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Introduction: Behavioral performance during associative learning typically 
improves monotonically; performance on each successive iteration of the task 
is no worse (and typically better) than on the previous one. It is unclear whether 
connectomic measures of brain function (from fMRI data acquired during 
learning) also increase monotonically. We used a well-established associative 
learning paradigm to test for the possible co-observance of monotonicity in 
behavior and connectomics.
Methods: fMRI data were summarized using two distinct connectomic (i.e., 
graph theoretic) measures: (a) Betweenness Centrality (of nodes) and (b) 
Average Shortest Path Length (i.e., a measure of network efficiency) across the 
graph. To broaden our study’s breath, in addition to healthy controls (n = 39), 
we extended the analyses to data collected in schizophrenia patients (n = 49). 
Past studies show that although patients show deficits in learning (lower learning 
capacity), behavior does typically display monotonicity.
Results: We  observed robust evidence for monotonic changes in behavior 
at the group level, and in most participants regardless of group. Evidence for 
monotonic changes in graph theoretic summaries of the co-acquired fMRI data 
was less widespread and was in general, more evident in group level summaries 
(regardless of group).
Discussion: This modest co-observance of monotonicity in behavior and 
fMRI-based connectomics re-emphasizes what has long been suspected: the 
relationship between overt measures of behavioral competence and the co-
acquired imaging signals is complex. This may be because psychological events 
(whether in the healthy brain, or in clinical populations like schizophrenia) 
emerge not from local activity in circumscribed brain regions, but rather from 
widely distributed activity across the brain. While well-defined mathematical 
concepts like monotonicity can anchor attempts to co-observe properties of 
change in overt behavior, and underlying brain signals, we suggest that the 
search for such relationships will remain a challenge.
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1 Introduction

In mathematics, monotonic functions are those that preserve the 
mapping (forward or inverse) between ordered sets (Merkle, 2014). 
More generally, monotonicity reveals itself to be a feature of many 
psychological and biological settings (Grice et  al., 2023). For 
instance, monotonicity is a frequently observed property of 
behavioral functions, wherein a set of measurable behavioral 
responses are often systematically mapped to some change in the 
stimuli or the task that the behavior results from Shepard (1987). In 
psychophysics, the perceived increase in the intensity of a stimulus 
is a monotonic function of changes in actual stimulus intensity 
(Luce, 2002). Monotonicity is also observed “up” the cognitive 
hierarchy. Studies of mental rotation (of visual objects or scenes) 
show that the time needed to decide if two objects or scenes are 
identical is a monotonic function of the three dimensional rotation 
required to align the two objects or scenes in space (Shepard and 
Cooper, 1986; Diwadkar and McNamara, 1997; McNamara et al., 
2006). Finally, and pertinent to this investigation, experimental 
learning tasks evoke at least weakly monotonic behavioral 
performance; typically, behavioral proficiency on each task iteration 
is no worse, or better than on the previous one (Gallistel et al., 2004; 
Diwadkar et al., 2008). Such monotonicity is widely observed in 
frontal-hippocampal based human learning and memory tasks (e.g., 
where participants must learn associations between two arbitrarily 
paired memoranda such as objects and locations) (Büchel et al., 
1999; Mattfeld and Stark, 2015; Stanley et al., 2017). Interestingly 
weakly monotonic learning is preserved even in pathologies like 
schizophrenia (SCZ), where learning capacity is reduced (Diwadkar 
et al., 2008; Brambilla et al., 2011; Meram et al., 2023). Given such 
evidence, it is plausible that changes in fMRI signals collected during 
learning might also show evidence of monotonicity, where fMRI 
metrics increase or decrease over the course of learning. However, 
to our knowledge, few investigations of this question exist. This 
lacuna is significant; any resultant observations may not directly 
shed light on the vexing question of brain – behavior relationships 
(Westlin et al., 2023). However, monotonicity can be a mathematical 
anchor using which one can investigate changes in fMRI data 
co-acquired in specific task contexts (Solo et al., 2018). Accordingly, 
our investigation specifically addressed two questions: (1) is 
monotonicity of fMRI data collected during learning (Wadehra 
et al., 2013; Woodcock et al., 2015; Woodcock et al., 2016) observed 
in summary measures (based on graph theory) of such data? (2) Is 
such monotonicity in the fMRI data observed in both (or neither) 
healthy participants and in a clinical group like schizophrenia, in 
whom learning proficiency is impaired but behavioral monotonicity 
is generally preserved?

fMRI data were co-acquired as participants performed an 
established associative learning task (see Figure  1). The task 
required participants to learn object-location associations over 
eight successive task epochs (Stanley et al., 2017). As noted, the 
observed learning functions are typically monotonic, not just at the 
group level, but also generally at the individual participant level 
(Büchel et al., 1999; Samona et al., 2024), where performance on 
each successive task epoch is typically no worse than on the 
preceding epoch. In our investigation, we used multiple imaging-
related outcome measures, with a principle focus on graph-theoretic 
summaries of the fMRI data.

1.1 The choice of graph theory

Graph theory is a leading tool for summarizing the 
characteristics of functional networks at multiple scales (Sporns, 
2014). In the context of fMRI data, graph theoretical measures are 
typically applied to summarize network properties after the fMRI 
time series data are processed through statistical measures like 
functional connectivity (that capture consistencies in the behavior 
of brain regions) (Friston, 2011; Silverstein et al., 2016). Graph 
theory lucidly characterizes large scale connectomic profiles into 
local or global topological measures (Freeman, 1977; Meram et al., 
2023; Huang et al., 2024). Notably, the topological characteristics 
of brain networks show some relationship to performance and 
adaptation during tasks such as motor learning, where for 
example, the modular organization of networks adapts as learning 
proficiency increases (Bassett et  al., 2011). Our investigation 
included two complementary graph-theoretic measures: (a) 
Betweenness Centrality (BC) which quantifies a node’s role as a 
bridge along the shortest path between any two other nodes 
(Freeman, 1977), and (b) Average Shortest Path Length (ASPL) 
which summarizes the degree of integration across the network 
(Betzel et al., 2016). BC is highly sensitive to any node’s relative 
importance within a network (Rubinov and Sporns, 2010) because 
it quantifies a nodes’ integrative value (Kivimaki et  al., 2016; 
Meram et al., 2023). By comparison, ASPL offers a connectome-
level measure of integration indicating how closely a network is 
connected (Mao, 2013).

