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The ability to remember emotionally significant stimuli and stimulus associations

is critical to survival, as it ensures that rewarding and threatening events can

be recalled to guide future behavior. Consequently, events are consolidated

more strongly into long-term memory as they are encoded under heightened

emotional arousal. Such memory prioritization is partly driven by the release

of peripheral adrenaline, which acts as a bodily signal emphasizing an

event’s emotional significance and enhances plasticity in the brain. Animal

research suggest that the vagus nerve translates elevated peripheral adrenaline

into central noradrenergic activation of memory-relevant brain areas via its

projections to the brainstem locus coeruleus–the main source of noradrenaline

in the brain. The possibility of vagus nerve stimulation (VNS), both invasively

(iVNS) and non-invasively (i.e., transcutaneously; tVNS), has opened up new

avenues to test a potential vagal route to memory in humans whilst

circumventing the necessity of actual peripheral adrenergic release. Here, we

briefly review recent research applying iVNS and tVNS in a variety of animal and

human emotional episodic memory and Pavlovian conditioning and extinction

learning experiments, supporting a critical role of the vagus nerve in modulating

emotional memories. Based on this body of evidence, we highlight clinical areas

where VNS may therefore serve as an adjunct to treatments for neurocognitive,

anxiety- and trauma-related disorders, that aim at improving learning and

memory consolidation. In fact, a brief review of (sub-) clinical studies shows

that VNS alleviates symptoms in mild cognitive impairment, Alzheimer’s disease

as well as anxiety- and trauma-related disorders.

KEYWORDS

vagus nerve stimulation, emotional memory, associative memory, fear extinction,
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Introduction

Memories are created through a highly selective filter: While
mundane experiences easily fade away, events laden with emotional
salience are etched deeply into our remembrance (Dolan, 2002;
LaBar and Cabeza, 2006; Wang and Bukuan, 2015; Rouhani et al.,
2023). Emotions are typically elicited during events that are critical
to our survival and can therefore functionally be conceived as tags
emphasizing the motivational significance of stimuli and stimulus
associations (Bradley et al., 2001b). Thus, memory prioritization for
emotional material is highly adaptive, as it ensures that significant
events (e.g., receiving rewards or facing threats) can be recalled
to guide our future behavior (e.g., approach or escape) (McIntyre
et al., 2012; Dunsmoor and Kroes, 2019; Szeska et al., 2022). Given
its relevance, it may therefore be somewhat surprising that the
memory-enhancing effect of emotion has been recognized for a
long time (James, 1890), yet the underlying mechanisms of action
have only begun to be uncovered in the second half of the last
century (Easterbrook, 1959).

More than 50 years later, it is now well established that memory
consolidation for emotional experiences is prioritized as they are
associated with a profound increase in arousal, entailing increased
attentional and perceptual processing (Bradley et al., 2001a; LaBar
and Cabeza, 2006; Rouhani et al., 2023). For instance, pictures that
have been rated as highly arousing are overall better remembered
than low arousing ones, as indicated by increased free recall
(Bradley et al., 1992; Hamann et al., 1997) and high-confidence
(recollection-based) recognition memory (Dolcos et al., 2005, 2020;
Weymar et al., 2009). Even non-emotional pictures of tools or
animals have found to be preferably consolidated if they have been
associated with physiologically arousing stimuli, e.g., an aversive
electric shock or a monetary reward (Dunsmoor et al., 2015a; Patil
et al., 2017). Accordingly, dedicated strategies that elevate arousal
around the time of stimulus encoding, e.g., by stressful tasks, have
found to additionally foster memory enhancement for emotional
material (Nielson et al., 1996; Nater et al., 2007; Schwabe et al., 2008;
Weymar et al., 2012), while strategies that decrease arousal, e.g., by
relaxing music, have shown to attenuate such effect (Rickard et al.,
2012; for a review see McGaugh, 2018).

Extensive research in animals and humans unveiled that
arousal-based memory enhancement is hinged upon the adrenal
glands’ immediate adrenaline and delayed glucocorticoids release
(Roozendaal et al., 2009; McIntyre et al., 2012; McGaugh, 2018).
For instance, aversive emotionally arousing pictures (e.g., of a
snake or a gun pointing towards the participant; see Figure 1)
lead to a profound increase in peripheral adrenergic activation,
as indexed by endocrine markers such as salivary alpha amylase
(sAA), and cortisol release, both of which positively covarying with
enhanced memory retention (Abercrombie et al., 2003; Codispoti
et al., 2003; Van Stegeren et al., 2006; Segal and Cahill, 2009).
Highlighting the particular role of adrenergic activation in memory
consolidation, depleted levels of peripheral adrenaline–e.g., due
to adrenalectomy–in contrast impair memory performance for
emotional stimuli (Borrell et al., 1983). Providing even stronger
mechanistic evidence, small doses of exogeneous adrenaline foster
memory enhancement for emotional material and even reverse the
effects of adrenalectomy (Borrell et al., 1983; Cahill and Alkire,
2003), while beta-blockers that attenuate adrenergic transmission

prevent memory enhancement from unfolding (Van Stegeren et al.,
1998; for electrocortical evidence see e.g., Weymar et al., 2010).

