upright and standing up within 3 s upon hearing a “ding” signal. 
Participants performed the same as the baseline state during interval 
rest. The fNIRS signal records of each task were initiated with an 
E-Prime program simultaneously, which played the audio instruction 
and marked the start and end of each block in the fNIRS records in 
sync. For each task, the contralateral leg was assessed first, followed by 
the affected leg. To prevent fatigue, a 3–5 min rest period was provided 
between the two tasks.

All procedures were performed in a dim and quiet environment 
to prevent external interruptions that could affect participants’ focus 
and performance. Additionally, to minimize the impact of motion 
artifacts, participants were asked to maintain a stable head posture 
and limit any unnecessary movement, such as clenching teeth or facial 
expressions, during the testing process. Prior to the formal test, two 
or three practice block trials were allowed. If participants made 
mistakes or lost balance during motor tasks, data were discarded, and 
the trial was repeated. Researchers monitored and assisted participants 
to ensure safety and protocol adherence.

2.4.2 Single-leg hop
The single-leg hop test was used to evaluate dynamic knee 

stability (Fitzgerald et  al., 2001). Participants stood behind a 
starting line and hopped forward on the testing leg. Trials were 
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valid if the participant maintained balance for 2 s without touching 
down with the other foot or hands (Gustavsson et  al., 2006). 
Practice attempts were allowed before the formal test. Three valid 
trials were performed for each leg, starting with the 
contralateral leg.

2.4.3 Isokinetic strength acquisition
Quadriceps strength was measured using an isokinetic dynamometer 

(Con-Trex® MJ; Physiomed, Germany) following a validated protocol 
(Maffiuletti et al., 2007). Participants were secured into an isokinetic 
dynamometer using shoulder and lap straps, with their hips and testing 
knees secured at 90° of flexion. During the test, participants were 
instructed to hold on to the handles beside the chair. The alignment 
between the dynamometer rotational axis and the knee joint rotation axis 
(lateral femoral epicondyle) was checked at the beginning of each trial. 
The gravity effect torque was corrected in each participant throughout 
the range of motion. In the formal test, participants performed five trials 
of isokinetic maximal voluntary contractions in the range of 15°-80° of 
knee flexion at a speed of 60°/s for each leg. As part of a standardized 
procedure, participants were allowed to practice one trial prior to the 
formal test. The researchers delivered consistent verbal encouragement 
during the formal test to encourage maximal muscle strength production. 
The contralateral leg was tested before the affected leg.

2.4.4 Subjective knee evaluation
Participants completed two questionnaires, including the 

International Knee Documentation Committee (IKDC) form and 

FIGURE 1

Specific optodes and channel locations (2D).

TABLE 1 Specific optode locations.

Sources Location in 
10–10 
system

Detectors Location in 
10–10 
system

S01 C1 D01 FC1

S02 FC3 D02 CP1

S03 CP3 D03 C3

S04 C5 D04 FC5

S05 C2 D05 FC2

S06 FC4 D06 CP2

S07 CP4 D07 C4

S08 C6 D08 FC6
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ACL Return to Sport Index (ACL-RSI) form. The IKDC assesses knee-
specific function and disability, with higher scores indicating better 
recovery (Higgins et al., 2007). The ACL-RSI evaluates psychological 
readiness, which includes emotions, confidence, and perceived risk. It 
ranges from 0 to 120, with higher scores reflecting greater readiness 
to return to sport (Jia et al., 2018).