Learning proficiency was assessed over eight successive epochs 
with each epoch divided into four separate task conditions (see 
Methods) (Hasan et al., 2023; Martin et al., 2024). After parcellating 
the brain using a multi-modal 246-region cerebral parcellation scheme 
(Fan et al., 2016; Zhi et al., 2018), separate undirected graphs were 
derived for each task condition and epoch (eight graphs per condition, 
with one at each time point, i.e., epoch). Each such graph consisted of 
246 nodes (one for each region) and 30,135 unthresholded edges 
(where edge weights were the zero-lag functional connectivity values 
between those regions) (Silverstein et al., 2016). For each region/node 
and participant, we  estimated BC in each condition and epoch. 
We could form a resultant function for each node, where each such 
function represented the change in BC over the eight epochs of the 
task for the given condition. These functions were investigated for 
evidence of monotonicity. In complementary analyses, ASPL was 
estimated for each epoch (following which we again searched for 
evidence of monotonicity in the formed functions). These analyses 
were conducted at the level of individual participants. Subsequent 
analyses were also extended to the group level (using group-averaged 
graphs). Analyses were conducted separately for HC and SCZ on the 
presumption that monotonicity may be less likely to be observed in 
SCZ. Finally, in supplementary analyses, we searched for evidence of 
monotonicity in regional changes in fMRI signal amplitude.

We observed a complex comport of results (behavioral and fMRI). 
In both groups, we replicated evidence for weak monotonicity in our 
behavioral data. This evidence was seen at the group level and 
frequently at the level of individual participants (Figure  2). In 
comparison, regardless of task condition, the functions formed from 
the graph theoretic summaries showed modest evidence for 
monotonicity (despite the large number of targets) (Figures 3–6). 
Trends at the group level were more reliable, but participant-level 
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effects were sporadic. These results present an interesting trichotomy 
of effects: The behavioral results expectedly show evidence of 
monotonic changes with time. However, there was muted evidence for 
such effects in graph theoretic summaries of both the group and 
individual participant level fMRI data. Our findings underscore the 
challenge of linking overt behavioral measures to fMRI measures of 
brain function, even when (a) the fMRI data are co-acquired with the 
behavior and (b) are interrogated using well-established principles 
like monotonicity.

2 Methods

2.1 Participants

Data (behavioral and fMRI) were collected from eighty-eight 
participants. Healthy controls (HC, N = 39) were recruited using 
community advertisements and flyers, and schizophrenia patients 
(SCZ, N = 49) were recruited from out-patient clinics run by the 
Wayne State University Physician’s Group. All methods were approved 

FIGURE 1

The figure provides a schematic depiction of the analytical approach to our study. (a) The four conditions (Encoding, Post- Encoding Rest, Retrieval, 
and Post-Retrieval Rest) within each iteration of the associative learning task are depicted. As noted, (Methods), there were eight repetitions. Briefly, 
during Encoding, objects were presented in their associated location for naming (e.g., “tree”). During Retrieval, locations were cued in random order 
and participants were required to name the associated object. Rest intervals were interspersed between. (b) For each condition and in each iteration, a 
uFC matrix was computed (schematically depicted at 5 × 5; actual size 246 × 246, 30,135 unique functional connections) based on extracted time 
series. In each participant, eight such matrices were computed per condition. (c) Treating the matrices as undirected weighted graphs, we next 
computed the BC for each node (represented by the open circle) in each graph. (d) Next, nodes were rank ordered by BC (BCRO). In the schematic, 
we depict the BCRO, for each node in each of the eight Encoding conditions (E1 to E8). As seen, Region X showed a non-monotonic change in BCRO 
across the task (graph at right).
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by the Institutional Review Board (IRB) at Wayne State University and 
participants provided informed consent to participate. By definition, 
HC participants were free of any psychiatric diagnosis, while SCZ 
participants met DSM-5 criteria for schizophrenia (patients were 
evaluated by treating physicians and a licensed psychologist, UR). 
Patients were stabilized on their prescribed regime of antipsychotics 
(Full demographic information is provided in Table 1).

2.2 Magnetic resonance imaging

Magnetic resonance (MR) data were acquired on a 3 T Siemens 
Verio scanner with a 32-channel head coil at WSU’s Vaitkevicius 
Imaging Center located in Harper Hospital. During MRI, 
participants’ heads were stabilized using foam inserts, and ear plugs 
were used to minimize the intrusive effects of scanner noise. 
All participants completed the MR procedures without 
incident. fMRI data were collected using a multiband gradient EPI 
fMRI sequence (TR = 3 s, TE = 24.6 ms, multiband factor = 3, 
FOV = 192×192 mm2, matrix = 96×96, 64 axial slices, voxel 
resolution = 2 mm3). In addition, a high-resolution T1-weighted 
anatomical image was also collected for normalization and 
co-registration with the EPI scan (3D Magnetization Prepared 
Rapid Gradient Echo Sequence, TR = 2,150 ms, TE = 3.5 ms, 
TI = 1,100 ms, flip angle = 8 degrees, FOV = 256x256x160 mm3, 
160 axial slices, pixel resolution = 1 mm3).

2.3 The associative learning paradigm

fMRI data were co-acquired while participants learned nine 
object-location (in a two-dimensional grid) associations using a 
previously established paradigm (Diwadkar et al., 2008; Brambilla 
et  al., 2011; Samona et  al., 2024). Figure  1 shows the paradigm 
structure. Each of the eight successive iterations consisted of sequential 
epochs (27 s each) for Encoding, Post-Encoding Rest, (Cued) 
Retrieval and Post-Retrieval Rest. During Encoding, each of nine 
equi-familiar objects was presented in its associated locations (squares 
within a 3×3 grid) for naming (3 s/object). Participants were shown a 
fixation marker during each Post-Encoding Rest epoch. Next, learning 
proficiency was tested during Retrieval epochs; here, locations were 
cued in random order, and participants were required to verbalize the 
name of the object associated with each cued location (no feedback 
was provided). Responses were recorded through the built-in 
microphone relay and scored for correctness. Retrieval was the only 
condition during which overt behavior was recorded. The Post-
Retrieval and the Post-Encoding Rest epochs were identical.

2.4 fMRI data preprocessing

fMRI data were preprocessed using established methods for 
temporal (slice timing correction) and spatial correction 
(realignment and normalization) (SPM12, https://www.fil.ion.ucl.