Pharmacological and imaging studies have demonstrated, that
increased levels of peripheral adrenaline invoke such memory
enhancement by impacting on the neural transmission in the
amygdala–a central hub organizing the establishment of emotional
memories via its projections to the hippocampus and cortical
regions (Dolcos et al., 2004; Kensinger, 2004; Ritchey et al., 2008;
McIntyre et al., 2012; McGaugh, 2018). Accordingly, the activity
of this region during encoding of emotionally arousing material
increases and positively correlates with memory performance
(Canli et al., 2000; Figure 1), while bilateral amygdala lesions have
found to prevent memory enhancement for emotionally salient
stimuli (Adolphs et al., 1997; Phelps et al., 1998). At this, increases
in amygdala activity are indeed strikingly concomitant to increases
in adrenergic activity (Van Stegeren et al., 2006; van Stegeren et al.,
2007), suggesting that the release of adrenaline might stimulate this
region to ultimately invoke memory enhancement: In line with this
view, direct infusions of adrenaline into the amygdala foster, while
direct infusions of beta-blockers attenuated emotional memory
enhancement in animals (Liang et al., 1995).

However, as peripheral adrenaline is unable to cross the blood-
brain barrier (Weil-Malherbe et al., 1959), a neural axis–the vagus
nerve-has been presumed to convey information about elevated
adrenergic levels from the body to the brain, thereby indirectly
increasing neural transmission in memory-relevant brain regions.
The vagus nerve, as a cranial nerve consisting of 80% afferent fibers,
had long been considered a major autonomic communication route
by which the brain receives information about the state of the
inner body (Foley and DuBois, 1937; Berthoud and Neuhuber,
2000; McIntyre et al., 2012). Importantly, vagal afferents indeed
innervate the adrenal glands and are highly responsive to the release
of peripheral adrenaline due to a high number of beta-adrenergic
receptors (Coupland et al., 1989; Niijima, 1992; Miyashita and
Williams, 2006; Figure 1). Thus, the release of peripheral adrenaline
is able to activate vagal afferents, which then project to the
nucleus of the solitary tract (NTS) in the brainstem where
adrenergic activation is finally synapsed onto the main hub of
noradrenaline in the brain: the locus coeruleus (LC) (Miyashita and
Williams, 2004; McIntyre et al., 2012; McGaugh, 2018; Figure 1).
By way of the vagus nerve, a peripheral release of adrenaline
is thus translated into increased noradrenergic release via the
LC-brainstem arousal system. This system ultimately projects to
memory-relevant brain areas including the basolateral amygdala
(AMY), hippocampus (HC) and cortex (e.g., the medial prefrontal
cortex; mPFC), increasing noradrenergic transmission and, thus,
promoting plasticity in these areas to eventually foster memory
establishment (McIntyre et al., 2012; Mather et al., 2016; McGaugh,
2018; Figure 1). Accordingly, the vagus nerve was presumed to
constitute the first relay of a neural circuit mediating the memory
enhancing effects of emotional arousal. Indeed, animal research
supports this concept by showing that an invasive stimulation
of the vagus nerve (iVNS) elicits firing in the NTS and LC and
eventually increases noradrenergic transmission in the amygdala
(Hassert et al., 2004; Hulsey et al., 2017; Cooper et al., 2021).
Consequently, iVNS in fact promotes the memory formation in
animals (Clark et al., 1998) while such memory enhancement is
prohibited from unfolding, when the LC is optogenetically silenced
(Calderon-Williams et al., 2024).
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FIGURE 1

Schematic representation of interacting neural systems presumed to drive arousal-based memory enhancement, involving the adrenal glands, vagal
afferent fibers and multiple brain regions, including the nucleus of the solitary tract (NTS), locus coeruleus (LC), amygdala (AMY), hippocampus
(HIPP) and medial prefrontal cortex (mPFC). TAVNS, transcutaneous auricular vagus nerve stimulation.

While a major role of the vagus nerve in the formation of
emotional memories is thus supported by the animal model (see
for a review Olsen et al., 2023), a comparable role has long
been elusive in humans. In 1999, however, Clark and colleagues
demonstrated that iVNS in fact leads to an enhancement in word
recognition memory (Clark et al., 1999). Despite such promising
preliminary evidence, though, subsequent stimulation studies that
further explored a vagal route to memory in humans remained
scarce due to the requirement of invasive surgery. This changed
at the beginning of the millennium, when Peuker and Filler
(2002) discovered that vagal afferents reach the body’s surface at
the Cymba Conchae of the human auricle – a skin area that is
exclusively innervated by the auricular vagal branch (Figure 1),
allowing non-invasive vagal stimulation (transcutaneous auricular
vagus nerve stimulation; taVNS) with minimal side effects
(Giraudier et al., 2025). TaVNS leads to activation in the vagal
afferent network important for memory formation including the
NTS, LC, amygdala, hippocampus and mPFC, and also results in
an increase in central noradrenergic transmission (Frangos et al.,
2015; Yakunina et al., 2017; Ventura-Bort et al., 2018; Sclocco et al.,
2019; Borgmann et al., 2021; Teckentrup et al., 2021; Giraudier
et al., 2022; Figure 1). The availability of this neuromodulatory

strategy has opened up new possibilities to test whether the vagus
nerve fulfils a similar role for emotional memory in humans as it
does in animals. In the following sections, we will provide a brief
overview of recent stimulation studies, which support the view that
vagal firing promotes episodic and associative emotional memory
establishment. Based on this body of evidence, we will highlight
potential areas of clinical application where VNS may be utilized
to facilitate the long-term consolidation of learning experiences.

The role of the vagus nerve in
episodic memory

Initial evidence for the causal influence of ascending vagal
fibers in emotional memory came from animal research (Clark
et al., 1995, 1998). In one study, Clark et al. (1998) trained rats
in an inhibitory avoidance task, where animals were to learn to
avoid an electric shock. Directly after, animals received either
30 s of VNS or sham stimulation (see Table 1). The authors
observed that VNS compared to sham stimulation improved
memory performance, assessed 24 h after stimulation, especially
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for intermediate stimulation intensities (Clark et al., 1998; see also
Sanders et al., 2019; Olsen et al., 2022; for a review see Olsen
et al., 2023; also see Table 1). Subsequent studies have shown that
VNS modulates molecular mechanisms within the HC, suggesting
that VNS-induced memory improvements are likely related to
hippocampal activity (c.f., Olsen et al., 2023).