2.5 Data processing

2.5.1 Hemodynamics
Data preprocessing was conducted using the Homer2 toolbox in 

Matlab (R2013b, MathWorks Inc., Natick, United States) following a 
standardized order (Gemignani and Gervain, 2021). Raw data were first 

calculated for the coefficients of variation (CV, %) of the dual-
wavelength raw intensity signals to check the signal quality of each 
channel. Based on these calculations, channels with a CV > 15% or trials 
with a CV > 10% were rejected and removed. The optical intensity data 
were then converted into optical density data. Artifact correction was 
detected (tMotion = 0.5 s, tMask = 1 s, SDThresh = 8, AMPThresh = 5) 
and corrected by linear interpolation and Wavelet (Cooper et al., 2012). 
Subsequently, the signal was filtered by a 0.01 Hz and 0.03 Hz bandpass, 
which is approximately the frequency of hemodynamic changes in the 
experimental block (Pinti et  al., 2018). Using the modified Beer–
Lambert Law, optical density data were converted to the concentrations 
of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). While the 
former is sensitive to the 830 nm near-infrared light, the latter is 
sensitive to the 780 nm near-infrared light. Because of the higher 

FIGURE 2

Specific optodes and channel locations (3D).

FIGURE 3

The motor tasks process. The block paradigm of motor tasks (a). The knee flexion-extension task (b) and the single-leg squat (c).
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signal-to-noise ratio and higher reproducibility of HbO, HbO data were 
chosen (Kinder et al., 2022). Since the baseline concentration of HbO 
varied for different people, the mean value of HbO within the 5 s before 
each stimulus onset was selected as the baseline for HbO correction of 
each block, resulting in the magnitude of HbO changes (ΔHbO, 
μmol/L). The 5–20s ΔHbO after every onset of the block was averaged 
for each channel, which represented the magnitude of neural activation. 
The value of task-evoked functional brain activity in each brain area was 
used for the final statistical analysis, which was quantified by averaging 
the block-averaged ΔHbO of the included channels.

2.5.2 Isokinetic strength limb symmetry index
The mean isokinetic peak torque (Nm) was calculated by 

averaging the peak torque of five trials. The quadriceps limb symmetry 
index (Q-LSI) was calculated as the ratio of the mean isokinetic peak 
torque of the quadriceps between limbs (affected limb/contralateral 
limb) × 100%, which was used for the final correlation analysis.

2.5.3 Single-leg hop distance limb symmetry index
The test outcome was measured as the distance from the starting 

line to the heel in the landing position, accurate to 0.1 m. Then, the 
single-leg hop distance limb symmetry index (SLHD-LSI) was 
calculated as the ratio of the mean distance of three trials between 
limbs (affected limb/contralateral limb) × 100%, which was used for 
the final correlation analysis.

2.6 Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics 20.0. 
The normality of the demographic, brain activity, and functional 
outcomes was confirmed using the Shapiro–Wilk test. Independent 
sample t-tests and Mann–Whitney U tests were used to compare 
baseline demographic variables between groups. Specifically, 
independent t-tests were used for normally distributed variables (e.g., 
weight, post-surgery Tegner score), and Mann–Whitney U tests for 
non-normally distributed variables (e.g., age, weight, pre-injury 
Tegner score). Categorical variables, such as gender and dominant leg 
distribution, were compared using chi-squared tests.

For brain activation outcomes (ΔHbO), two-way mixed-design 
ANOVAs were performed with one between-subjects factor (groups: 
ACLR, CONT) and one within-subjects factor (task: K-FE, SLS), 
separately for each limb. When interaction effects were significant, 
simple effects analyses were conducted with Bonferroni correction. If 
normality assumptions were violated, Generalized Linear Models 
(GLMs) were used to assess main and interaction effects instead.

Pearson’s or Spearman’s correlation analyses (depending on 
normality) were used to examine associations between cortical activity 
and functional outcome measures. For all analyses, the level of 
significance was set at p < 0.05.

3 Results

3.1 Demographic data

Table 2 summarizes the demographic data of the participants in 
both groups. In the ACLR group, three types of grafts were included, 

and the mean time since surgery was 7.44 ± 3.59 months. There were 
no significant differences between groups in age, gender, height, 
weight, dominant leg, or pre-injury Tegner (p > 0.05). However, the 
post-surgery Tegner score was significantly lower in the ACLR group 
than in the CONT group (t = 3.526, p = 0.001), indicating reduced 
physical activity among patients with ACLR.