FIGURE 2

Monotonic changes in behavioral proficiency (proportion correct recall) across the task in (a) individual participants and (b) group performance 
functions. (a) The stacked bar graphs depict the percentage of participants in each group who displayed either monotonic (red sub-bar) or non-
monotonic changes in behavioral proficiency. Most of the healthy controls and a majority of patients exhibited monotonic increases in behavioral 
proficiency (though the percentage of control participants who displayed monotonicity was higher, Fisher’s Exact Test, p < 0.05). (b) Group averaged 
performance functions accentuated these trends. Here, average percent correct performance (vertical axis) is depicted in each of the eight iterations 
(horizontal axis). The data are smoothed using LOESS (λ = 0.0000126, with 95% confidence intervals shown).
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ac.uk/spm/). The EPI images were manually oriented to the 
AC-PC line with the reorientation vector applied across the image 
set. The images were then realigned to a reference image (to 
correct for and quantify head motion), and co-registered to the 
anatomical high-resolution T1 image. The T1 image was 
normalized to the Montreal Neurological Institute (MNI) 
template, and the resultant deformations were applied to the 
co-registered EPI images. Low-frequency components were 
removed (1/128 filter), and the images were resliced (2 mm3) and 
smoothed (8 mm FWHM). In first-level models, task epochs were 
modeled as boxcar functions and convolved with a canonical 
hemodynamic response function to form the regressors of interest. 
In each participant’s first-level model, the six motion parameters 
(three each for translation and rotation) derived from realignment 
were modeled as covariates of no interest. In any participant, 

images exceeding 4 mm of movement (<1% of all images) were 
excised from that participant’s data without replacement (motion 
estimates recovered from reconstruction did not differ between 
groups, p’s > 0.1). This approach to image processing and 
modeling has been consistently applied in fMRI studies of clinical 
and non-clinical populations (Ravishankar et al., 2019; Baajour 
et al., 2020; Muzik et al., 2020; Meram et al., 2021; Tso et al., 2021; 
Muzik et al., 2022; Zovetti et al., 2022; Hasan et al., 2023; Samona 
et al., 2024).

2.5 Estimating undirected weighted graphs

All subsequent analyses were conducted using specially developed 
scripts in R (R_Core_Team, 2021) (scripts are available in the GitHub 

FIGURE 3

Monotonicity of BCRO during Encoding at the (a) participant and (b) group level. (a) The 246 brain regions (nodes) are arranged in a circular 
arrangement, grouped by lobe (regional names are withheld to reduce clutter). A stacked frequency bar is attached to each region, where each bar 
represents the frequency of subjects showing patterns of weak monotonicity or non-monotonicity for any node (see color bar in the center of the 
figure). In both groups non-monotonicity of BCRO was the norm (HC: 97.7%, SCZ: 97.8%). (b) Group level evidence (see Methods). Regions are arranged 
as in (a). Each bar represents the Spearman’s ρ  for that region and group (red and blue bars, respectively, represent positive and negative 
monotonicity). The small circles represent data from all 246 regions. These are statistically filtered (p < 0.05) and presented in the larger circles to the 
right (region names are added). We observed some monotonic effects at the group level, with more regions showing positive monotonicity in SCZ 
(bottom). More descriptive region labels follow based on Fan et al. (2016). HC: A32sg_R, Cingulate Gyrus sub genual area 32; A23d_L, Cingulate Gyrus 
dorsal area 23; cCunG_R; MedioVentral Occipital caudal cuneus gyrus; rLinG_R; MedioVentral Occipital Cortex rostral lingual gyrus; mPFtha_R, 
Thalamus medial pre-frontal thalamus; lPFtha_R, Thalamus lateral pre-frontal thalamus; A8m_L, Superior Frontal Gyrus medial area 8; A8m_R, 
Superior Frontal Gyrus medial area 8; A14m_R, Orbital Gyrus medial area 14; A37mv_L, Fusiform Gyrus medioventral area37; A40c_L, Inferior Parietal 
Lobule caudal area 40(PFm). SCZ: A24cd_L, Cingulate Gyrus caudodorsal area 24; A23c_R, Cingulate Gyrus caudal area 23; rLinG_R, MedioVentral 
Occipital Cortex rostral lingual gyrus; iOccG_R, lateral Occipital Cortex inferior occipital gyrus; A9/46d_L, Middle Frontal Gyrus dorsal area 9/46; IFJ_L, 
Middle Frontal Gyrus inferior frontal junction; A45c_R, Inferior Frontal Gyrus caudal area 45; A12/47o_L, Orbital Gyrus orbital area 12/47; A12/47l_R, 
Orbital Gyrus lateral area 12/47; A20il_R, Inferior Temporal Gyrus intermediate lateral area 20; TH_L, Parahippocampal Gyrus area TH (medial PPHC); 
TI_R, Parahippocampal Gyrus area TI (temporal agranular insular cortex); TI_L, Parahippocampal Gyrus area TI (temporal agranular insular cortex); 
A35/36c_L, Parahippocampal Gyrus caudal area 35/36; TL_R, area TL (lateral PPHC, posterior parahippocampal gyrus); A35/36c_R, Parahippocampal 
Gyrus caudal area 35/36.
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link) and MATLAB (MathWorks, 2007). From the processed fMRI 
data, signals were averaged across voxels in each of 246 parcels in the 
Brainnetome atlas (Fan et al., 2016; Li et al., 2019). This atlas was 
chosen based on its multi-modal and multi-task constitution (Fan 
et al., 2016), and because it provides excellent functional parcellation 
of the cerebrum. 246 unique time series (each of length 288 points) 
were formed from each participant’s data. All subsequent analyses 
were conducted on these 288-point time series.

Each time series captures changes evoked in that region across the 
eight task iterations. In each participant, and in each of the four 
conditions (Encoding, Post-Encoding Rest, Retrieval. Post-Retrieval 
Rest), we computed the full undirected functional connectivity (uFC) 
matrix (based on Fisher Z transformed stationary zero-lag Pearson’s 
correlation) (Silverstein et al., 2016; Thompson and Fransson, 2016) for 
each of the eight iterations. Thus, each matrix captures the uFC 
between 30,135 unique pairs (246C2), and is equivalent to a weighted 
undirected graph with 246 vertices and 30,135 edges (Newman, 2004). 
Each full weighted graph was carried forward for graph theoretic 
analyses. We maintained full (as opposed to thresholded) graphs as this 

allowed us to (a) preserve the complete distribution of connectivity 
strengths and (b) avoid inequitable (across participants) effects of edge 
thresholding. While edges with low weights are likelier to represent 
noisy interactions that could be discounted (van Wijk et al., 2010; 
Richiardi et al., 2011), edge removal can impact the integrity of graph 
theoretic measures that are fundamentally designed to operate on fully 
connected and weighted networks, and which are known to provide 
reliable insights even when the graphs retain weak connections 
(Rubinov and Sporns, 2011). Moreover, studies indicate that removing 
such edges has minimal effects on significance (Civier et al., 2019).

