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Multi-branch 
GAT-GRU-transformer for 
explainable EEG-based finger 
motor imagery classification
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Electroencephalography (EEG) provides a non-invasive and real-time approach to 
decoding motor imagery (MI) tasks, such as finger movements, offering significant 
potential for brain-computer interface (BCI) applications. However, due to the complex, 
noisy, and non-stationary nature of EEG signals, traditional classification methods—
such as Common Spatial Pattern (CSP) and Power Spectral Density (PSD)—struggle to 
extract meaningful, multidimensional features. While deep learning models like CNNs 
and RNNs have shown promise, they often focus on single-dimensional aspects and 
lack interpretability, limiting their neuroscientific relevance. This study proposes a novel 
multi-branch deep learning framework, termed Multi-Branch GAT-GRU-Transformer, 
to enhance EEG-based MI classification. The model consists of parallel branches to 
extract spatial, temporal, and frequency features: a Graph Attention Network (GAT) 
models spatial relationships among EEG channels, a hybrid Gated Recurrent Unit (GRU) 
and Transformer module captures temporal dependencies, and one-dimensional CNNs 
extract frequency-specific information. Feature fusion is employed to integrate these 
heterogeneous representations. To improve interpretability, the model incorporates SHAP 
(SHapley Additive exPlanations) and Phase Locking Value (PLV) analyses. Notably, PLV 
is also used to construct the GAT adjacency matrix, embedding biologically-informed 
spatial priors into the learning process. The proposed model was evaluated on the 
Kaya dataset, achieving a five-class MI classification accuracy of 55.76%. Ablation 
studies confirmed the effectiveness of each architectural component. Furthermore, 
SHAP and PLV analyses identified C3 and C4 as critical EEG channels and highlighted 
the Beta frequency band as highly relevant, aligning with known motor-related neural 
activity. The Multi-Branch GAT-GRU-Transformer effectively addresses key challenges 
in EEG-based MI classification by integrating domain-relevant spatial, temporal, and 
frequency features, while enhancing model interpretability through biologically grounded 
mechanisms. This work not only improves classification performance but also provides 
a transparent framework for neuroscientific investigation, with broad implications for 
BCI development and cognitive neuroscience research.
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1 Introduction

Electroencephalography (EEG) is a non-invasive, real-time, and cost-effective 
neurophysiological monitoring technique that records the electrical activity of the cerebral 
cortex, revealing neural dynamic patterns associated with motor intentions, such as finger or 
limb movements (Niedermeyer and da Silva, 2005). In recent years, EEG signals have shown 
increasing potential in applications such as Brain-Computer Interfaces (BCIs), 
neurorehabilitation, and intelligent assistive devices, enabling advancements in motor recovery 
for stroke patients, control of prosthetic limbs, and communication for individuals with severe 
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motor disabilities (McFarland, 2002; Pfurtscheller et  al., 2008). 
However, the high noise, non-stationarity, and complex spatio-
temporal-frequency characteristics of EEG signals make accurate 
motor intention recognition, particularly for fine-grained tasks like 
finger movements, a highly challenging task. These challenges are 
compounded by inter-subject variability and the low signal-to-noise 
ratio of EEG data, which often lead to inconsistent performance across 
different datasets and subjects (Blankertz et al., 2010).

EEG signal processing for motor intention recognition has been 
extensively explored, encompassing both traditional and deep learning 
approaches, with notable performance advancements. Traditional 
methods primarily rely on handcrafted feature extraction and shallow 
classifiers. For instance, Common Spatial Pattern (CSP) extracts 
spatial features by maximizing inter-class variance and is often paired 
with classifiers like Support Vector Machines (SVM), achieving robust 
performance in binary motor imagery tasks (Ramoser et al., 2000). 
Power Spectral Density (PSD) analysis computes the power of EEG 
signals across different frequency bands (e.g., Alpha: 8–13 Hz, Beta: 
13–30 Hz) to derive frequency-domain features linked to motor 
intentions (Zhang et  al., 2020). Extensions like Filter Bank CSP 
(FBCSP) further improve performance by analyzing multiple 
frequency bands, achieving better feature discrimination in multi-
class settings, such as the BCI Competition IV datasets (Ang et al., 
2012). Other traditional methods, such as Wavelet Transform (WT), 
decompose EEG signals into time-frequency representations to 
capture transient features associated with motor events (Herman et al., 
2008). Despite their effectiveness in specific contexts, these methods 
require intricate preprocessing and feature engineering, and their 
performance diminishes when confronted with high-noise, 
non-stationary EEG signals. Notably, they struggle to integrate 
multidimensional information across spatial (inter-channel 
dependencies), temporal (dynamic evolution), and frequency (specific 
brain rhythms) domains, resulting in limited classification efficacy for 
complex tasks like five-finger motor imagery, where subtle differences 
in EEG patterns are critical (Pfurtscheller and Lopes da Silva, 1999).

The advent of deep learning has introduced transformative 
solutions to EEG classification tasks, mitigating some of the limitations 
of traditional methods by automating feature extraction. Convolutional 
Neural Networks (CNNs), such as EEGNet, are widely adopted for their 
proficiency in extracting local spatial and frequency patterns, achieving 
competitive accuracies like 51.73% on the Kaya dataset for five-finger 
motor imagery tasks (Lawhern et al., 2018). Recurrent Neural Networks 
(RNNs), along with their variants such as Long Short-Term Memory 
(LSTM) units and Gated Recurrent Units (GRU), excel at modeling 
temporal dependencies within EEG signals, making them suitable for 
capturing the dynamic evolution of motor-related brain activity (Zheng 
et al., 2017). Hybrid models like CNN-LSTM combine spatial and 
temporal feature extraction, further improving performance in motor 
imagery tasks by achieving accuracies up to 48–50% on similar datasets 
(Zhao et al., 2019). Moreover, Transformer models, leveraging self-
attention mechanisms, have demonstrated exceptional capability in 
capturing long-range temporal dependencies, finding successful 
application in EEG classification tasks with reported improvements in 
multi-class settings (Tan et al., 2023). Recent advancements also include 
transfer learning and domain adaptation techniques, which aim to 
address inter-subject variability by pre-training models on large EEG 
datasets and fine-tuning them on target subjects, as seen in works like 
DeepConvNet (Schirrmeister et al., 2017) and cross-subject transfer 
learning frameworks (Fahimi et al., 2020). Despite these advances, most 

deep learning methods focus on single-dimensional features—CNNs 
on spatial or frequency patterns, and RNNs or Transformers on 
temporal dynamics—making it difficult to fully represent the multi-
dimensional spatio-temporal-frequency nature of EEG signals. 
Additionally, the opaque “black-box” nature of these models limits their 
interpretability, obscuring the neurophysiological mechanisms 
underlying their decisions and restricting their utility in clinical 
diagnostics and neuroscience research, where understanding the neural 
basis of predictions is crucial (Lotte et al., 2018). Furthermore, transfer 
learning approaches often struggle with domain shifts between subjects, 
leading to reduced generalization performance in fine-grained tasks.