In a follow up study, Clark et al. (1999) attempted to
extend their animal findings to humans. In this study, epileptic
patients with an implanted VN stimulator underwent verbal
learning before receiving either active VNS at varying intensities
(Table 1) or no stimulation in a control condition. Memory
performance was tested in an immediate word-recognition test.
Results showed that when the stimulation device was turned on
after encoding, participants exhibited better memory performance,
compared to when the stimulator remained off, particularly at
intermediate stimulation intensities (Clark et al., 1999). Subsequent
investigations on the effects of iVNS on memory performance have,
however, yielded mixed findings. While some studies also reported
positive effects of iVNS on memory performance (Ghacibeh et al.,
2006), others failed to observed memory improvements after iVNS
(Mertens et al., 2022; for a review see Olsen et al., 2023; see Table 1).

Unlike animal studies, which focused on emotional memories,
human studies using iVNS did not assess episodic memory for
emotional information, limiting the generalization of the same
neural path from animals to humans. Ventura-Bort et al. (2021)
therefore investigated the role of the VN on the formation and
consolidation of emotional episodic memories in humans using
taVNS. In this study, participants underwent two encoding sessions
in which unpleasant and neutral images were encoded while
receiving taVNS or sham stimulation in a counterbalanced, within-
subjects design. One week later, recognition memory was tested
by also assessing the contribution of familiarity vs. recollection-
based remembering (i.e., low vs. high confidence; Wixted and
Stretch, 2004), with the latter representing a more elaborate
mnemonic process that particularly reflects increased amygdala
and hippocampal activity (Dolcos et al., 2005, 2020).

Although no overall effects of VNS on memory performance
were found (see also Ludwig et al., 2025), unpleasant images
encoded under taVNS were more often retrieved with high
confidence (Ventura-Bort et al., 2021), indicating a recollection-
driven increase for emotional but not neutral images (see also
Ludwig et al., 2025 for general memory improvements for
unpleasant images encoded under taVNS). These findings were
also accompanied by larger recollection-sensitive brain potentials
(late ERP Old/New effect) during retrieval of emotional scenes
encoded under taVNS, compared to sham stimulation (for a recent
conceptual replication of the electrocortical findings using different
stimulation protocols, see Ventura-Bort et al., 2025). Similar
recollection-related results were also obtained in a behavioral study
investigating the effects of taVNS on memory for emotional and
neutral words (Giraudier et al., 2020). Although no overall effects
of taVNS were found, participants receiving taVNS during the
word encoding task showed a recollection-driven advantage (i.e.,
for words with the highest confidence) 1 day later (but see for no
effects when taVNS was applied offline using a same day memory
paradigm, Mertens et al., 2020). In contrast to Ventura-Bort et al.
(2021), however, no emotion-specific memory enhancement was
observed after taVNS (Giraudier et al., 2020), which may be
partly explained by the use of the less arousing emotional material

(words compared to high arousing pictures, c.f., Ventura-Bort et al.
(2021)).

Altogether, these results suggest that stimulation of vagal
afferents improves the formation of episodic, particularly
recollection-based (i.e., hippocampal-mediated), memories, as
indicated by behavioral and electrophysiological measures.

The role of the vagus nerve in
associative memory

Importantly, it is not only vital for survival to remember
distinct stimuli, but also to remember associations between them,
ultimately allowing to anticipate upcoming events based on
past experiences. In both animals and humans, such associative
emotional memory is predominantly investigated by means
of Pavlovian conditioning and extinction protocols. During
conditioning, an inherently neutral conditioned stimulus (CS; e.g.,
a light in animal research; a geometrical figure in human research)
repeatedly predicts the occurrence of an emotionally salient, i.e.,
unpleasant or pleasant, unconditioned stimulus (US; e.g., electric
shock or food incentive) (Lonsdorf et al., 2017). As a result, the CS
gains the capacity to elicit conditioned emotional responses (e.g.,
fear in case of a highly aversive US), reflecting a learned CS–US
association (Lonsdorf et al., 2017). In contrast, during subsequent
extinction protocols, the CS is no longer paired with any US
(Lonsdorf et al., 2017). Thus, a novel association (CS-No US) is
established, that inhibits the activation of an originally conditioned
memory trace and thus reduces conditioned emotional responses
(Dunsmoor et al., 2015b). Importantly, vagal projection targets (see
Figure 1) play pivotal roles in both conditioning and extinction:
Plasticity in the basolateral amygdala underlies initial associative
learning (i.e., initial conditioning and extinction), while the medial
prefrontal cortex is particularly involved in the consolidation and
recall of extinction memory (Herry et al., 2008; Senn et al., 2014;
Tovote et al., 2015; Szeska et al., 2022). In addition, noradrenaline
heavily impacts on the plasticity in these areas, and consequently
increased activity of the LC-NA system has found to promote
associative memory processes (Uematsu et al., 2017; Giustino and
Maren, 2018).