2.6 Estimating BC and BC rank order

BC is an estimate of the number of shortest functional paths 
traversing through a vertex of a graph where (in our case) the uFC metric 
represents functional “distance.” In our implementation, higher edge 
weights (i.e., stronger functional connections) were treated as shorter path 
lengths. BC was computed as follows (Equation 1).

FIGURE 4

Monotonicity of BCRO during Post-Encoding Rest. At the (a) participant and (b) group level. The presentation scheme is carried forward from Figure 3. 
(a) Again, in both groups, non-monotonicity was the norm (HC: 97.9%, SCZ: 98.2%). (b) Group level evidence (see Methods). More regions show 
positive monotonicity in SCZ (bottom), particularly within the subcortical nuclei with regional labels expanded on here. HC: A12/47o_L, Orbital Gyrus 
orbital area 12/47; A12/47o_R, Orbital Gyrus orbital area 12/47; A20r_L, Inferior Temporal Gyrus rostral area 20; dIa_R, Insular Gyrus dorsal agranular 
insula; A31_R, Precuneus area 31 (Lc1); A1/2/3tru_R, Postcentral Gyrus area1/2/3(trunk region); A32sg_R, Cingulate Gyrus sub genual area 32; 
cCunG_L, MedioVentral Occipital Cortex caudal cuneus gyrus; msOccG_R, lateral Occipital Cortex medial superior occipital gyrus; vCa_L, Basal 
Ganglia ventral caudate; rTtha_R, Thalamus rostral temporal thalamus; Otha_R, Thalamus occipital thalamus. SCZ: A8m_L, Superior Frontal Gyrus 
medial area 8; IFJ_L, Middle Frontal Gyrus inferior frontal junction; A11m_L, Orbital Gyrus medial area 11; A44d_R, Inferior Frontal Gyrus dorsal area 44; 
A6cvl_L, Precentral Gyrus caudal ventrolateral area 6; A38m_R, Superior Temporal Gyrus medial area 38; A35/36c_R, Parahippocampal Gyrus caudal 
area 35/36; rpSTS_L, rostroposterior superior temporal sulcus; dmPOS_L, Precuneus dorsomedial parietooccipital sulcus (PEr); rCunG_R, MedioVentral 
Occipital Cortex rostral cuneus gyrus; mOccG_L, lateral Occipital Cortex middle occipital gyrus; OPC_R, lateral Occipital Cortex occipital polar cortex; 
lAmyg_R, Lateral amygdala; GP_R, Basal Ganglia globus pallidus; dlPu_L, Basal Ganglia dorsolateral putamen; dlPu_R, Basal Ganglia dorsolateral 
putamen; mPMtha_L, Thalamus pre-motor thalamus; mPMtha_R, Thalamus pre-motor thalamus; Otha_L, Thalamus occipital thalamus.
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The expression sphj(i) represents the number of shortest paths 
between vertices h and j that passes through vertex i. In the context 
of fMRI, BC appears to represent a region’s role in transmitting and 
facilitating interactions across the connectome (Rubinov and Sporns, 
2010; van den Heuvel et  al., 2010). More generally, nodes in any 
functional connectome can be ordered by BC (highest to lowest, or 
vice versa), where the resultant ordinal ranking represents the node’s 
relative importance within the network (Sporns, 2014; Meram et al., 
2023). Accordingly, for each undirected weighed graph (estimated 
across one 27 s task condition iteration), each of the 246 nodes was 
assigned a BC rank order (BCRO) value (between 1 and 246).

Betweenness Centrality (BC) was ideal for our purposes because as 
our primary hubness metric, it characterizes a node’s contribution to 
global communication and integration across the entire network 
(Freeman, 1977) and quantifies the total weighted length of all shortest 
paths that pass through any node. This makes it particularly suitable for 
assessing functional network configurations during learning, and for 
investigating whether these undergo monotonic changes over the task. 
This choice fundamentally aligns with our interest in understanding 

whether monotonicity is a global principle that might emerge from 
distributed network interactions rather than from localized activations. 
For our purposes, rank order was a more meaningful measure than the 
actual BC values, because the latter are a function of the estimated 
connectivity in the adjacency matrix (Freeman, 1977), which itself can 
depend on several factors across the experiment. By focusing on BCRO 
we could conduct investigations on whether the relative importance of a 
node within each epoch changes over the course of the task.

2.7 Estimating ASPL (average shortest path 
length)

ASPL, is a measure of network efficiency, and is conventionally 
defined as the average number of edges along the shortest paths for all 
possible pairs of nodes in any network. In fMRI-based connectomics, 
ASPL constitutes a measure of global integration across the connectome, 
where smaller ASPL reflects a functionally more efficient network (Betzel 
et al., 2016). ASPL was computed as follows (Equation 2):

	 ( ) ( )=
− ∑ 1
1 ,
1 i ji jASPL d v v

n n 	
(2)

FIGURE 5

Monotonicity of BCRO during Retrieval. The presentation scheme is carried forward from Figures 3, 4. (a) non-monotonicity remained the norm (HC: 
96.9%, SCZ: 97.9%). (b) At the group level we list regions showing monotonicity. HC: A11m_L, Orbital Gyrus medial area 11; A38l_R, Superior Temporal 
Gyrus lateral area 38; A37vl_R, Inferior Temporal Gyrus ventrolateral area 37; A20cv_L, Inferior Temporal Gyrus caudoventral of area 20; TI_L, 
Parahippocampal Gyrus area TI (temporal agranular insular cortex); rCunG_L, MedioVentral Occipital Cortex rostral cuneus gyrus; rHipp_L, Rostral 
hippocampus; mPMtha_R, Pre-motor thalamus. SCZ: A6dl_L, Superior Frontal Gyrus dorsolateral area 6; A46_R, Middle Frontal Gyrus area 46; aSTS_R, 
Middle Temporal Gyrus anterior superior temporal sulcus; A39rv_R, Inferior Parietal Lobule rostroventral area 39(PGa); A23d_L, Cingulate Gyrus dorsal 
area 23; cCunG_L, MedioVentral Occipital Cortex caudal cuneus gyrus; NAC_L, Basal Ganglia nucleus accumbens.
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where computed edge weights (Fisher’s Z values derived from 
Pearson R values) were inverted to re-represent the edges as 
shortest paths [permitting us then to use Dijkstra’s algorithm 
(West, 2001)].