The inherent inter-channel relationships in EEG signals naturally 
lend themselves to graph-based modeling, positioning Graph Neural 
Networks (GNNs) as a burgeoning research focus. Graph Attention 
Networks (GATs), in particular, enhance spatial relationship modeling 
by dynamically learning the significance of inter-channel connections 
via attention mechanisms, offering a more adaptive approach 
compared to traditional GNNs (Velickovic et al., 2017). GATs have 
outperformed traditional GNNs in tasks such as emotion recognition, 
achieving accuracies up to 85% on public datasets (Zhong et al., 2020), 
and epilepsy detection, where they improved seizure prediction by 
5–10% over baseline methods (Jibon et al., 2024). More recent studies 
have explored multi-layer GAT architectures to capture hierarchical 
spatial patterns, such as local interactions between nearby electrodes 
and global connectivity across brain regions (Klepl et  al., 2024). 
However, existing studies predominantly employ single-layer GAT 
architectures, which fail to fully leverage the hierarchical spatial 
structure of EEG signals and encounter challenges related to complex 
adjacency matrix design and computational inefficiency, particularly 
when scaling to larger datasets (Almohammadi, 2024). Additionally, 
the integration of GATs with temporal and frequency feature 
extraction remains underexplored, limiting their ability to address the 
multidimensional nature of EEG data (Liu et al., 2024).

To mitigate the “black-box” limitation of deep learning models, 
interpretability techniques have emerged as valuable tools for 
understanding model decisions in EEG classification. SHAP (SHapley 
Additive exPlanations) quantifies the contribution of input features to 
model predictions, pinpointing critical channels (e.g., C3, C4) and 
time segments in classification tasks, which has been applied to motor 
imagery studies to identify key EEG features (Lundberg and Lee, 2017; 
Zhou et al., 2023). Similarly, Phase Locking Value (PLV) evaluates 
phase synchrony between EEG channels, shedding light on functional 
connectivity across brain regions, such as increased connectivity in 
the Beta band during motor tasks (Lachaux et  al., 1999). Other 
interpretability methods, such as Grad-CAM, have been used to 
visualize the spatial focus of CNN models in EEG classification, 
highlighting active brain regions (Selvaraju et al., 2017). While these 
methods offer partial insights, few studies integrate SHAP and PLV to 
concurrently assess feature importance and neural connectivity, 
leaving interpretations of EEG signal processing models incomplete 
(Rajpura et al., 2024). Moreover, the application of interpretability 
techniques in fine-grained tasks like five-finger motor imagery 
remains limited, where understanding subtle neural differences is 
essential for advancing neuroscientific knowledge.

Despite significant strides in EEG signal processing, current 
methods exhibit critical shortcomings that highlight the need for this 
study. Traditional approaches like CSP, PSD, and FBCSP, as well as most 
deep learning models, emphasize single-dimensional modeling—
focusing solely on spatial, temporal, or frequency features—failing to 
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capture the full multi-dimensional essence of EEG signals. Spatial 
modeling remains inadequate, as existing GAT applications are often 
confined to single-layer structures, underutilizing the hierarchical spatial 
information inherent in EEG data. Moreover, while interpretability 
methods like SHAP, PLV, and Grad-CAM provide some clarity, their rare 
integration with multi-dimensional feature extraction frameworks limits 
a comprehensive understanding of model behavior, particularly for fine-
grained tasks like five-finger motor imagery classification, where subtle 
EEG pattern differences pose significant challenges. Additionally, 
transfer learning and domain adaptation methods, while promising, 
struggle to generalize across subjects in such tasks due to domain shifts, 
often achieving accuracies below 50% in cross-subject settings.

To address these deficiencies, this paper introduces the “Multi-
Branch GAT-GRU-Transformer,” a multi-branch deep learning model 
with innovative designs. The model features three parallel branches: 
one employing Graph Attention Networks (GAT) to model spatial 
relationships, another combining GRU and Transformer to capture 
temporal dependencies, and a third utilizing one-dimensional 
Convolutional Neural Networks (1D CNN) to extract frequency 
features, thereby achieving a holistic representation of EEG signals’ 
multi-dimensional characteristics. In the spatial branch, a hierarchical 
GAT structure is implemented, where lower layers learn local inter-
channel interactions, and higher layers capture global spatial patterns 
across brain regions, enhancing spatial feature extraction. The 
temporal branch integrates GRU for local temporal dependency 
modeling with a Transformer Encoder for long-range dependencies 
via self-attention, augmented by a temporal attention mechanism to 
heighten sensitivity to pivotal time points. In the frequency branch, 
multi-band filtering separates EEG signals into distinct frequency 
bands (e.g., Delta, Theta, Alpha, Beta, Gamma), with 1D CNN 
extracting band-specific features pertinent to motor intentions. An 
interpretability module further enhances the model by employing 
SHAP to quantify the contributions of input EEG signals to 
decisions—identifying key channels, time segments, and frequency 
bands—while PLV analyzes inter-channel phase synchrony to reveal 
cooperative brain region activity under varying motor intentions.

The primary contributions of this work are threefold. First, it 
proposes a multi-branch model integrating GAT, GRU, Transformer, 
and 1D CNN, achieving a test accuracy of 55.76% on the Kaya dataset, 
outperforming baselines like EEGNet (51.73%). Second, it incorporates 
SHAP and PLV techniques for interpretability analysis, offering novel 
scientific insights into the neural mechanisms of finger motor 
intentions, such as the reliance on C3, C4, and Cz in Beta and Gamma 
bands. Third, it validates the model’s superior performance through 
statistical significance tests and provides a deeper understanding of 
brain activity patterns through interpretability analysis. Through these 
advancements, this study not only elevates the technical sophistication 
of EEG signal processing but also provides new methodologies and 
perspectives for research in brain-computer interfaces and neuroscience.