Accordingly, animal studies found promoted associative
emotional memory by iVNS: Rats, that underwent an extinction
protocol under iVNS, consistently show promoted extinction of
previously conditioned fear–an effect, that maintains even for
10 days and may even reverse experimentally induced extinction
impairments (Peña et al., 2013, 2014; Alvarez-Dieppa et al., 2016;
Noble et al., 2017, 2019; Souza et al., 2019, 2021, 2022; see
Table 1). Importantly, this extinction enhancement by iVNS is
abolished if the LC is optogenetically silenced (Calderon-Williams
et al., 2024), providing strong mechanistic evidence that respective
memory improvements are dependent to vagal projections to the
LC-NA system. Notably, the enhancing effects of iVNS are not
limited to the extinction of fear, but also apply to the extinction
of conditioned appetitive responses (e.g., cocaine-induced place
preference) (Childs et al., 2017, 2019). Animal research therefore
strongly suggests, that the vagus nerve is involved in guiding the
establishment of associative emotional memory, primarily through
its projections to the LC-NA system.
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TABLE 1 Overview of reviewed studies with particular emphasis on critical stimulation parameters and central effects.

Stimulation parameters

Authors Topic Subject VNS
type

VNS site Fre-
quency

Pulse
width

Duty
cycle

Duration
per
session*

Intensity Timing Task VNS effect

Clark et al., 1995 Episodic
memory

Animal iVNS Left 20 Hz 500 µs continuous 30 s 0.2/0.4/0.8 mA After encoding Inhibitory
avoidance

Improved memory
retention for
0.4 mA of
stimulation

Clark et al., 1998 Episodic
memory

Animal iVNS Left 20 Hz 500 µs continuous 30 s 0.2/0.4/0.8 mA After encoding Inhibitory
avoidance

Improved memory
retention for
0.4 mA of
stimulation

Sanders et al.,
2019

Episodic
memory

Animal iVNS Left 30 Hz 100 µs Intermittent
0.5 s trains

Effective
stimulation
duration ∼

51 s

0.8 mA During multiple
encoding
sessions

Object
recognition

Increased novelty
preference as an
index of improved
memory retention

Clark et al., 1999 Episodic
memory

Human
(epileptic
patients)

iVNS Left 30 Hz 500 µs continuous 30 s 0.50 mA,
0.75 –1.50 mA

After encoding Word
recognition

Improved
recognition
memory for
0.50 mA of
stimulation

Olsen et al., 2022 Episodic
memory

Animal iVNS Left 30 Hz 100 µs Intermittent
0.5 s trains

Effective
stimulation
duration ∼

50 s

0.8 mA During
encoding

Inhibitory
avoidance and
object
recognition

Improved memory
performance in
both tasks

Mertens et al.,
2022

Episodic
memory

Human
(epileptic
patients)

iVNS and
taVNS

Left 30 Hz 500 µs continuous 30 s invasive
0.5/1.0 mA
(increased by
0.125 and
0.25 mA
throughout
treatment)
non-invasive:
individually
adjusted

After encoding Word
recognition

No immediate
memory
improvement.
However, improved
memory retention
after 6 weeks of
VNS

Ghacibeh et al.,
2006

Episodic
memory

Human
(epileptic
patients)

iVNS Left No report No report continuous 30 s 0.5 mA During
encoding

Word recall Improved memory
retention
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TABLE 1 (Continued)

Stimulation parameters

Authors Topic Subject VNS
type

VNS site Fre-
quency

Pulse
width

Duty
cycle

Duration
per
session*

Intensity Timing Task VNS effect

Ventura-Bort
et al., 2021

Episodic
memory

Human taVNS Left 25 Hz 250 µs continuous 7 min individually
adjusted

During
encoding

Picture
recognition

Improved
high-confidence
recognition
memory for
emotional pictures |
Enhanced
electrocortical
correlates of
emotional encoding
and memory
retrieval

Ludwig et al.,
2025

Episodic
memory

Human taVNS Left 25 Hz 250 µs Intermittent
3 s trains

Effective
stimulation
duration
2.4 min

3.0 mA/5.0 mA During
encoding

Picture
recognition

Improved
recognition
memory for
emotional pictures

Ventura-Bort
et al., 2025 (Exp.
1)

Episodic
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
duration
7.5 min

individually
adjusted

During and after
encoding

Picture
recognition

No effect on
memory
performance |
Enhanced
electrococortical
correlates of
emotional encoding
and memory
retrieval in taVNS
condition

Ventura-Bort
et al., 2025 (Exp.
2)

Episodic
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
duration
7.5 min

individually
adjusted

During
encoding

Picture
recognition

Improved
high-confidence
recognition
memory for
emotional pictures |
Enhanced
electrocortical
correlates of
emotional encoding
and memory
retrieval
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TABLE 1 (Continued)

Stimulation parameters

Authors Topic Subject VNS
type

VNS site Fre-
quency

Pulse
width

Duty
cycle

Duration
per
session*

Intensity Timing Task VNS effect

Giraudier et al.,
2020

Episodic
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
duration
11.5 min

individually
adjusted

Before, during
and after
encoding

Word
recognition

Improved
high-confidence
recognition
memory for neutral
and emotional
words

Mertens et al.,
2020

Episodic
memory

Human taVNS No report 25 Hz 250 µs continuous 30 s 0.5 mA and
individually
adjusted

After encoding Word
recognition

No effect of taVNS

Peña et al., 2013 Associative
memory

Animal iVNS Left 20 Hz 500 µs intermittent
30 s trains

Effective
stimulation
duration
2 min

0.4 mA During
extinction

Single-cue fear
conditioning
and extinction

Improved fear
extinction learning
and memory
retention

Peña et al., 2014 Associative
memory

Animal iVNS Left 30 Hz 500 µs intermittent
30 s trains

Effective
stimulation
duration
2 min

0.4 mA During
extinction

Single-cue fear
conditioning
and extinction

Improved
between-session
extinction/equivalent
to extended
extinction

Alvarez-Dieppa
et al., 2016

Associative
memory

Animal iVNS Left 20 Hz 500 µs intermittent
30 s trains

Effective
stimulation
duration
2 min

0.4 mA During initial
extinction

Single-cue fear
conditioning
and extinction

Improved
between-session
extinction

Noble et al.,
2017

Associative
memory

Animal
(PTSD
model)

iVNS Left 20 Hz 100 µs intermittent
30 s trains

Effective
stimulation
duration
2 min

0.4 mA During multiple
extinction
sessions

Single-cue fear
conditioning
and extinction

Improved
between-session
extinction, reversal
of extinction
impairments and
attenuation of
PTSD-like
symptoms due to
prior prolonged
stress