2.8 Assessing weak monotonicity

In any class of data (D), where Dn represents the value at time n, 
weak monotonicity across a trend is satisfied if:

	 ≤ ≤…≤ ≥ ≥…≥ ≠1 2 8 1 2 8 1 8a) b) ,D D D or D D D where D D

We used a more liberal version of weak monotonicity, in which 
we permitted one violation of any trend (e.g., D1 ≤ D2 ≤ D3 > D4 ≤ D5 
≤ D6 ≤ D7 ≤ D8).

Weak monotonicity was investigated in each of the behavioral 
and imaging measures across the eight repetitions of the task. For 
the behavioral measures, the variable of interest was the 
proportion of correct responses in each of the eight Retrieval 
epochs. For BC, we investigated weak monotonicity for each node’s 
BCRO, separately over eight iterations of each of the four task 
conditions. Finally, for ASPL, we investigated weak monotonicity 
at the level of the functional connectome, with ASPL itself being 
the variable of interest. Here we used a three-way mixed analysis 

FIGURE 6

Monotonicity of BCRO during Post-Retrieval Rest. The presentation scheme is carried forward from Figures 3–5. (a) At the participant level non-
monotonicity of BCRO remained the norm (HC: 97.8%, SCZ: 98.2%). (b) Both groups exhibited few but comparable numbers of regions displaying 
monotonic changes in BCRO. HC: A44d_R, Inferior Frontal Gyrus dorsal area 44; A14m_R, Orbital Gyrus medial area 14; A11m_L, Orbital Gyrus medial 
area 11; A4tl_L, Precentral Gyrus area 4(tongue/larynx region); A37elv_L, Inferior Temporal Gyrus extreme lateroventral area37; A28/34_R, 
Parahippocampal Gyrus area 28/34 (EC, entorhinal cortex); A7pc_R, Superior Parietal Lobule postcentral area 7; lAmyg_L, Lateral amygdala; vCa_L, 
Basal Ganglia ventral caudate; PPtha_L, Posterior parietal thalamus. SCZ: IFS_R, Inferior Frontal Gyrus inferior frontal sulcus; A45c_L, Inferior Frontal 
Gyrus caudal area 45; A45c_R, Inferior Frontal Gyrus caudal area 45; A1/2/3ll_L, Paracentral Lobule area1/2/3 (lower limb region); A37mv_L, Fusiform 
Gyrus medioventral area 37; A7r_L, Superior Parietal Lobule rostral area 7; A39rd_L, Inferior Parietal Lobule rostrodorsal area 39(Hip3); A14m_L, Orbital 
Gyrus medial area 14.

TABLE 1  The demographics (patients and controls) and clinical 
characteristics (of patients) are presented.

Healthy 
controls

Schizophrenia 
patients

N 39 49

Age (years) 27.59 ± 6.71 31.47 ± 8.61

Gender 10 F/29 M 9 F/40 M

Handedness 30 Right 37 Right

FSIQ-4 score 101.85 ± 9.46 88.29 ± 7.94

PANSS positive score 13.76 ± 3.44

PANSS negative score 14.24 ± 3.92

PANSS general score 26.02 ± 5.81

All patients were stabilized using atypical antipsychotics.
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of variance (ANOVA) which allowed us to assess the effects of 
Task Condition (non-independent factor), Time (non-independent 
factor), and Group (independent factor). Any evidence of 
monotonicity would be revealed in a main effect of time (with a 
significant linear contrast), while this statistical approach also 
allowed us to investigate main effects for Group and Condition 
(and all two- and three-way interactions). We also assessed weak 
monotonicity at the group level. Here, in each of the HC and SCZ 
groups, BCRO values for each of the 246 nodes were averaged 
(across participants) for each condition and iteration of the task 
and assessed for weak monotonicity using Spearman’s ρ  between 
iteration number (1–8) and the group-averaged BCRO values 
(Spearman, 1987) (p < 0.05). For ASPL, monotonicity was assessed 
across each condition with group-averaged data using the weak 
monotonicity test (see above).

2.9 Supplementary analyses

In supplementary analyses, we investigated monotonic changes in 
the fMRI signal in each participant. For every region in every 
participant, fMRI signal amplitude for every image (time point) was 
expressed as percent change over the average signal of that region 
across the entire acquisition. We then assessed monotonicity for the 
signal amplitude for each task condition across the eight iterations of 
the task (see Supplementary Figures  2–5). We  also assessed the 
distribution of edge weights, defined as Fisher z transformed Pearson 
correlation coefficients from the uFC matrices, across all eight 
iterations for each task condition, separately for HC and SCZ 
(Supplementary Figure 6). The Appendix provides an overview of our 
approach toward statistical inference.

3 Results

The results are staged as follows: (1) First, we present behavioral 
data from participants in both groups, and provide group averaged 
behavioral functions (Figure  2). These data show that weak 
monotonicity was satisfied in both the group averaged data and in data 
from a preponderance of participants. (2) Next, for the BCRO data, 
we provide assessments of monotonicity in individual participants and 
group averaged investigations for each of the four task conditions 
(Figures 3–6). (3) The search for monotonicity in the ASPL data is 
reproduced next (Figure 7).

3.1 Monotonicity in behavior: task 
proficiency

Figure 2 provides information on (a) the frequency with which 
weak monotonicity was observed across individual participants in 
each group (Figure 2a), and (b) group averaged functions (Figure 2b). 
In ~90% of HC participants and in ~60% of SCZ patients, behavioral 
proficiency increased monotonically (red portion of the stacked bars), 
though the proportion was greater in healthy controls than in patients 
(Fisher’s Exact test, p < 0.05) (Freeman and Campbell, 2007). The 
group averaged data satisfied the weak monotonicity test in both 
groups (Figure 2b) (the smoothed functions were fitted using LOESS, 
λ = 1.26 × 10−5) (Jacoby, 2000).