2 Materials and methods

2.1 Dataset

The experiment utilizes the large-scale EEG motor imagery 
dataset provided by Kaya et al. (2018), comprising EEG recordings 
from 13 healthy participants (8 males and 5 females) aged between 

20 and 35 years. The dataset adopts a five-finger motor imagery (5F) 
paradigm, wherein participants engage in motor imagery tasks 
involving individual fingers: the thumb, index, middle, ring, and 
little fingers. EEG signals were recorded using the BrainAmp 
system (Brain Products, Germany) at a sampling rate of 1,000 Hz, 
ensuring high temporal resolution necessary for capturing transient 
neural dynamics. A total of 22 EEG channels were employed, 
selected in accordance with the international 10–20 system. This 
standardized electrode placement scheme determines scalp 
locations based on proportional distances between key anatomical 
landmarks, ensuring consistent and reproducible electrode 
positioning across subjects. The use of this system is particularly 
advantageous for its robust coverage of functionally significant 
cortical areas, notably the motor cortex regions (e.g., channels C3, 
C4, and Cz), which are critical for decoding motor-related brain 
activity. The 5F paradigm consists of five distinct classes, each 
corresponding to the imagery of a specific finger’s movement, 
resulting in approximately 15,000 trials in total, with an average of 
1,154 samples per subject. Each trial spans 4 s, during which 
participants are instructed to imagine the movement of a designated 
finger in response to visual cues. This well-structured experimental 
protocol enables a fine-grained analysis of cortical activations 
associated with individual finger motor imagery, thereby supporting 
high-resolution decoding tasks in EEG-based brain-computer 
interface research.

2.2 Preprocessing

To improve EEG signal quality and minimize noise interference, 
the experiment incorporates a series of preprocessing steps designed 
to ensure signal cleanliness and the accuracy of subsequent analyses.

To enhance EEG signal quality and minimize noise interference, 
the experiment employs a comprehensive preprocessing pipeline to 
ensure signal cleanliness and the accuracy of subsequent analyses. 
First, a 4th-order Butterworth bandpass filter (0.5–100 Hz) is applied 
to retain frequency bands relevant to motor intentions while 
eliminating low-frequency drift and high-frequency noise. This range 
encompasses Delta, Theta, Alpha, Beta, and portions of Gamma 
waves, all associated with motor planning and execution. Next, the 
signals are resampled from 1,000 Hz to 128 Hz using interpolation 
and decimation techniques, reducing computational complexity while 
preserving essential motor-related features. To further refine signal 
quality, Independent Component Analysis (ICA) is used to remove 
ocular and muscular artifacts. The raw EEG signals undergo ICA 
decomposition, and an automatic detection algorithm identifies and 
eliminates components associated with eye movements and muscle 
activity (Bigdely-Shamlo et al., 2015). The cleaned EEG signals are 
then reconstructed, ensuring minimal interference from non-neural 
sources. Following artifact removal, continuous EEG signals are 
segmented into 2-s epochs, beginning 0.5 s before and ending 1.5 s 
after the motor intention trigger, effectively capturing both preparation 
and execution phases. Finally, Z-score normalization is applied to each 
channel by subtracting the mean and dividing by the standard 
deviation, eliminating amplitude variations across channels due to 
electrode contact differences or individual variability (Pedroni et al., 
2019). This normalization step standardizes the signals, improving 
model training stability and feature comparability.
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2.3 Model architecture

To comprehensively capture the spatial, temporal, and frequency 
features of EEG signals and to provide a scientific explanation for the 
model’s decision-making process, this paper proposes a novel multi-
branch deep learning model named “Multi-Branch GAT-GRU-
Transformer.” This model processes different dimensional features of 
EEG signals in parallel, integrates these features for classification, and 
incorporates interpretability techniques to elucidate the underlying 
decision-making mechanism. Figure  1 illustrates the overall 
architecture of the model. The model comprises three primary 
branches:Spatial Modeling Branch (GAT) utilizes a Graph Attention 
Network (GAT) to capture spatial relationships between EEG 
channels. Temporal Modeling Branch (GRU + Transformer) extracts 
temporal features from EEG signals using a Gated Recurrent Unit 
(GRU) combined with a Transformer Encoder. Frequency Modeling 
Branch (1D CNN) employs a one-dimensional Convolutional Neural 
Network (1D CNN) to extract frequency-domain features from multi-
band filtered EEG signals. The output features from each branch are 
integrated via a multimodal fusion module, with the final classification 
task performed using a CNN. Additionally, the model includes an 
interpretability module that leverages SHAP techniques to analyze the 
neural basis of the model’s decisions. The overall workflow is 
illustrated in Figure 2.

2.3.1 Spatial modeling (GAT branch)
The spatial characteristics of EEG signals reflect the relationships 

of electrical activity across different brain regions. To capture spatial 
interactions between EEG channels, this model adopts a Graph 
Attention Network (GAT) for spatial modeling. The GAT was chosen 
for spatial feature extraction due to its ability to dynamically learn 
inter-channel dependencies, which is critical for capturing the spatial 
dynamics of EEG signals during motor imagery tasks. Unlike 
traditional graph-based methods, which provide a static adjacency 
matrix based on phase synchrony, GAT employs a self-attention 
mechanism to assign learnable attention coefficients, enabling 
adaptive spatial modeling tailored to the task. Furthermore, the 
hierarchical GAT structure in our framework captures both local and 
global spatial dependencies, enhancing feature extraction. This 
adaptability and hierarchical abstraction contribute to improved noise 

robustness and classification performance. Through its graph structure 
and attention mechanisms, GAT dynamically learns the importance 
of relationships between channels, thereby extracting rich spatial 
features (Demir et al., 2022). The performance of GAT depends on the 
design of the graph’s adjacency matrix, which defines the connectivity 
relationships between EEG channels. Using spatial position 
information of EEG electrodes, connections are established according 
to the physical distance between electrodes. If the distance between 
two electrodes is less than a preset threshold d, they are connected in 
the adjacency matrix with an edge weight of 1; otherwise, the edge 
weight is set to 0. This method capitalizes on the correlation of 
functional activities between adjacent areas of the cerebral cortex, 
making it well-suited for capturing local spatial dependencies (Li 
et al., 2023). In practical applications, to construct the graph for the 
GAT in the spatial branch, PLV is computed once across frequency 
bands to quantify inter-channel phase synchrony, serving as a 
biologically inspired prior for the adjacency matrix. By providing a 
neurophysiologically grounded graph structure, PLV enhances the 
efficiency of the GAT’s spatial feature extraction, as reflected in the 
model’s improved performance. This design not only preserves prior 
knowledge of spatial positions but also reduces computational 
complexity through sparsity, preventing unnecessary connections 
from interfering with feature extraction.

To extract multi-scale spatial features, we designed a hierarchical 
Graph Attention Network (GAT) structure. Low-level GAT consists 
of multiple GAT layers, where each layer learns local interactions 
between EEG channels through an attention mechanism. The number 
of attention heads is set to 4–8 to capture multi-dimensional local 
spatial patterns. The output of the low-level GAT is local spatial 
features as shown in Equation 1:

 
×∈ lowlow

C DH R  (1)

Where C represents the number of channels and Dlow is the 
feature dimension. This module focuses on local interactions between 
adjacent channels. High-level GAT building on the output of the 
low-level GAT, additional GAT layers are employed to learn global 
spatial patterns across brain regions. The attention mechanism in the 
high-level GAT integrates local features from different brain areas, 

FIGURE 1

Architecture and detailed design of the proposed multi-branch GAT-GRU-transformer model for EEG-based five-finger motor imagery classification.
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capturing broader inter-channel dependencies. The output is global 
spatial features as shown in Equation 2:

 
× ×∈ C T D

spatialF R
 (2)

Where C is the number of channels, T is the number of time 
points, and D is the feature dimension (Zhao et al., 2021).