Noble et al.,
2019

Associative
memory

Animal iVNS Left 20 Hz 100 µs intermittent
30 s trains

Effective
stimulation
duration
2 min

0.4 mA During multiple
extinction
sessions

Single-cue fear
conditioning
and extinction

Improved
between-session
extinction;
Improved
extinction memory
generalization;
Inherent anxiolytic
effects of VNS
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TABLE 1 (Continued)

Stimulation parameters

Authors Topic Subject VNS
type

VNS site Fre-
quency

Pulse
width

Duty
cycle

Duration
per
session*

Intensity Timing Task VNS effect

Souza et al., 2019 Associative
memory

Animal
(PTSD
model)

iVNS Left 30 Hz 100 µs intermittent
30 s trains

Effective
stimulation
duration
2.5 min

0.4 mA During multiple
extinction
sessions

Fear
conditioning
and extinction

Improved
between-session
extinction, reduced
fear renewal and
inherent anxiolytic
effects of VNS

Souza et al., 2021 Associative
memory

Animal
(PTSD
model)

iVNS Left 30 Hz 100 µs intermittent
0.5 s trains

Effective
stimulation
duration
10 s

0.4/0.8/1.6 mA During multiple
extinction
sessions

Single-cue fear
conditioning
and extinction

Improved
between-session
extinction at 0.4 and
0.8 mA, improved
long-term
extinction retention
at 0.8 mA, no
extinction
enhancement at
1.6 mA

Souza et al., 2022 Associative
memory

Animal iVNS Left 30 Hz 100 µs intermittent
0.5 s trains

Effective
stimulation
duration up
to 40 s

0.5/0.8 mA During multiple
extinction
sessions

Single-cue fear
conditioning
and extinction

Strong vs. modest
between-session
extinction
improvements
when stimulation
was paired vs.
unpaired with CS,
respectively

Calderon-
Williams et al.,
2024

Associative
memory

Animal iVNS Left 30 Hz 500 µs intermittent
2 s trains

Effective
stimulation
duration
32 s

0.8 mA During initial
extinction

Single-cue fear
conditioning
and extinction

Facilitated
between-session
extinction

Childs et al.,
2017

Associative
memory

Animal iVNS Left 30 Hz 100 µs intermittent
0.5 s trains

Unclear 0.8 mA During multiple
extinction
sessions

Extinction of
cocaine seeking

Facilitated
between-session
extinction and
reduced
reinstatement of
cocaine seeking

Childs et al.,
2019 (Exp. 1)

Associative
memory

Animal iVNS Left 30 Hz 500 µs Intermittent
30 s trains

Effective
stimulation
duration
3 min

0.4 mA During or after
multiple
extinction
sessions

Conditioned
place preference
and extinction

Reduced
reinstatement of
conditioned place
preference for
cocaine
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TABLE 1 (Continued)

Stimulation parameters

Authors Topic Subject VNS
type

VNS site Fre-
quency

Pulse
width

Duty
cycle

Duration
per
session*

Intensity Timing Task VNS effect

Childs et al.,
2019 (Exp. 2)

Associative
memory

Animal iVNS Left 30 Hz 500 µs Intermittent
30 s trains

Unclear 0.4 mA During multiple
extinction
sessions

Extinction of
cocaine seeking

Enhanced
extinction from
drug seeking,
reduced context-
and cue-induced
reinstatement of
cocaine seeking

Burger et al.,
2016

Associative
memory

Human taVNS Left 25 Hz No report Intermittent
30 s trains

Unclear 0.5 mA During initial
extinction

Differential-cue
fear
conditioning
and extinction

Facilitated
within-session
extinction (threat
expectancy), no
effect on extinction
recall

Burger et al.,
2017

Associative
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
duration
10 min

0.5 mA During initial
extinction

Differential-cue
fear
conditioning
and extinction

Facilitated
within-session
extinction (threat
expectancy), no
effect on extinction
recall

Burger et al.,
2018

Associative
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
duration ∼

13 min

0.5 mA During initial
extinction

Differential-cue
fear
conditioning
and extinction

No effect of taVNS

Szeska et al.,
2020

Associative
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
∼ 4 min

individually
adjusted

During initial
extinction

Single-cue fear
conditioning
and extinction

Facilitated
within-session
extinction and
between-session
extinction (threat
expectancy, startle
response)

Szeska et al.,
2021

Associative
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
∼ 4 min

individually
adjusted

During initial
extinction

Single-cue fear
conditioning
and extinction

Facilitated
within-session
extinction (heart
rate)

D’Agostini et al.,
2025

Associative
memory

Human taVNS Left 25 Hz 250 µs continuous Effective
stimulation
duration ∼

15 min

individually
adjusted

During initial
extinction

Differential-cue
fear
conditioning
and extinction

No effect of taVNS
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TABLE 1 (Continued)