3.2 ΔHbO in different brain areas as a 
function of group and task

Table 3 presents the main effects of group and task, as well as their 
interaction on ΔHbO across different brain regions during the task 
with the affected limb. Significant group main effects were observed 
in the S1 and SMG regions, where the CONT group showed greater 
ΔHbO compared with the ACLR group (S1: [0.98 ± 0.16 vs. 
0.56 ± 0.13] μmol/L; SMG: [0.48 ± 0.08 vs. 0.18 ± 0.06] μmol/L). No 
other brain areas exhibited significant group effects. A significant 
main effect of task was found across all six regions, with SLS producing 
greater ΔHbO values than K-FE (PMC: [2.45 ± 0.23 vs. 0.50 ± 0.24] 
μmol/L; S1: [1.30 ± 0.14 vs. 0.24 ± 0.14] μmol/L; FEF: [0.40 ± 0.06 vs. 
0.09 ± 0.06] μmol/L; PFC: [0.96 ± 0.09 vs. 0.24 ± 0.09] μmol/L; SAC: 
[0.47 ± 0.07 vs. 0.05 ± 0.07] μmol/L; SMG: [0.56 ± 0.07 vs. 0.10 ± 0.07] 
μmol/L). A significant group × task interaction effect was observed 
only in SMG (Figure  4). Simple effects analysis revealed that the 
ΔHbO difference between groups was significant in the SLS task 
(p < 0.001), with greater activation in the CONT group (0.81 ± 0.11 
vs. 0.30 ± 0.09 μmol/L). No significant group differences were 
observed during the K-FE task (p = 0.503).

Table 4 shows the same analysis performed during the task using 
the contralateral limb. There were no significant main effects according 
to group, indicating similar ΔHbO between ACLR and CONT groups. 

TABLE 2 The demographic of the participants (mean ± SD).

Characteristics ACLR 
group 
(n = 35)

CONT 
group 
(n = 25)

t/Χ2 p

Injury side (left/right) 18/17

Graft type: LARS/PLT/

HT

16LARS /7GT 

/12HT

Time post-surgery 

(month)
7.44 ± 3.59

Age (year) 29.6 ± 8.37 25.87 ± 3.20 −1.744 0.081

Gender (male/female) 24/11 17/8 0.002 0.963

Height (cm) 174.4 ± 8.67 173.09 ± 8.21 −0.876 0.381

Weight (kg) 75.02 ± 14.22 69.43 ± 12.72 −1.525 0.133

Dominant Leg (left/

right)
2/33 1/24 0.09 0.764

Tegner activity scale 

(pre-injury score)
6.66 ± 2.33 6.04 ± 1.55 −1.199 0.231

Tegner activity scale 

(post-surgery score)
4.34 ± 1.94 6.04 ± 1.55 3.526 0.001*

ACLR, anterior cruciate ligament reconstructed patients; CONT, the healthy control 
subjects; HT, hamstring tendon graft; PLT, peroneus longus tendon graft; LARS, artificial 
ligament graft; *means significant difference.
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Specifically, all p-values for group effects were greater than 0.44 across 
regions, indicating no meaningful between-group differences during 
the contralateral limb tasks. However, task effects were significant 
across all brain regions again, showing greater activation during SLS 
compared to K-FE (PMC: [2.53 ± 0.197 vs. 0.78 ± 0.198] μmol/L; S1: 
[1.30 ± 0.12 vs. 0.44 ± 0.12] μmol/L; FEF: [0.41 ± 0.05 vs. 0.16 ± 0.05] 
μmol/L; PFC: [0.94 ± 0.08 vs. 0.26 ± 0.08] μmol/L; SAC: [0.57 ± 0.06 
vs. 0.15 ± 0.06] μmol/L; SMG: [0.70 ± 0.06 vs. 0.17 ± 0.06] μmol/L). 
Significant group × task interactions were observed in PMC, S1, FEF, 
and SMG (Figure 5). Simple effects tests indicated substantial group 
differences in PMC (p = 0.038), S1 (p = 0.026), and SMG (p = 0.026) 
during SLS, with higher activation in the CONT group (PMC: 
[2.93 ± 0.31 vs. 2.11 ± 0.25] μmol/L; S1: [1.55 ± 0.18 vs. 1.04 ± 0.14] 
μmol/L; SMG: [0.84 ± 0.10 vs. 0.56 ± 0.08] μmol/L). In the FEF area, 
the only significant difference was found during the K-FE task 
(p  = 0.043), where the ACLR group showed greater activation 
(0.26 ± 0.06 vs. 0.06 ± 0.07 μmol/L). However, during SLS, no group 
difference was observed in the FEF area (p = 0.152).