The hierarchical GAT design enables the model to extract spatial 
information at different scales: the low-level GAT focuses on local 

interactions, while the high-level GAT emphasizes global patterns. 
This hierarchical processing significantly enhances the model’s ability 
to represent the spatial characteristics of EEG signals (Cisotto 
et al., 2020).

2.3.2 Temporal modeling (GRU + transformer 
branch)

Temporal dependencies in EEG signals are critical for motor 
intention recognition. To address this, we  designed a module 
combining a Gated Recurrent Unit (GRU) with a Transformer 

FIGURE 2

Overview of the proposed multi-branch GAT-GRU-transformer framework for EEG-based finger motor imagery classification.
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Encoder to capture both local and long-range temporal dependencies. 
As a variant of Recurrent Neural Networks (RNN), the GRU effectively 
processes the short-term dynamics of EEG signals. The GRU layer 
receives the raw EEG signal A unidirectional GRU is adopted, 
capturing local temporal dependencies through gating mechanisms 
(Chen et al., 2019). The number of hidden units is set to 128 to balance 
model capacity and computational efficiency. The output is local 
temporal features as shown in Equation 3

 
× ′×∈ C T D

GRUH R
 (3)

Where D′ is the feature dimension of the GRU hidden layer (Xu 
et al., 2023). Through pointwise processing of the time series, the GRU 
layer extracts short-term dynamic patterns from the EEG signal, 
providing foundational features for the subsequent 
Transformer Encoder.

To capture long-range temporal dependencies, a Transformer 
Encoder is incorporated following the GRU layer. The Transformer 
Encoder computes relationships between time points using a self-
attention mechanism and introduces a temporal attention mechanism 
to enhance sensitivity to critical time segments: Self-Attention 
Mechanism calculates the relationships between different time points, 
enabling the model to capture long-range dependencies (Sun et al., 
2021). Learnable temporal embedding vectors are introduced to 
dynamically weight the importance of different time points, improving 
the model’s sensitivity to key temporal segments. Each sub-layer in the 
Transformer Encoder is followed by a feed-forward network for 
nonlinear transformation and feature enhancement (Song et al., 2022). 
The output of the Transformer Encoder is temporal features as shown 
in Equation 4:

 
′′× ×∈time

C T DF R
 (4)

Where D″ is the output dimension of the Transformer Encoder.
The combination of GRU and Transformer for temporal feature 

extraction leverages the strengths of both architectures to model the 
complex temporal dynamics of EEG signals. GRU captures local and 
short-term dependencies, such as event-related synchronization (ERS) 
and desynchronization (ERD), while the Transformer’s self-attention 
mechanism models global temporal dependencies across the entire 
sequence, identifying long-range patterns critical for motor imagery 
tasks. This hybrid structure, augmented by a temporal attention 
mechanism, facilitates a richer temporal representation, enhances 
interpretability by focusing on key time segments, and improves 
classification performance.

2.3.3 Frequency modeling (1D CNN branch)
The frequency-domain features of EEG signals are closely tied to 

motor intentions, with different frequency bands reflecting various 
brain activity states. To this end, we  designed a multi-band 1D 
Convolutional Neural Network (CNN) module to extract features 
from EEG signals across different frequency bands (Ma et al., 2021). 
First, the EEG signal is decomposed into multiple physiological 
frequency bands using band-pass filters, including: Delta (0.5–4 Hz), 
Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), Gamma 
(30–100 Hz). These frequency bands are selected based on 

neuroscience research and encompass EEG activities related to 
motor intentions.

For each frequency band, a one-dimensional Convolutional 
Neural Network (1D CNN) is independently applied to extract local 
patterns. Each frequency band’s 1D CNN comprises multiple 
convolutional layers with kernel sizes of 3–5, a stride of 1, and ReLU 
activation functions to extract local frequency features. Max pooling 
layers follow the convolutional layers to reduce feature dimensions 
and enhance translation invariance (Altıntop et al., 2022). The CNN 
output features from each frequency band are fused through 
concatenation, yielding frequency features as shown in Equation 5:

 
′′′× ×∈freq

C T DF R
 (5)

Where D″′ is the fused feature dimension. Through the multi-
band 1D CNN, the model extracts specific features from EEG signals 
in different frequency bands and achieves a comprehensive 
representation of frequency information via fusion.

2.4 Multimodal fusion

To effectively integrate features from the spatial (GAT branch), 
temporal (GRU + Transformer branch), and frequency (1D CNN 
branch) modalities, we designed a multimodal fusion module that 
incorporates a fusion mechanism to dynamically combine the 
importance of each modality (Deligani et al., 2021). This approach not 
only enhances the model’s classification performance but also 
improves its adaptability to different tasks and samples, while 
supporting subsequent interpretability analysis. Initially, the output 
features from the three branches are concatenated to generate a 
comprehensive feature representation as shown in Equation 6:

 ( ) ( )′× ′+ ′′× + ′= ∈concat oncat , , C T D D D
spatial time freqF C F F F R

 (6)

Where spatialF  ∈ × ×C T DR  denotes spatial features, timeF  ∈ × × ″C T DR  
denotes temporal features, and freqF  ∈ ′× × ′C T DR  denotes frequency 
features, with C being the number of channels, T the number of time 
steps, and D′, D″, D″′ the respective feature dimensions of each branch.

To reduce dimensionality and computational complexity, Global 
Average Pooling is applied to Fconcat, resulting in a compact feature 
vector as shown in Equation 7.

 ( ) ′′ ′+ ′+ ′= ∈pool
D D D

concatF GAP F R
 (7)

This pooling operation retains key information while significantly 
reducing the parameter count, thereby improving training efficiency 
(Cai et al., 2020).

2.5 Interpretability module

To elucidate the neural basis of the model’s decision-making in the 
EEG signal motor intention recognition task and enhance its 
transparency and trustworthiness, we designed an interpretability 
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module combining SHAP (SHapley Additive exPlanations) and PLV 
(Phase Locking Value) techniques. These methods analyze the model’s 
decision-making process from different perspectives: SHAP quantifies 
the contribution of each input feature to the model’s output, 
identifying the most critical EEG signal features for classification; PLV 
evaluates phase synchronization patterns between EEG channels, 
revealing cooperative activity and functional connectivity across brain 
regions. By integrating these techniques, we clarify the EEG features 
the model focuses on and gain deeper insights into the neural 
mechanisms underlying finger motor intentions, supporting the 
model’s scientific interpretation and application.