3.2 Monotonicity in BC

Figures 3–6 provide evidence for any observed monotonicity in 
BCRO. Data are presented separately for the participant level (a) and 
the group level (b) analysis. Each figure represents results from one of 
the four task conditions. In each sub-figure (a), the 246 brain regions 
(nodes) are depicted in a circular arrangement and are grouped by 
lobe (regional names are withheld to reduce clutter). The stacked 
frequency plots radiate inwards, and here, each bar represents the 
frequency of participants who showed varying patterns of 
monotonicity (red or blue) or non-monotonicity (black or gray) for 
any specific node (see color bar in the center of the figure). Across 
Figures 3a–6a, we observed monotonicity in BCRO in a small number 
of nodes (see Appendix).

The adjoining group analyses (Figures  3b–6b) complement 
analyses in individual participants (Figures  3a–6a). In these 
sub-figures, each bar in the smaller circles represents the Spearman’s 
ρ  for that region and group (red and blue bars, respectively, represent 
positive and negative ρ  values). Spearman’s ρ  was used on this rank 
ordered data because it effectively is a measure of monotonicity: 
perfectly monotonic functions have ρ  of (−/+)1, while trends toward 
monotonicity result in values of higher magnitude, and 
non-monotonic trends converge on 0. Opaque (as opposed to 
translucent) bars denote significant effects (p < 0.05). Only significant 
effects are migrated over to the larger circles (with region 
names added).

At least two effects are noteworthy: First, the observed trends in 
the group level data partially complemented those from the 
individual participant data, in that each analyses revealed different 
brain regions (noticeable when comparing across (a) and (b) in each 
figure). These differences, while difficult to parse are consistent with 
studies that have focused on other fMRI metrics. Individual 
variability is a pervasive property (or perhaps “nuisance”) of fMRI 
signals (Van Horn et  al., 2008) and has motivated the need to 
quantify individual differences in activation and connectivity data 
(Dubois and Adolphs, 2016; Finn and Rosenberg, 2021; Catanzaro 
et al., 2024), as well as the repeated imaging of individual subjects in 
order to quantify intra-subject variability (Gountouna et al., 2010; 
Gorgolewski et al., 2013). Second, across the eight analyses (four 
conditions and two groups), somewhat discernable inter-group 
differences in monotonicity were observed (though primarily at the 
group level), primarily for the Encoding epochs (Figure 3b) and 
Post-Encoding Rest epochs (Figure  4b). In the SCZ group a 
substantial number of cortical and sub-cortical nodes (14 and 18 
respectively) displayed significant monotonic changes, though this 
was less the case for the control group. For instance, during Encoding 
(Figure 3b), monotonicity was observed most notably in middle 
frontal, cingulate and medial temporal regions like the 
parahippocampal gyrus, regions that have all been previously linked 
with associative learning and memory (Suzuki, 2008; Baajour et al., 
2020; Hasan et al., 2023). These inter-group differences (where more 
substantial monotonicity was observed in patients) might relate to 
differences in the dynamic expression of task demands. Thus, over 
the course of learning, schizophrenia patients may need an increase 
in attention-related control mechanisms to fulfill the demands of the 
task (Le Pelley et al., 2016), and this need may be expressed in an 
increase in the integrative importance of brain regions. Such an 
explanation could also be evoked to explain the relatively heavy 
representation of sub-cortical nodes during Post-Encoding Rest 
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(Figure  4b). The Post-Encoding Rest period is one in which 
previously shown associations are covertly recapitulated and 
rehearsed (see Figure  1), and may involve the re-engagement of 

cognitive and perceptual interactions that are characteristic of 
depictive mental imagery (Kosslyn et al., 1995; Pearson and Kosslyn, 
2015). This may explain why the integrative importance of 

FIGURE 7

Monotonicity of ASPL. For both groups mean ASPL is plotted over the eight repetitions of each task condition. We did not observe a significant effect 
of Time or interactions that involved Time (see Results). However, applying the weak monotonicity test (see Section 2.8), the Encoding condition in HC 
exhibited weakly monotonic behavior.
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sub-cortical regions in schizophrenia increases over the timeline of 
the task. Of course, these interpretations are fundamentally 
speculative, cannot confirm the precise nature of regional functions 
and are subject to many of the challenges of “reverse inference” 
(Sprooten et  al., 2017; Diwadkar and Eickhoff, 2021). However, 
results like these suggest that a framework like monotonicity might 
be  profitably used to constrain evaluation of changes in brain 
network function over some task period.

3.3 Monotonicity in ASPL

The results of the three-way ANOVA (see Section 2.8) did not 
reveal a significant effect of Time, F7, 602 = 1.794, p > 0.05, or 
significant interactions involving Time (x Group, x Condition, x 
Group x Condition, all p’s > 0.1). Figure 7 depicts the relationship 
between time (horizontal axis) and ASPL (vertical axis) in each of the 
four conditions, confirming an absence of monotonic changes in 
ASPL. The only significant effect that we observed was a significant 
effect of group, F1, 86 = 11.47, p < 0.001. Here, ASPL was significantly 
smaller in HC compared to SCZ (see Supplementary Figure 1). This 
effect underlines the inefficiency of brain network function in 
schizophrenia (Zovetti et  al., 2022), and is consistent with 
independent task- and resting-fMRI studies that show increased 
ASPL in schizophrenia (van den Heuvel et al., 2010; Rubinov and 
Bassett, 2011).

3.4 Monotonicity in regional fMRI signal 
change

In supplementary analyses (Supplementary Figures  2–5), 
we assessed changes in the fMRI signal in each of the 246 regions for 
evidence of monotonicity. These analyses complement the graph 
theoretic work at the individual participant level (Figures 3a–6a) by 
providing a narrower focus on the responses of individual regions 
(rather than the integrative those regions’ integrative role). The 
results provided sporadic evidence for monotonicity in several 
participants, particularly in frontal regions (the highest frequency 
was of HC participants in the inferior frontal gyrus during the 
Encoding-Rest condition, Supplementary Figure 3a). However, in 
general no clearly discernable inter-group differences were seen, 
further underlining the complementary nature of the two types 
of analyses.

4 Discussion

Our study’s motivations were straightforward: Do behavioral and 
fMRI data co-acquired during associative learning evince similar 
patterns of monotonicity? In each of four task conditions, and across 
eight iterations of the task, we calculated regional (Rubinov and Sporns, 
2010) and global (Betzel et al., 2016) graph theoretic measures, before 
both were tested for monotonic changes (Figures 3–7). This approach 
was replicated for fMRI signal change data (Supplementary Figures 2–5) 
(Logothetis and Wandell, 2004). Furthermore, we  investigated 
monotonicity at the level of individual participants and in group 

averaged data. Finally, we also tested for monotonicity in data acquired 
in both healthy controls and in schizophrenia.