3.3 Correlation between clinical functions 
and ΔHbO in brain regions during different 
tasks in the ACLR group

As shown in Table 5, several significant correlations were observed 
in the ACLR group. During the K-FE task with the affected limb, 
increased ΔHbO in PMC, S1, FEF, and PFC was significantly 
correlated with lower Q-LSI scores (PMC: r = −0.38, p = 0.032; S1: 
r = −0.363, p = 0.041; FEF: r = −0.363, p = 0.041; PFC: r = −0.412, 
p = 0.019). During the K-FE task with the contralateral limb, increased 
ΔHbO in PMC, S1, and SAC was significantly correlated with a lower 
IKDC score (PMC: r = −0.384, p = 0.025; S1: r = −0.408, p = 0.017; 
SAC: r = −0.367, p = 0.033). During the SLS task with the affected 
limb, increased ΔHbO in FEF was significantly correlated with both 
lower SLHD-LSI and ACL-RSI (SLH-LSI: r = −0.335, p = 0.049; 
ACL-RSI: r = −0.455, p = 0.006). No significant correlations were 
found during the SLS task with the contralateral limb. Overall, these 
findings suggested task-specific and region-specific patterns of altered 
cortical activation in patients with ACLR, some of which were linked 
to functional deficits and reduced clinical performance.

4 Discussion

The primary finding of this study was that brain activation 
patterns differed based on both group and task. The ACLR group 
exhibited brain activation patterns distinct from healthy controls 
during the transition from a simple (K-FE) to a complex (SLS) task. 
Furthermore, the correlation results provided insight into the role of 
altered brain activation patterns following ACLR during complex 
motor tasks, supporting the presence of newly adopted neural and 
contralateral compensatory strategies.

Regarding the main effect of group, S1 and SMG activation in the 
ACLR group was lower than that in the CONT group during affected 
limb tasks, whereas no significant main group difference was observed 
during contralateral limb tasks. S1 is primarily responsible for 
processing cutaneous stimulation, especially tactile sensation (Delhaye 
et al., 2018), and the SMG is involved in spatial sensory processing and 
integrating sensory processing (Ben-Shabat et al., 2015). Damage to 
proprioceptors likely reduces afferent sensory information, leading to 
lower activation in these regions during tasks with the affected limb. 
However, previous studies have found increased somatosensory cortex 
activation in patients with ACLR (Baumeister et al., 2008; Schnittjer 
et  al., 2023). This may be  due to the blockage of visual afferent 
information in prior studies due to fMRI limitations or proprioceptive 
task demands. Without visual input, proprioceptive deficits increase 
the demands of neural processing, resulting in higher sensory cortex 
activation. Sherman et  al. (2023) showed that somatosensory 
activation in patients with ACLR was lower in normal visual 
conditions. Thus, visual input significantly influences somatosensory 
activation patterns post-ACLR, likely due to inhibition and 
reweighting of neural resources to compensate for motor deficits 
(Grooms et al., 2017; Lehmann et al., 2021; Sherman et al., 2023).