2.5.1 SHAP analysis in EEG-based classification
SHAP, a feature importance analysis method based on cooperative 

game theory, quantifies the contribution of input EEG signals to the 
model’s predictions as shown in Figure 3 (Raab et al., 2023). In this 
project, SHAP is applied to the multi-branch model’s output to 
interpret its reliance on specific features for classifying finger 
motor intentions.

For each EEG sample, SHAP values are computed for each 
channel, time point, and frequency band. These values quantify the 
positive or negative contribution of specific features to the model’s 
prediction of finger motor intentions.

By summarizing and ranking SHAP values, the most influential 
EEG channels, time segments, and frequency bands for the 
classification task can be identified. In motor intention recognition, 
the model may exhibit higher SHAP values over channels associated 
with the motor cortex, particularly within critical time windows 
following the onset of motor intention.

SHAP visualization tools provide an intuitive presentation of the 
distribution patterns of key features. A heatmap is used to show the 
distribution of SHAP values across different channels and time points, 
highlighting the brain regions and temporal dynamics that the model 

focuses on (Khare and Acharya, 2023). Additionally, a bar graph is 
employed to display the average SHAP values for different frequency 
bands, revealing the model’s reliance on specific frequency components.

Through SHAP analysis, it is possible to identify that the model’s 
decisions are highly consistent with known phenomena in 
neuroscience, thereby enhancing the interpretability and scientific 
credibility of the model.

2.5.2 PLV analysis in EEG-based classification
Phase Locking Value (PLV) is a phase synchronization analysis 

technique used to evaluate the coordinated activity between EEG 
channels, reflecting functional connectivity between brain regions. In 
this study, PLV is employed to investigate the neural mechanisms 
underlying the model’s decisions, particularly the dynamic changes in 
brain networks during finger motor intention tasks. PLV values are 
computed between EEG channels within specific frequency bands 
(Chouhan et al., 2018). PLV quantifies the degree of synchronization 
by measuring the stability of the phase difference between two signals, 
with values ranging from 0 (completely desynchronized) to 1 (fully 
synchronized). In finger motor intention tasks, channel pairs with 
higher PLV values may reflect cooperative activity between the motor 
cortex and supplementary motor areas.

In the interpretability module, PLV is used to quantify functional 
connectivity between EEG channels, complementing SHAP’s feature 
attribution analysis. By measuring phase synchrony, PLV validates the 
spatial relationships learned by the GAT, confirming that high-
attention channels (e.g., C3, C4) exhibit strong connectivity in the 
Beta band, consistent with motor imagery processes. This dual-level 
interpretability enhances our understanding of the model’s decisions 
and their neurophysiological basis. By identifying channel pairs with 
high PLV values, the functional connectivity patterns between 
different brain regions can be  revealed. Significant phase 
synchronization between the motor cortex and the prefrontal or 

FIGURE 3

SHAP mechanism of action.
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supplementary motor areas may indicate coordinated activity involved 
in motor planning and execution. This pattern aligns with existing 
neuroscience research on brain networks related to motor intention. 
The PLV is calculated using the Equation 8:

 

( )∆Φ
=

= ∑ 1
1 T i t

tPLV e
T  

(8)

Where T is the total number of time points, and ( )∆Φ t  is the 
phase difference at time point t. ( )∆Φi te  is represented by a complex 
number with a unit magnitude and an angle determined by ( )∆Φ t .

2.5.3 Integrative analysis of SHAP and PLV for 
explainable EEG feature interpretation

To enhance the interpretability of the proposed Multi-Branch 
GAT-GRU-Transformer model, we adopt a complementary two-step 
framework involving SHAP and PLV analyses, bridging the gap 
between model decision-making and neurophysiological validation. 
SHAP, as an explainable AI technique, quantifies the contribution of 
EEG features—channels, time points, and frequency bands—to the 
model’s classification decisions, identifying critical elements driving 
the prediction of finger motor intentions. For instance, SHAP analysis 
highlights the dominant role of channels C3, C4, and Cz in the Beta 
(13–30 Hz) and Gamma (30–100 Hz) bands, aligning with their 
established roles in motor execution and sensory feedback. Within the 
interpretability framework, PLV serves as a neurophysiological 
validation tool that works in tandem with SHAP. While SHAP 
elucidates the model’s internal decision-making by quantifying feature 
importance, PLV not only verifies whether these decisions align with 
actual brain activity patterns but also contributes actively during 
model training. Specifically, PLV-derived phase synchrony is 
embedded into the GAT adjacency matrix, guiding the attention 
mechanism to learn spatial dependencies among EEG channels. This 
dual role—validation and structural guidance—enhances the model’s 
transparency, biological plausibility, and interpretability.

To validate whether the model’s reliance on these features 
corresponds to neurophysiologically meaningful patterns, 
we subsequently employ PLV to examine the phase synchronization 
between EEG channels, focusing on the same frequency bands 
identified by SHAP. PLV analysis reveals high synchronization between 
C3 and C4, as well as between C3/C4 and Cz, particularly in the Beta 
and Gamma bands, indicating strong functional connectivity within the 
motor cortex and between motor and midline regions during finger 
motor imagery tasks. This synchronization pattern corroborates the 
neurophysiological significance of the features prioritized by the model, 
as the motor cortex (C3 and C4) is known to play a central role in motor 
control, while Cz facilitates cross-regional integration.

The alignment between SHAP and PLV results suggests that the 
model effectively captures neurophysiologically relevant EEG features, 
such as the activation of the motor cortex and its functional 
connectivity with other brain regions, during finger motor intention 
tasks. For example, channels with high SHAP values (e.g., C3 and C4) 
correspond to regions with strong phase synchronization in PLV 
analysis, reflecting cooperative activity within the motor cortex that is 
consistent with established neuroscience findings (Miasnikova and 
Franz, 2022). This complementary analysis not only enhances the 
transparency of the model’s decision-making process but also provides 

a neuroscientific basis for its feature selection, thereby increasing its 
reliability for applications in neuroscience and brain-computer 
interfaces (He et al., 2025).

3 Results

3.1 Evaluation indicators

The objective of this experiment is to comprehensively evaluate 
the model’s performance and interpretability from multiple 
perspectives, including classification performance, comparison with 
baseline methods, interpretability analysis, and ablation studies. First, 
the experiment assesses the model’s classification effectiveness in the 
five-finger motor imagery task, utilizing accuracy and the confusion 
matrix as primary evaluation metrics to provide a holistic measure of 
the model’s recognition capability. Accuracy quantifies the overall 
correctness of the model’s predictions, reflecting its average 
classification performance across all categories, and is calculated as 
Equation 9:

 
+

=
+ + +

ccuracy TP TNA
TP TN FP FN  

(9)

Precision measures the proportion of correctly predicted positive 
instances out of all instances predicted as positive and is calculated as 
Equation 10. It reflects the model’s ability to avoid false positives. In 
the context of finger motor imagery, high precision indicates that 
when the model predicts a particular finger movement, it is likely to 
be correct.