Stimulation parameters

Authors Topic Subject VNS
type

VNS site Fre-
quency

Pulse
width

Duty
cycle

Duration
per
session*

Intensity Timing Task VNS effect

Genheimer
et al., 2017

Associative
memory

Human taVNS Left 25 Hz 250 µs Intermittent
30 s trains

Effective
stimulation
duration ∼

20 min

individually
adjusted

Before and
during initial
extinction

Contextual fear
conditioning
and extinction

No effects of taVNS

Jacobs et al.,
2015

MCI and
AD

Human
(elderly)

taVNS Left 8 Hz 200 µs continuous Effective
stimulation
duration
17 min

5.0 mA During and after
encoding

Face-Name
assocation task

Improved
recognition
memory

Murphy et al.,
2023

MCI and
AD

Human
(MCI)

taVNS Left 20 Hz 50 µs continuous Effective
stimulation
duration
6 min

individually
adjusted

During MRI
scanning

Resting State
MRI

Altered functional
connectivity
between brain
regions involved in
semantic and
salience processing

Wang et al.,
2022

MCI and
AD

Human
(MCI)

taVNS Left 20 Hz and
50 Hz

No report continuous Effective
stimulation
duration
30 min

individually
adjusted

Between
baseline and
follow-up testing
(after 24 weeks
of treatment)

Battery of
cognitive tests

Improved cognitive
(including memory)
performance

Dolphin et al.,
2023

MCI and
AD

Human
(MCI)

taVNS Left Unclear Unclear Unclear Unclear Unclear Unclear Face-Name
assocation task

Improved
recognition
memory

Sjogren et al.,
2002

MCI and
AD

Human (AD
patients)

iVNS Left 20 Hz No report intermittent
30 s trains

Unclear 0.25 mA
(increased
throughout
treatment to
0.5 mA)

After baseline
and during
follow-up testing
(at 3 and
6 months of
treatment)

Battery of
cognitive tests

Improved cognitive
performance after 3
and 6 months of
VNS treatment

Merrill et al.,
2006

MCI and
AD

Human (AD
patients)

iVNS Left 20 Hz No report intermittent
30 s trains

Unclear 0.25 mA
(increased
throughout
treatment to
0.5 mA)

After baseline
and during
follow-up testing
(1 year after
treatment)

Battery of
cognitive tests

Improved cognitive
performance after
1 year of VNS
treatment
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Human research utilizing taVNS has largely translated these
findings from the animal model, although results have been mixed
(see e.g., Burger et al., 2018 and D’Agostini et al., 2025; Szeska et al.,
2020, 2021; see Table 1): Using a differential-cue Pavlovian fear
conditioning paradigm, requiring discriminative learning between
a threat and a safety cue, Burger and colleagues showed that
taVNS accelerates the extinction of previously conditioned fear
(Burger et al., 2016, 2017). Notably, though, these extinction
enhancements were limited to verbal report measures of fear
(i.e., threat expectancy). Yet, in a simpler single-cue Pavlovian
fear conditioning paradigm, which is more closely adapted to
animal research and requires simpler associative learning (either
threat learning or not in a between-group design), taVNS has
found to accelerate the extinction of verbal report, behavioral
and physiological components of the fear response (Szeska et al.,
2020, 2021). Consistent with prolonged extinction enhancements
observed in animals, such beneficial effect maintained for even
4 weeks. However, the extinction enhancements by taVNS may
be limited to the learning of associations between distinct cues:
In a differential-context Pavlovian fear conditioning protocol,
requiring discriminative learning of a threat-signaling vs. safety-
signaling environment in virtual reality, taVNS failed to promote
the extinction of contextually-related conditioned responses
(Genheimer et al., 2017).

As for episodic memory, the current body of evidence therefore
also generally supports a pivotal role of the vagus nerve in the
establishment of human associative emotional memory, although
beneficial effects primarily unfold when simple cue-outcome
relationships are to be learned.

A potential role of vagus nerve
stimulation in the treatment of
mental disorders

Based on the beneficial effects of non-invasive VNS on memory
formation, this method was rendered a potential adjunct to
the treatment of mental conditions, that are either marked by
impairments in memory performance or where treatments are
hinged upon successful learning of new information. In the
following sections we will highlight such clinical areas, where
taVNS may therefore be utilized to aid treatment strategies,
including neurocognitive, anxiety and trauma-related disorders
(see Figure 2).

Neurocognitive disorders

It is well established, that episodic and associative memory
performance declines with increasing age (Shing et al., 2010; Greene
and Naveh-Benjamin, 2020) and such memory decline has found
to be partly grounded in LC integrity (Dahl et al., 2019; Dahl
et al., 2023) and overall neurodegenerative actions (Maass et al.,
2018). Since VNS specifically targets the LC, but also increases
overall cortical and hippocampal neuroplasticity (Biggio et al.,
2009; Morrison et al., 2019; Keute and Gharabaghi, 2021), and
invokes memory-enhancing effects (Ventura-Bort et al., 2021), it

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1595737
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1595737 July 3, 2025 Time: 19:1 # 12

Szeska et al. 10.3389/fnhum.2025.1595737

FIGURE 2

Non-exhaustive overview of potential clinical areas where treatment might benefit from vagus nerve stimulation.

may be presumed that VNS might counter such deterioration in
ageing individuals. In fact, taVNS has found to improve both
episodic and associative memory in elderly people (Jacobs et al.,
2015, see Table 1).