Regarding the main effect of task difficulty, participants exhibited 
greater brain activation during the SLS task than during the K-FE task. 
The K-FE is widely used to assess brain plasticity post-ACLR 
(Baumeister et al., 2008; Grooms et al., 2017; Lepley et al., 2019). SLS 
involves the same knee joint movement as K-FE but requires the 
simultaneous maintenance of balance and speed. The proposed 
method is similar to the single-leg hop, which is a commonly used 
functional test; however, it offers a safer alternative (Ageberg and 
Cronström, 2018). The validity and reliability of SLS for assessing 
motor function after ACLR have been well established (Cardoso et al., 
2021). Therefore, the increased cortical activity during SLS revealed 
that more neural activation was required to perform a more 
challenging task.

During the task with the affected limb, compared with the CONT 
group, the ACLR group showed reduced SMG activation during 
SLS. As the SMG is involved in coordinating limb-environment 
interactions (Ben-Shabat et  al., 2015), reduced activation might 
be  induced by ligament damage or compensatory strategies. 
Compared with simple tasks, complex tasks like SLS require more 
afferent sensory input to sustain balance, which is limited when 
ligament deficits induce degraded proprioception. While some prior 
research noted increased motor and sensory cortex activation (An 
et al., 2022) or visual compensatory mechanisms (Grooms et al., 2017; 
Criss et al., 2020), these may reflect compensatory mechanisms aimed 
at maintaining motor output. Such strategies are cognitively 
demanding and can limit the brain’s capacity (Constantinidis and 

TABLE 3 Results of two-way mixed ANOVA for ΔHbO across brain 
regions during affected limb tasks.

Main group 
effect

Main task 
effect

Group × Task 
interaction 
effect

F p F p F p

PMC 1.472 0.225 34.534 <0.001* 1.752 0.186

S1 4.432 0.035* 27.776 <0.001* 3.398 0.065

FEF 0.011 0.916 15.501 <0.001* 0.314 0.576

PFC 0.504 0.478 31.988 <0.001* 1.457 0.227

SAC 2.862 0.091 15.917 <0.001* 1.917 0.166

SMG 9.267 0.002* 20.082 <0.001* 4.389 0.036*

*indicates significant difference.
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Klingberg, 2016), which led to the non-significant increment of brain 
activation in ACLR during the SLS task. However, during the K-FE 
task with the affected limb, other studies found that the motor, 
sensory, and cognitive brain areas showed significantly different 
activation in patients with ACLR compared with healthy controls or 
their contralateral legs (Baumeister et al., 2008; Grooms et al., 2017; 
Lepley et al., 2019; Schnittjer et al., 2023). Our study’s results were not 
consistent with previous studies, which may be  explained by the 
relatively low difficulty of the task, the proximity of participants to the 
recommended return-to-sport timeline, and their engagement in a 
structured online rehabilitation program.

During the task with the contralateral limb, PMC, S1, and SMG 
showed similar interaction effects as observed during the task with the 
affected limb, indicating that the altered cortical activation pattern 
following ACLR also affected the contralateral limb tasks. Because the 
knee of the contralateral limb was intact, the lack of activation in ACLR 
during SLS was mainly induced by limited neural resources for 
complex tasks, followed by new cortical activation adaptation. 
However, it is interesting to find that patients with ACLR had greater 
brain area activation than the CONT group during the K-FE task with 
the contralateral limb. The results indicated that more neural resources 
were needed for patients with ACLR during easy tasks, even for the 
intact limb. The activity of FEF neurons is associated with essential eye 
movements for visual tasks (Vernet et al., 2014), and the significantly 
greater activation of FEF neurons suggests the adoption of a visual 
compensation strategy in patients with ACLR. As suggested by Paterno 
et al. (2011), the contralateral limb played a more active role in simple 

tasks post-ACLR. However, as task difficulty increases, neural resources 
may become insufficient to support additional compensatory control, 
thereby limiting the compensatory strategy of the contralateral limb.