 
=

+
i TPPrec sion

TP FP  
(10)

Recall assesses the proportion of actual positive instances that are 
correctly identified by the model. It reflects the model’s capacity to 
detect relevant instances and is calculated as Equation 11. High recall 
indicates that the model can successfully capture most occurrences of 
a specific finger movement, minimizing false negatives.

 
=

+
TPRecall

TP FN  
(11)

F1-score is the harmonic mean of precision and recall, offering a 
balanced metric that accounts for both false positives and false 
negatives as Equation 12. It is particularly useful when the class 
distribution is uneven or when both precision and recall are important 
for task performance. A high F1-score suggests that the model 
achieves both high detection accuracy and reliability across classes.

 

∗
− = ∗

+
1 2 Precision RecallF score

Precision Recall  
(12)

These metrics are computed for each of the five finger classes 
(thumb, index, middle, ring, and little fingers), enabling class-wise 

https://doi.org/10.3389/fnhum.2025.1599960
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Wang and Wang 10.3389/fnhum.2025.1599960

Frontiers in Human Neuroscience 09 frontiersin.org

performance analysis and facilitating identification of specific 
strengths and weaknesses in the model’s predictions.

The confusion matrix offers a detailed analysis of the model’s 
classification performance across different categories, visually 
presenting the correct classification rates and misclassification 
patterns for each class. This facilitates the identification of model 
biases and easily confused categories.

3.2 Experimental results

To validate the superiority of the proposed model, we conduct 
comparative experiments against state-of-the-art deep learning 
models, including convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and recently developed EEG-specific 
models. These baseline models represent the cutting-edge approaches 
in motor intention recognition. For a fair comparison, all models are 
trained and tested on the same dataset while following an identical 
preprocessing pipeline. The evaluation metrics remain consistent with 
those used in the classification performance assessment. By analyzing 
the comparative results, we  quantitatively assess the performance 
improvements achieved by the proposed model.

Figure 4 and Table 1 demonstrate the performance comparison 
across different models. As shown in the training curves over 200 
epochs, CNN, LSTM, and Transformer models plateau around 0.43–
0.46 in test accuracy, highlighting their limitations in capturing the 
complex spatial, temporal, and frequency dynamics of EEG signals. 
The CNN-LSTM hybrid offers a moderate improvement, reaching a 
test accuracy of 0.5032. In contrast, the proposed GAT-GRU-
Transformer model shows a rapid increase in accuracy during the 

first 25 epochs and stabilizes around 0.5576, significantly 
outperforming all baseline models. Specifically, the proposed model 
achieves the highest training accuracy (0.6640) and test accuracy 
(0.5576), surpassing CNN (0.5180/0.4323), LSTM (0.5440/0.4621), 
Transformer (0.5190/0.4330), and CNN-LSTM (0.5980/0.5032). The 
performance gains are attributed to the proposed model’s architecture, 
which integrates Graph Attention Networks (GAT) for spatial feature 
extraction, GRU and Transformer for temporal dependencies, and 
1D CNN for frequency characteristics. All models were trained and 
evaluated under identical conditions to ensure fairness. The 
consistent superiority of the proposed model in both learning 
dynamics and final classification accuracy underscores its 
effectiveness in decoding fine-grained finger motor imagery from 
EEG signals.

The classification results across the five fingers demonstrate 
noticeable variation in performance, with an overall model accuracy 
of 55.76% on the Kaya dataset. Among all classes, the thumb achieves 
the best performance, with a precision of 64.73%, recall of 65.28%, and 
an F1 score of 65.01%, indicating that the model effectively 
distinguishes its motor intentions. The middle finger follows closely, 
with a precision of 60.12%, recall of 58.67%, and an F1 score of 
59.39%, suggesting similarly reliable classification performance.

The index finger shows moderate performance, with a precision 
of 54.23%, recall of 52.12%, and an F1 score of 53.17%, slightly lower 
than the thumb and middle finger. This may reflect some degree of 
overlap with adjacent classes, which we explore further through the 
confusion matrix analysis below. In contrast, the ring and little fingers 
exhibit the weakest performance, with F1 scores of 43.89% (precision: 
44.56%, recall: 43.23%) and 48.33% (precision: 49.01%, recall: 
47.66%), respectively as shown in Table 2. These lower scores highlight 

FIGURE 4

Comparison of classification accuracy between different models and multi-branch GAT-GRU-transformer model.
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the model’s difficulty in differentiating between these two classes, 
potentially due to their physiological and signal-level similarity, as the 
ring and little fingers share overlapping neural representations in the 
motor cortex.

To further investigate the model’s classification behavior, 
we  generated a confusion matrix shown in Figure  5 to analyze 
misclassification patterns across the five finger classes. The confusion 
matrix reveals that the model achieves high discriminability for the 
thumb, with a true positive rate of 65.3% and a low confusion rate of 
<5% with other fingers, reflecting the distinct EEG patterns associated 
with thumb movements, likely due to stronger activation in the motor 
cortex (e.g., C3 and C4 channels in the Beta band). The middle finger 
also shows strong performance, with a true positive rate of 58.7% and 
minimal confusion with non-adjacent fingers (e.g., <3% confusion 
with the thumb). However, the index finger exhibits moderate 
confusion with the middle finger, with a misclassification rate of 
12.4%, likely due to their adjacent positions on the hand and partially 
overlapping neural representations.

The most significant misclassification occurs between the ring and 
little fingers, with a confusion rate of 15.2%, meaning that 15.2% of 
ring finger trials were incorrectly classified as little finger movements, 
and vice versa. This high confusion rate aligns with the lower F1 scores 
for these classes and suggests that the subtle EEG pattern differences 
between the ring and little fingers—such as weaker and less distinct 
event-related desynchronization (ERD) in the Beta band—are 
challenging for the model to distinguish. Additionally, the little finger 
shows a 9.8% misclassification rate with the ring finger, further 
highlighting their signal-level similarity. Overall, these findings 
indicate that while the proposed multi-branch model demonstrates 
strong recognition capability for central fingers such as the thumb and 
middle finger, further refinement is required to improve the 
separability of the ring and little fingers.

To validate the effectiveness of the proposed Multi-Branch 
GAT-GRU-Transformer model, we  conducted a comprehensive 
comparison with existing methods using the same Kaya dataset. The 
comparison includes four baseline methods: a traditional Support 
Vector Machine (SVM) with handcrafted features (Kaya et al., 2018), 
Filter Bank Common Spatial Pattern (FBCSP) with SVM 
(AsaBarthMaron, 2022), a standard Convolutional Neural Network 
(CNN) for EEG classification (Gifford, 2022), and EEGNet, a compact 
CNN specifically designed for EEG classification (Limbaga et  al., 
2022). These methods were selected to represent a range of 
approaches—from traditional feature engineering to deep learning—
ensuring a fair and comprehensive evaluation.