First, analyses of overt behavior (Figure  2) replicated classic 
negatively accelerated learning (Balsam et al., 2010), effects that have 
also been occasionally reported at the neuronal level (Okada, 1996; 
Wirth et al., 2003). Second, there was partial evidence for monotonicity 
in fMRI measures for both local and global graph theoretic measures, 
as well as the signal change data.

4.1 Monotonicity in brain, behavior and 
psychology

In mathematics, monotonic functions preserve the mapping 
(forward or inverse) between ordered sets (Merkle, 2014). More 
generally, monotonicity loosely characterizes the relationship 
between psychological responses to graded changes in stimulus 
characteristics. For instance, when human participants are asked 
to discriminate between physical magnitudes intervals, their 
judgments generally preserve the relative order between those 
magnitudes (Gliksman et al., 2016). This evidence conforms to 
Steven’s power law which states that sensation magnitudes grow as 
power functions of the stimulus intensities that produce these 
sensations (Stevens, 1957; Zwislocki, 2009). Thus, in psychophysical 
experiments, changes in stimulus magnitude and the concomitant 
changes in psychological responses (or sensations) form ordered 
sets that preserve a monotonic mapping. Such mappings have been 
documented in diverse phenomena ranging from nociceptive 
responses to changes in pain stimulation (Arndt and Klement, 
1991), working memory load (Baddeley, 1986) and appetitive 
judgments to the complexity of visual stimuli (Aitken, 1974). As 
noted, animal studies have shown that neurons sometimes evince 
monotonic responses to the magnitude of reward (in the amygdala) 
(Bermudez and Schultz, 2010), and the numerosity of visual 
elements (intra-parietal sulcus) (Roitman et al., 2007). These (and 
other) studies suggest that monotonicity may be a central principle 
linking psychology, biology and mathematics (Grice et al., 2023). 
In higher order domains like learning (and especially associative 
learning), the ordered sets of (a) the time steps (over which 
learning accrues) and (b) behavioral proficiency (how proficient 
learning is) are invariably yoked in monotonic relationships (see 
Figure 2). This may partly be because reward expectation (which 
is central to studies of animal learning) is monotonically related to 
the conditioned response (Gershman, 2015), and the uncertainty 
associated with learning decreases as a function of the time horizon 
over which learning occurs (Muzik and Diwadkar, 2023). Finally, 
learning traces in the hippocampus also accumulate in a non-linear 
but generally monotonic manner (Norman and O'Reilly, 2003; 
Diwadkar et al., 2008).

The conditions under which monotonicity in behavior is 
co-observed with monotonicity in fMRI measures are somewhat 
unclear. To our knowledge, the closest evidence comes from two 
sources: (a) Using an event-related fMRI study of paired-associate 
memory (which is somewhat different from the class of learning 
implemented in this investigation) (Law et  al., 2005), Law and 
colleagues demonstrated that fMRI responses in medial temporal 
lobe regions like the hippocampus, parahippocampus and the 
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perirhinal cortex increase monotonically with memory strength 
and (b) In two separate effective connectivity studies (Friston, 
2009), Büchel et al. (1999) and Banyai et al. (2011) showed that the 
effectivity connectivity of frontal-hippocampal pathways increased 
over the course of learning. However, these studies and others 
(Toni et al., 2001) did not use graph theoretic measures and also 
did not test for monotonicity in fMRI data in individual participants.

4.2 Graph theoretic summaries of fMRI 
data

Graph theoretic measures efficiently summarize spatio-
temporal fMRI data (and indeed any data) (van den Heuvel and 
Sporns, 2013; Farahani et al., 2019; Meram et al., 2023) and by 
doing so, reveal hidden structure in any complex system. 
Measures like BC are sensitive to the integrative importance of a 
node because BC quantifies the notion of “hubness”; this is the 
degree to which a node acts as a bridge along the shortest path 
between any two other nodes (Koschützki et al., 2005). Variations 
in BC capture functional network dynamics at the nodal level. In 
other words, changes in a node’s hubness encode changes in the 
functional properties of a network (de Pasquale et  al., 2018; 
Meram et  al., 2023). Thus, it is precisely because behavior is 
buttressed by network interactions, that we  should expect to 
observe monotonic changes in behavioral proficiency in 
conjunction with some monotonic changes in network properties 
(Ravishankar et al., 2019; Samona et al., 2024).

Interestingly, such evidence was observed when analyzing data 
from individual participants (Figures 3a–6a) but was relatively sparse 
(given the large corpus of potential targets). It may be  that fMRI 
signals are highly variable in individual participants, and this 
variability affects summative graph theoretic measure as well (Falco 
et al., 2019; Falco et al., 2020). However, and unsurprisingly, group 
level summaries were more promising. Here, the most explainable 
effects were observed in the SCZ group during Encoding (Figure 3b, 
bottom). Given the frontal-temporal basis of learning (Davachi and 
Wagner, 2002; Ranganath et al., 2004; Schlichting and Preston, 2016; 
Woodcock et  al., 2016), evidence of the monotonicity of BC in 
multiple frontal (medial, inferior and orbital) nodes, and nodes in the 
temporal lobe (most notably parahippocampal) is compelling. On 
average, in SCZ the hubness of these nodes increased monotonically 
over time. We also observed an eloquent set of findings during the 
Post-Encoding Rest condition (which has been noted for being a 
constructive “passive” state) (Schlichting and Preston, 2014; Samona 
et  al., 2024). Here, patients showed increases in the hubness of 
sub-cortical nodes, most notably in thalamic sub-regions, and nodes 
in the occipital lobe (Figure 4b, bottom).

Both BC and ASPL are based on considering the shortest paths 
between nodes, but ASPL summarizes all paths into a single measure 
of network efficiency and is therefore presumed to complement 
BC. Our analysis appears to corroborate this fact because SCZ showed 
significantly higher ASPL values (Supplementary Figure  1). This 
increase has been associated with inefficient network communication, 
an established feature of the schizophrenia brain (Rubinov and 
Bassett, 2011; Su et al., 2015; Zovetti et al., 2022). Indeed, in healthy 
controls, ASPL decreased monotonically across the eight repetitions 

of Encoding (see Figure 7a). This decrease is evidence for associations 
being successfully consolidated as the underlying network interactions 
in the healthy brain become more efficient. Unsurprisingly, these 
changes in and differences in ASPL are likely to be  related to the 
overall connectivity in a network, particularly in fully weighted 
networks where increased connectivity is typically associated with 
shorter average path length (Perez and Germon, 2016). In 
supplementary analysis, we confirmed this to be true in our data. 
Supplementary Figure 6 provides an inter-group comparison in the 
distribution of correlation coefficients across all four conditions, 
where we observed a leftward shift in the schizophrenia data, thus 
confirming that ASPL is a measure of cumulative inefficiency (or 
efficiency in a network).