Finally, the correlation between cortical activity and clinical 
function supported our hypothesis. During the simple task with the 
affected limb, Q-LSI was negatively correlated with activation in PMC, 
S1, FEF, and PFC. Criss et al. (2023) also noted this, although they 
reported higher brain activation in patients with ACLR, suggesting 
that as quadriceps strength improves, brain activation becomes more 
efficient. Although the cortical activity of our study did not show a 
significant difference between the two groups during a simple task with 
the affected limb, the negative relationship in our study also indicated 
that the rehabilitation process may contribute to more efficient brain 
activation because K-FE is the most common training exercise for 
restoring lower extremity strength. During the SLS task involving the 
affected limb, the SLHD-LSI and ACL-RSI were negatively correlated 
with FEF activation, indicating that better physical and psychological 
function reduced reliance on visual compensation. These findings 
align with the above findings that compensatory strategies could 
consume neural resources and impair performance (Buschman et al., 
2011). IKDC scores were inversely related to PMC, S1, and SAC 
activation during contralateral K-FE tasks. This suggests that improved 
subjective outcomes correspond with reduced compensatory brain 
activation, reinforcing the idea that reduction of contralateral 
compensatory engagement will increase the knee’s subjective function.

5 Limitation

This study has several limitations that should be considered. First, 
due to its cross-sectional design, the observed differences in brain 
activation may not be entirely attributable to ACLR, as some neural 
patterns could have existed prior to injury or surgery. Future research 
should consider a longitudinal design to better capture neural changes 
throughout recovery following ACL injury and reconstruction. 
Second, the sample size of the two groups was unequal, and some 
confounding variables were not controlled due to real-world 
recruitment constraints. Although this may affect the reliability of the 
findings, statistical guidelines indicate that ANOVA and GLM 
analyses are generally robust to unequal group sizes (Field, 2013; 
Dobson and Barnett, 2018). Furthermore, there was no statistically 
significant difference in baseline demographic characteristics between 
the groups, supporting the comparability of the cohorts. Nevertheless, 

FIGURE 4

The group × task interaction effects in ΔHbO of different brain areas during affected limb tasks. PMC, Pre-Motor and Supplementary Motor Cortex; S1, 
Primary Somatosensory Cortex; FEF, Frontal Eye Fields; PFC, Prefrontal Cortex; SAC, Somatosensory Association Cortex; SMG, Supramarginal Gyrus. 
*indicates a significant group and task interaction effect. # indicates significant group differences within a task.

TABLE 4 Results of two-way mixed ANOVA for ΔHbO across brain 
regions during contralateral limb tasks.

Main group 
effect

Main task 
effect

Group × Task 
interaction 
effect

F p F p F p

PMC 0.203 0.653 39.108 <0.001* 6.141 0.013*

S1 0.483 0.487 27.806 <0.001* 5.974 0.015*

FEF 0.178 0.673 13.885 <0.001* 5.973 0.015*

PFC 1.671 0.196 40.518 <0.001* 2.026 0.155

SAC 0.037 0.847 25.131 <0.001* 3.281 0.07

SMG 0.592 0.442 34.406 <0.001* 5.638 0.018*

*indicates significant difference.
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future studies should aim to control for additional factors, particularly 
limb dominance and injury side, to minimize the potential effects of 
brain lateralization. Finally, fNIRS measures cortical activity and 
covers only a limited portion of the brain. However, its portability 
allows real-time brain activation measurements during functional 
motor tasks in patients with ACLR. Future studies should consider 
expanding the optode layout to include the visual cortex to provide 
further insight into compensatory strategies.

5.1 Clinical significance

Patients with ACLR appear to develop new neural compensatory 
strategies during complex tasks, which may result in limited 
cerebral resources and hinder motor function recovery. 
Understanding these compensatory mechanisms is crucial for 
optimizing rehabilitation programs. The role of the contralateral 
limb in compensation also requires further investigation. This study 

FIGURE 5

The group × task interaction effects in ΔHbO of different brain areas during contralateral limb tasks. PMC, Pre-Motor and Supplementary Motor 
Cortex; S1, Primary Somatosensory Cortex; FEF, Frontal Eye Fields; PFC, Prefrontal Cortex; SAC, Somatosensory Association Cortex; SMG, 
Supramarginal Gyrus. *indicates significant group and task interaction effect. # indicates significant group differences within a task.