As shown in Table  3, the proposed model achieves a peak 
classification accuracy of 55.76% on the Kaya dataset, surpassing the 
traditional SVM method by 12.76% (43.00%), the FBCSP method by 
9.76% (46.00%), the CNN model by 12.46% (43.30%), and the 

EEGNet model by 4.03% (51.73%). This consistent improvement over 
all baseline methods underscores the advantages of the multi-branch 
architecture, which enhances EEG feature representation by 
integrating spatial modeling through Graph Attention Networks 
(GAT), temporal dynamics capture via the GRU and Transformer, and 
frequency-domain feature extraction using 1D CNNs. The 
comprehensive fusion of these multi-dimensional features enables the 
proposed model to effectively capture the complex spatio-temporal-
frequency patterns inherent in EEG data, leading to superior 
classification performance compared to existing methods. In contrast, 
SVM, FBCSP, and the standard CNN rely on limited feature extraction 
techniques, which restrict their capacity to fully represent the 
non-stationary and noisy nature of EEG signals in the Kaya dataset. 
For instance, SVM uses power spectral density features, while FBCSP 
extracts spatial patterns across multiple frequency bands, but both 
methods struggle with inter-subject variability and require extensive 
preprocessing, resulting in lower accuracies (43.00 and 46.00%, 
respectively). The CNN model, with an accuracy of 43.30%, performs 
similarly to traditional methods, as it primarily focuses on spatial and 
frequency features through convolutional layers but lacks the ability 
to model temporal dynamics or inter-channel relationships. EEGNet, 
while specifically designed for EEG signal processing, achieves an 
accuracy of 51.73%, falling short of our model by 4.03%. Although 
EEGNet effectively extracts spatial and frequency features through its 
compact CNN architecture, it does not explicitly model long-range 
temporal dependencies or inter-channel relationships, aspects that our 
model addresses through the GRU-Transformer branch and 
GAT-based spatial modeling, respectively.

To statistically validate the performance difference between our 
proposed Multi-Branch GAT-GRU-Transformer model and the 
EEGNet baseline, we conducted a McNemar test on their predictions 
over the test dataset. The resulting contingency table is presented in 
Table 4. Specifically, our model correctly classified 62 instances that 
EEGNet misclassified, while EEGNet correctly classified 38 instances 
that our model misclassified. The remaining samples were classified 
identically by both models, with 280 correctly predicted by both and 

TABLE 1 Performance comparison of different models on the kaya EEG finger motor imagery dataset.

Model Feature type Architecture Training accuracy Test accuracy

CNN Spatial-frequency 2D CNN 0.5180 0.4323

LSTM Temporal LSTM 0.5440 0.4621

Transformer Temporal Transformer Encoder 0.5190 0.4330

CNN-LSTM Spatial–temporal CNN + LSTM 0.5980 0.5032

Proposed model Multi-modal GAT-GRU-Transformer + 1D CNN 0.6640 0.5576

TABLE 2 Classification performance by finger class (precision, recall, and 
F1 score).

Class 
(Finger)

Precision Recall F1 score

Thumb 0.6473 0.6528 0.6501

Index 0.5481 0.5162 0.5317

Middle 0.6049 0.5833 0.5939

Ring 0.4264 0.4521 0.4389

Little 0.4718 0.4953 0.4833
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120 misclassified by both. The McNemar test yielded a chi-square 
statistic of 5.76 with a p-value of 0.021, indicating a statistically 
significant performance difference in favor of our proposed model 
(p < 0.05). This suggests that the performance improvement observed 
is unlikely due to random variation and reflects a meaningful 
advancement in classification capability.

Beyond performance, the proposed model offers significant 
advantages in interpretability, further distinguishing it from the baseline 
methods. By incorporating SHAPand PLV analyses, our model provides 

neuroscientific insights into its decision-making process, such as the 
reliance on C3, C4, and Cz channels in the Beta and Gamma bands, 
which align with strong functional connectivity patterns validated by 
PLV. These interpretability features are absent in SVM, FBCSP, CNN, 
and EEGNet, making our model more suitable for applications 
requiring both high performance and neurophysiological 
understanding, such as brain-computer interfaces and neuroscience 
research. These findings strongly confirm the effectiveness and 
innovativeness of the proposed Multi-Branch GAT-GRU-Transformer 
model in EEG signal decoding tasks, demonstrating its superiority over 
existing techniques on the Kaya dataset.

3.3 Ablation experiments

To systematically evaluate the contribution of each module to the 
overall performance of the model, an ablation study was conducted 

FIGURE 5

Finger classification confusion matrix.

TABLE 3 Comparison of classification accuracy between proposed model and existing methods.

Method Dataset Feature type Architecture Accuracy

SVM (Kaya) 5F Handcrafted SVM Classifier 0.4323

FBCSP (AsaBarthMaron) 5F Spatial SVM Classifier 0.4621

CNN (Gifford) 5F Spatial-Frequency 1D CNN 0.4330

EEGNet (Neil) 5F Spatial-Frequency Compact CNN 0.5173

Proposed model 5F Multi-modal GAT-GRU-Transformer + 1D CNN 0.5576

TABLE 4 McNemar test contingency table.

Model comparison EEGNet 
correct

EEGNet 
incorrect

Proposed model correct a = 280 b = 62

Proposed model incorrect c = 38 d = 120
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using a controlled variable method. By gradually removing the core 
components of the model, the role of each module in the feature 
extraction process was quantitatively analyzed, thereby verifying the 
effectiveness of the model architecture design. Three sets of control 
models were constructed for this ablation study, focusing on spatial 
modeling, temporal modeling, and frequency feature extraction, 
respectively.

In the spatial modeling ablation study, the objective was to 
quantify the contribution of spatial relationship modeling to EEG 
signal classification. Specifically, the spatial topology modeling branch 
constructed using the Graph Attention Network (GAT) was removed, 
while retaining the temporal modeling module (GRU + Transformer) 
and the frequency feature extraction module (1D CNN). This 
configuration was designed to validate the effectiveness of spatial 
correlation features among EEG channels in the classification task.

In the temporal modeling ablation study, the aim was to assess the 
critical role of the Transformer in modeling long-term temporal 
dependencies. In this setup, the Transformer-based temporal 
modeling module was removed, leaving only the GRU unit for 
temporal feature extraction. By comparing this setup with the 
complete model, the study explored the advantages of the Transformer 
network in decoding the dynamic properties of EEG signals over time.

In the frequency feature ablation study, the goal was to evaluate 
the influence of frequency-domain information on classification 
performance. The 1D CNN-based frequency feature extraction branch 
was removed, while retaining the combined spatio-temporal modeling 
modules (GAT + GRU + Transformer). This experimental 
configuration was designed to reveal the importance of EEG spectral 
features in pattern recognition.