5 Limitations and conclusions

Many decisions can influence the kinds of inferences about brain 
networks drawn from fMRI data. These factors include decisions 
about how nodes are spatially defined in order to form a network of 
interest (Eickhoff et al., 2018; Falco et al., 2019; Falco et al., 2020), the 
choices made with respect to data filtering and denoising 
(Andronache et al., 2013) and the width of smoothing filters used in 
preprocessing (Alakorkko et al., 2017; Triana et al., 2020). While, the 
few studies on these issues indicate that the exercised choices do not 
introduce systematic bias in observed results, this is an admitted 
limitation of our analyses, where our choice of template (Fan et al., 
2016) and the parameters in the preprocessing steps can have impacts 
on our results.

Next, our motivations might appear to be suited for the use of 
dynamic functional connectivity, a technique of choice for studying 
task-evoked or resting-state dynamics in fMRI signals (Hutchison 
et  al., 2013; Heitmann and Breakspear, 2018). However, we  were 
specifically motivated to treat each epoch as “discrete” and separate 
“events” on the path toward learning (whereas by definition, dynamic 
functional connectivity operates along moving and overlapping 
windows of time within a task). Doing so was the only way to assess 
whether across the task both behavioral and fMRI related functions 
displayed evidence for monotonicity. Clearly dynamic functional 
connectivity has a crucial role to play in understanding the dynamics 
of learning (Fatima et al., 2016), and is an endeavor of some of our 
ongoing work (Bhatt et al., 2025).

What is the relationship between network metrics and overt 
human behavior? For several reasons this remains a vexing 
question in human neuroscience; (i) the relatively obscure 
relationship between neurophysiological signals at different 
spatio-temporal scales makes it difficult to model the manner in 
which signals converge or diverge across the cortical hierarchy 
(Singh, 2012); (ii) brain network interactions (which may be the 
most proximate physiological correlate of behavior) are 
inherently probabilistic (as opposed to deterministic) and are 
therefore challenging to capture using formal computational 
frameworks (Mannino and Bressler, 2015; Razi and Friston, 
2016); (iii) outside of basic behaviors (like reflex arcs etc.) no 
models straightforwardly explain how interactions in the 
biological substrate translate into overt behavior (Krakauer et al., 
2017). We do not expect a single study to adequately address all 
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these questions. However, we  hoped to contribute to this 
dialectic. Therefore, we  motivated a specific attempt to 
co-observe monotonicity in behavior, and in connectomic and 
regional measures of fMRI data across two comparator groups. 
Our investigation attempted to be as comprehensive as possible, 
using multiple outcome measures, clear definitions of 
monotonicity, and the use of a healthy and a clinical group. 
We were able to modestly co-observe monotonicity (more so at 
the group level) in behavioral and connectomic measures. This 
evidence is interesting because (as stated) no straightforward 
mechanistic framework links the diverse mix of fMRI signals to 
overt behavior; as has been repeatedly noted, behavior is unlikely 
to emerge from one-to-one mappings to specific neural events 
(Price and Friston, 2005). Rather, psychological events may 
emerge from distributed activity across neural ensembles rather 
than local activity in circumscribed neural populations, thus 
leading to a labyrinthine relationship between behavior and its 
underlying neurophysiological correlates (Westlin et al., 2023). 
Countless theoretical overviews emphasize these points (Tranel, 
2007; Park and Friston, 2013) and suggest that the relationship 
between overt behavior and measures of brain function is going 
to be complex. These challenges may be overcome through the 
simultaneous modeling of multiple signal sources (including 
EEG) (Turner et al., 2016). Nevertheless, our reliance on a well-
defined mathematical principle like monotonicity may provide 
one approach toward making a dent in this challenge (for 
example, other such efforts in fields like mathematical psychology 
have proven insightful in elucidating the perceptual bases of the 
sensorial world, or how similarities in object features are 
represented along internal psychological dimensions) (Tversky, 
1977; Shepard, 2001). If two classes of co-acquired signals (in our 
case, behavior and fMRI data) display similar temporal forms 
(i.e., similar monotonic changes), then one might infer that they 
are related in a meaningful way. Many such functionalist 
approaches are not predicated on a clear mechanistic 
understanding of how the two sets of signals emerge from each 
other (Shoemaker, 1981), but rather on the roles that the play in 
a process. Thus (and as stated in the Introduction), monotonicity 
can be a mathematical anchor, and we have used it to unearth 
modest evidence linking behavior to fMRI data. Future studies 
will be needed to better explain the limits of our approach, and 
to confirm or reject its validity.
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SUPPLEMENTARY FIGURE 1

ASPL of HC and SCZ across all conditions and blocks. A three-way ANOVA 
(Group, Time and Condition) revealed a main effect of group, with SCZ 
showing significantly higher ASPL (F1,86 = 11.47, p<0.001, MSE = 0.187) 
indicative of a loss of network efficiency.

SUPPLEMENTARY FIGURE 2

Monotonicity of fMRI signal amplitudes during Encoding at the participant 
level for (a) HC and (b) SCZ. The figure complements Figure 3a and the 
arrangement is maintained. As was the case with the findings from BCRO, 
non-monotonicity was the norm in a majority of participants. This sparsity is 
also seen in Supplementary Figures 3–5.

SUPPLEMENTARY FIGURE 3

Monotonicity of fMRI signal amplitudes during Post-Encoding Rest at the 
participant level for (a) HC and (b) SCZ. The figure complements Figure 4a.

SUPPLEMENTARY FIGURE 4

Monotonicity of fMRI signal amplitudes during Retrieval at the participant 
level for (a) HC and (b) SCZ. The figure complements Figure 5a.

SUPPLEMENTARY FIGURE 5

Monotonicity of fMRI signal amplitudes during Post-Retrieval Rest at the 
participant level for (a) HC and (b) SCZ. The figure complements Figure 6a.

SUPPLEMENTARY FIGURE 6

Distributions of edge-weight (Fisher z transformed correlation coefficients 
derived from the uFC matrices) across the eight iterations for each task 
condition in HC and SCZ.
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