However, in some cases age-related impairments in memory
performance are particularly pronounced: Mild cognitive
impairment (MCI) describes such a condition of cognitive
decline, which is has been conceptualized as an intermediate point
between normal ageing and dementia (Simon et al., 2012). At this,
MCI either includes memory impairments (amnestic subtypes)
or not (non-amnestic subtypes) (Bradfield, 2023). Importantly,
amnestic MCI is highly present among elderly people, with studies
reporting prevalence rates ranging from 0.5% up to 31.9% (median
4.9%) (Ward et al., 2012). To combat memory impairments in
amnestic MCI, current treatments often build upon drugs like
cholinesterase inhibitors (e.g., galantamine; Loy and Schneider,
2006) or cognitive interventions, such as visual imagery, chunking
or cueing (Simon et al., 2012). However, given that MCI has found
to be linked to reduced locus coeruleus integrity (Jacobs et al.,
2021), such treatments could be complemented by LC-targeting
taVNS, effectively utilizing its memory-enhancing effects: Indeed,
preliminary data suggests that VNS triggered alterations in
functional connectivity between memory-relevant brain regions
(Murphy et al., 2023) and demonstrated to improve both the
establishment of associative memory as well as immediate and
delayed episodic memory recall in MCI patients (Wang et al., 2022;
Dolphin et al., 2023).

Longitudinal studies indicated, that amnestic MCI is a critical
risk factor for the development of Alzheimer’s disease (AD), as
it progresses to AD at an average rate of 10%–17% per year
(Ferman et al., 2013). This is not surprising, given that amnestic
MCI and AD share common features of neurodegeneration and
memory decline (Weller and Budson, 2018). According to the
World Alzheimer Report 2018, it was estimated that about 50
million people worldwide suffer from AD, and it was projected that
this prevalence will triple by the year of 2050 (Patterson, 2018). To
combat the progredient memory loss in AD, effective treatments
currently tap into similar mechanisms as therapeutic strategies for
amnestic MCI: Drugs, such as cholinesterase inhibitor galantamine
and NMDA-antagonist memantine, complemented by cognitive
interventions (Loy and Schneider, 2006; Weller and Budson, 2018).
Given the striking similarities between amnestic MCI and AD, it
might be presumed that VNS could provide a valuable addition to
this list. Indeed, first pilot studies suggest that taVNS might alleviate
AD symptomatology (Sjogren et al., 2002; Merrill et al., 2006) and
these effects are further tested in currently ongoing clinical trials
(Vargas-Caballero et al., 2022).

Anxiety and trauma-related disorders

Besides neurocognitive disorders, memory processes also play
a pivotal role in the etiology and treatment anxiety and trauma-
related disorders–conditions, that share features of excessive
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fear-based symptoms elicited by distinct (trauma-related) fear
cues (American Psychiatric Association, 2013). Pavlovian fear
conditioning is widely regarded as a model for the establishment of
such excessive fear (Craske et al., 2006). In contrast, fear extinction
is considered to be an associative learning mechanism driving the
success of exposure-based cognitive behavioral therapy–the current
first-line treatment for anxiety and trauma-related disorders
(Craske et al., 2014; Carpenter et al., 2018). Such treatment involves
the repeated exposure towards the patient’s individual fear cues,
invoking extinction learning which ultimately results in a gradual
inhibition of fear-based symptoms (Craske et al., 2014). However,
as indicated by basic research, extinction memory is rather fragile
compared to the original fear memory trace (Dunsmoor et al.,
2015b), and thus the organism remains prone to fear memory
reactivation. Such proneness might be even more pronounced upon
deficient extinction, which thus constitutes a risk factor for non-
responding to treatment or relapses (Vervliet et al., 2013; Milad
et al., 2014). Importantly, extinction deficits are prevalent in anxiety
and trauma-related disorders, possibly contributing to high rates
of non-responders (∼50%) and relapses (∼14%) in exposure-based
treatments (Loerinc et al., 2015; Levy et al., 2021). Given the positive
effects of both invasive and non-invasive VNS on the formation and
recall of extinction memory in animals and humans (see above),
VNS might constitute a valuable adjunct to overcome these deficits
and boost the success of exposure-based therapeutic strategies.

In fact, first evidence on invasive VNS supports this view: In a
recent study of Powers and colleagues (Powers et al., 2025), iVNS
was combined with prolonged exposure therapy in treatment-
resistant PTSD. By applying the invasive VNS during twelve
treatment sessions, PTSD symptoms were indeed substantially
alleviated–an effect, which persisted even 6 months after the
cessation of therapy and ultimately resulted in a loss of PTSD
diagnosis in all participants.

Non-invasive taVNS, which may be viewed as a more applicable
alternative to iVNS due to not requiring surgery, results in
similar effects: In a study of Szeska et al. (2025), spider phobic
individuals underwent a standardized exposure in vivo towards a
living tarantula, which was followed by a complementary taVNS-
paired laboratory exposure in vitro, during which participants
were presented with pictures of various spiders including the
exposed specimen. Participants, that received active VNS during
this complementary exposure indeed showed a stimulus-specific
inhibition of fear responses, as indexed by attenuated fear
tachycardia and corrugator activity towards pictures of the exposed
tarantula–autonomic and behavioral components of fear, that
serve as indirect read-outs of amygdala activity (Heller et al.,
2014; Roelofs and Dayan, 2022). This effect became stronger with
increasing stimulation duration, indicating a dose-dependency of
stimulation effects. Importantly, fear attenuation even maintained
after stimulation had ceased and participants were subjected to a
second in vivo exposure: After receiving taVNS, participants were
more likely to make physical contact with the phobic stimulus and
touch the tarantula with bare hands, as opposed to participants
that received a sham stimulation of the earlobe. Together, these
results indicate that vagus nerve stimulation boosts a stimulus-
specific reduction of fear responses in a dose-dependent manner,
which culminates in promoted responding to exposure treatment.