TABLE 5 The correlation between clinical functions and ΔHbO in brain areas during different motor tasks [r(p)].

Brain area Q-LSI SLHD-LSI ACL-RSI IKDC

Affected limb K-FE

PMC −0.380*(0.032) −0.244(0.164) −0.132(0.457) −0.337(0.051)

S1 −0.363*(0.041) −0.265(0.13) −0.203(0.249) −0.331(0.056)

FEF −0.349*(0.05) −0.218(0.217) −0.1(0.575) −0.215(0.223)

PFC −0.412*(0.019) −0.302(0.083) −0.202(0.251) −0.235(0.182)

SAC −0.314(0.08) −0.203(0.25) −0.019(0.915) −0.316(0.068)

SMG −0.317(0.077) −0.145(0.413) −0.087(0.623) −0.255(0.146)

Contralateral limb K-FE

PMC −0.184(0.314) −0.154(0.386) −0.046(0.797) −0.384*(0.025)

S1 −0.201(0.269) −0.242(0.169) −0.017(0.926) −0.408*(0.017)

FEF −0.083(0.654) −0.188(0.287) 0.036(0.84) −0.245(0.163)

PFC −0.32(0.074) −0.212(0.228) 0.014(0.938) −0.318(0.067)

SAC −0.259(0.152) −0.207(0.239) −0.071(0.688) −0.367*(0.033)

SMG −0.161(0.377) −0.211(0.232) −0.141(0.426) −0.322(0.063)

Affected limb SLS

PMC −0.103(0.569) −0.149(0.393) −0.116(0.508) 0.112(0.521)

S1 0.066(0.714) −0.054(0.756) −0.062(0.724) 0.09(0.608)

FEF −0.216(0.226) −0.335*(0.049) −0.455**(0.006) −0.303(0.077)

PFC −0.223(0.212) −0.244(0.158) −0.112(0.522) −0.166(0.342)

SAC −0.061(0.735) −0.081(0.644) −0.256(0.137) −0.178(0.305)

SMG 0.027(0.883) −0.053(0.763) −0.216(0.212) −0.087(0.619)

Contralateral limb SLS

PMC 0.031(0.864) 0.086(0.624) 0.024(0.891) 0.099(0.572)

S1 0.148(0.41) 0.125(0.475) 0.029(0.869) 0.08(0.65)

FEF −0.012(0.948) 0.05(0.778) −0.092(0.597) −0.16(0.358)

PFC 0.014(0.937) −0.046(0.794) 0.179(0.303) 0.016(0.927)

SAC −0.002(0.992) 0.068(0.697) 0.079(0.651) −0.125(0.473)

SMG 0.174(0.332) 0.072(0.681) 0.067(0.702) 0.003(0.985)

Q-LSI: quadriceps limb symmetry index; SLHD-LSI: Single-Leg hop distance limb distance symmetry index; ACL-RSI: ACL Return to Sport Index; IKDC: International Knee Documentation 
Committee; PMC, Pre-Motor and Supplementary Motor Cortex; S1, Primary Somatosensory Cortex; FEF, Frontal Eye Fields; PFC, Prefrontal Cortex; SAC, Somatosensory Association Cortex; 
SMG, Supramarginal Gyrus; * indicates statistical significance.
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supports the validity and reliability of fNIRS for detecting 
neuroplastic changes during real motor tasks in patients with 
ACLR, consistent with previous research. However, simple tasks 
may not be  adequate for capturing meaningful brain activation 
using fNIRS in this population.

6 Conclusion

This study highlighted the necessity of using different motor tasks 
to examine brain activation patterns in patients with ACLR. The 
findings demonstrated reduced sensory cortex activation during 
movement in this population. Moreover, more complex tasks require 
greater neural activation overall. In response to increased task 
complexity, patients with ACLR exhibited significantly lower brain 
activation compared with healthy controls, likely due to cerebral 
resource limitations associated with compensatory strategies. 
Although the contralateral limb appeared to assist with task 
performance, this compensatory effect diminished as task 
complexity increased.
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