In sum, current evidence therefore suggests that VNS might
be a powerful adjunct for therapeutic regimen that build upon

exposure effects (Craske et al., 2014), including first-line treatments
of anxiety, stressor-and trauma-related disorders, as well as
obsessive-compulsive disorder.

Discussion

A prioritized storage of emotionally salient stimuli into long-
term memory warrants that significant cues, people, places and
events can be remembered in the future, thus acting as a
prerequisite for behavioral adaptivity (Dunsmoor and Kroes, 2019).
Animal research has long suggested the vagus nerve to be a central
relay driving this effect, since adrenergic actions on this nerve
in emotionally arousing situations elicit central noradrenergic
release, which promotes plasticity in memory-relevant brain areas
(McIntyre et al., 2012). The availability of electrical invasive
and non-invasive vagus nerve stimulation (VNS) has recently
opened up the possibility to test a comparable vagal route to
memory in humans. In this review, we synthesized animal and
human studies utilizing VNS, which altogether suggested that (1)
the vagus nerve constitutes an evolutionarily preserved brain-
body axis driving emotional memory formation and (2) VNS
may consequently be used to promote emotional episodic and
associative memory consolidation. Following up on the latter
notion, we further discussed VNS as a tool to combat memory
decline in neurocognitive disorders and as an adjuvant to facilitate
learning processes underlying exposure-based treatment of anxiety
and trauma-related disorders. In fact, preliminary evidence
suggests that electrical VNS improves mnemonic performance in
mild cognitive impairment and Alzheimer’s disease (Wang et al.,
2022), just as it promotes responding to exposure-based treatment
(Powers et al., 2025; Szeska et al., 2025), rendering electrical
VNS as a promising adjunct to a variety of therapeutic strategies.
Interestingly, this might also apply to non-electrical VNS: The
afferent vagus nerve is a critical component of the microbiota-
gut-brain axis and thus it may be possible to invoke VNS by
manipulations of the microbiome to achieve similar beneficial
effects (Kuijer and Steenbergen, 2023; Faraji et al., 2025).

Nevertheless, more research into the mechanisms of electrical
VNS is necessary to fully exhaust its memory-enhancing potential
and utilize this stimulation technique in clinical areas: Although
there is abundant evidence that VNS increases noradrenergic
transmission by projections to the locus coeruleus (Frangos et al.,
2015; Yakunina et al., 2017; Ventura-Bort et al., 2018; Sclocco et al.,
2019; Borgmann et al., 2021; Teckentrup et al., 2021; Giraudier
et al., 2022), VNS also targets centers of other transmitter systems
(Frangos et al., 2015) and thus modulates cholinergic (Bowles et al.,
2022), dopaminergic (Manta et al., 2009; Brougher et al., 2021),
serotonergic (Manta et al., 2009, 2013) as well as glutamatergic
and GABA-ergic neural transmission (Ben-Menachem et al., 1995).
As each of these systems is involved in memory formation
(Myhrer, 2003), the exact mechanism that underlies VNS-driven
memory enhancement is yet to disentangle. Likewise, it needs to
be determined under which conditions VNS yields the strongest
memory-enhancing effects: Of the 40 articles included in our mini-
review (see Table 1), only four have reported null-effects by VNS,
with all using taVNS. Thus, we may preliminarily conclude that
iVNS produces more consistent effects, possibly as it exhibits
more direct action on the vagus. However, future studies need
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to additionally test the role of different stimulation parameters
(frequency, intensity, duration; see D’Agostini et al., 2023) in VNS
effects: Indeed, it has been shown that adrenergic agents affect
memory retention in an inverted-U-shaped function, that depends
upon the arousal level of the organism, where exceeding levels
of systemic adrenaline may even impair memory performance
(Gold and Korol, 2012). As VNS is suggested to tap into similar
mechanisms, it is tempting to speculate that its memory enhancing
effects are similarly shaped, i.e., being strongest at intensities that –
when acting upon the current arousal state – invoke moderate
levels of adrenergic activation (for preliminary evidence, see Souza
et al., 2021). However, besides the current arousal state, further
individual characteristics may also shape VNS effects and need to
be systematically investigated (e.g., age, genetic factors, baseline
cognitive functions, but also baseline vagal tone). Furthermore,
it needs to be tested how (1) acute vs. multiple stimulation, (2)
online (during task) vs. offline stimulation (before and/or after
task), (3) type of task (e.g., relying on HC function), and (4)
immediate vs. delayed testing impact on the effects of VNS on
learning and memory. This also applies to the affective valence
of the encoded material: While our review showed that VNS
enhances memory for unpleasant material, to best of our knowledge
there is no study that investigated whether the same holds true
for pleasant stimuli, despite (mnemonic) processing similarly
taps into (nor-) adrenergic mechanisms (Sternberg et al., 1985;
Codispoti et al., 2003). Hence, we hope that our mini-review
strongly encourages specific experimental designs or meta-and
mega-analytic approaches (see Giraudier et al., 2022) to answer
these open research questions. While VNS is already an FDA-
approved clinical treatment of epilepsy and drug-resistant major
depressive disorder (and applied in further clinical trials focusing
e.g., on Alzheimer’s disease, mild cognitive impairment, PTSD,
alcohol use disorder or stroke rehabilitation; see (Herr et al., 2024)),
addressing these gaps will help to integrate it even more effectively
into therapeutic strategies and tailor this stimulation technique for
specific patient populations.

Altogether, this mini-review revealed that the vagus nerve
constitutes a major communication route between the body’s
periphery and the brain, which is critically involved in the
formation of emotional memories. Vagus nerve stimulation
can therefore be considered as one of the most promising

neuromodulation techniques to combat mental disorders, and its
full potential at this is yet to unfold.
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