Under consistent hyperparameter settings, all ablation models 
were trained and tested on the same dataset. Accuracy was used as the 
primary evaluation metrics as shown in Table  5. The results 
demonstrated that the complete model achieved an accuracy of 55.7%, 
which was significantly higher than the performance of the ablation 
variants. This confirms the existence of a complementary and 
enhancing effect among the different modules.

Ablating the spatial modeling module resulted in an accuracy 
drop of approximately 7.1% points (from 55.7 to 48.6%), indicating 
that the GAT network plays a crucial role in capturing the spatial 
topological relationships among EEG channels. Through the graph 
attention mechanism, the model can dynamically learn spatial 
interactions between electrodes, thereby extracting features related to 
the coordinated activity of different brain regions. The contribution of 
spatial features to the overall performance of the model is significant, 
especially in motor imagery tasks involving inter-regional interactions, 
where the spatial information modeled by the GAT enhances the 
model’s discriminative ability.

Ablating the temporal modeling module led to an accuracy drop 
of approximately 5.8% points (from 55.7 to 49.9%), highlighting the 

prominent advantage of the Transformer in modeling long-term 
temporal dependencies. Compared with the GRU’s capability of local 
temporal modeling, the Transformer, through the self-attention 
mechanism, captures dynamic changes in EEG signals on a global 
scale. This advantage is particularly evident when processing event-
related potentials and temporal synchronization patterns across 
different time periods, where the Transformer demonstrates superior 
modeling ability.

Ablating the frequency feature extraction module resulted in an 
accuracy loss of approximately 4.3% points (from 55.7 to 51.4%), 
underscoring the importance of 1D CNN in extracting frequency-
domain information such as Beta and Alpha rhythms. The time-
frequency representations extracted by CNN reveal rhythm patterns 
associated with motor intentions, providing crucial supplementary 
information for the classification task. Therefore, the combined 
modeling of frequency features with spatial and temporal features is a 
key factor in enhancing classification performance.

The experimental results reveal a significant complementary and 
enhancing mechanism among the different modules, confirming that 
joint modeling of spatial, temporal, and frequency features is 
indispensable in EEG classification tasks. The spatial modeling 
module, implemented using the GAT network, dynamically models 
spatial relationships between EEG channels through adaptive attention 
weights, overcoming the limitations of traditional fixed adjacency 
matrices. The GAT network is capable of automatically learning the 
connection weights between these key channels, thereby improving 
the model’s adaptability and classification accuracy in different finger 
motor imagery tasks.

The temporal modeling module, consisting of GRU and 
Transformer, captures the dynamic evolution of EEG signals over 
time. The GRU effectively models short-term temporal dependencies 
through its gating mechanism, enabling the model to capture dynamic 
changes within short time windows. However, EEG signals often 
exhibit long-term temporal correlations, especially in ERPs and 
rhythmic patterns. The Transformer, with its self-attention 
mechanism, demonstrates significant advantages in modeling long-
range temporal dependencies. Unlike the GRU’s local modeling 
approach, the Transformer simultaneously attends to global time 
steps, identifying dynamic evolution trends across different time 
segments. The experimental results show that the Transformer’s 
strength in modeling long-term dependencies is directly reflected in 
enhanced classification performance in complex motor tasks.

The frequency analysis module, implemented using 1D CNN, 
extracts EEG features across different frequency bands, including 
Delta, Theta, Alpha, Beta, and Gamma. Beta rhythms (13–30 Hz) are 
most strongly associated with motor control and sensory feedback, 
playing a key role in finger movement. Alpha rhythms (8–13 Hz) are 
linked to motor inhibition and attentional focus, while Gamma 
rhythms (30–40 Hz) are associated with sensorimotor integration and 
higher cognitive processes. Through multi-band modeling, CNN 
effectively captures rhythm patterns related to motor intentions, 
thereby improving the model’s discriminative ability. Moreover, the 
frequency features complement the spatial and temporal features, with 
the time-frequency patterns extracted by CNN providing distinct 
classification information aligned with physiological signals.

The multi-modal fusion mechanism enables a complementary 
and orthogonal modeling strategy within the feature space. The GAT 
network focuses on the spatial structure of EEG signals, capturing 

TABLE 5 Results of ablation experiments.

Model Accuracy

Complete model 0.5576

Removal of GAT branch 0.4867

Removal of transformer 0.4991

Removal of 1D CNN branch 0.5142
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dynamic connectivity between channels. The Transformer enhances 
the model’s capacity for long-term temporal dependency modeling, 
strengthening the combination of spatial and frequency features. The 
1D CNN extracts rhythm patterns from different frequency bands, 
providing physiologically consistent discriminative features that 
complement the spatio-temporal modeling results. The spatial 
modeling (GAT) enhances the integrity of input features for temporal 
modeling (Transformer) and frequency modeling (CNN). The 
temporal modeling (Transformer) provides stronger dynamic 
modeling capacity in complex motor tasks, enhancing the combined 
effect of spatial and frequency features. The frequency modeling 
(CNN) offers rhythm-based discriminative features consistent with 
neural signals, which complement the spatial and temporal modeling 
results, further improving overall model performance.

4 Discussion

4.1 SHAP-based analysis of EEG features

To gain deeper insights into the decision-making mechanism of 
the model, we  employ the SHAP framework. Specifically, 
DeepExplainer is used to compute SHAP values for each EEG channel 
and different frequency band features, quantifying their contributions 
to classification decisions. A higher SHAP value indicates a greater 
positive influence of a feature on the model’s classification outcome 
(Ameen et al., 2024).

The Figure 6A illustrates the SHAP value distribution across all 
EEG channels. The results indicate that channels C3, Cz, and C4 
exhibit significant SHAP value variations across different classes, 
suggesting their critical role in the model’s decision-making process. 
This finding aligns with existing neurophysiological studies, which 
have established that C3 and C4 correspond to the primary motor 
cortex (M1), a key region involved in limb movement control. 
Specifically, the C3 channel, associated with the left primary motor 
cortex, shows a substantial positive SHAP contribution in right-hand 
finger movement tasks, reinforcing the dominant role of the left 
hemisphere in right-hand motor control. In contrast, the C4 channel, 
positioned over the right primary motor cortex, primarily controls the 
left hand but still exhibits moderate SHAP values, potentially reflecting 
bilateral cortical cooperation during motor execution. Meanwhile, the 
Cz channel, located over the central sulcus, demonstrates notable 
SHAP contributions, suggesting that the model integrates midline 
cortical activity to capture sensorimotor coordination during finger 
movement tasks.

Additionally, FP1 and FP2 channels show distinct SHAP 
contributions in certain classes, which may be  attributed to the 
prefrontal cortex’s involvement in motor planning and attentional 
control. The overall SHAP value distribution strongly aligns with the 
functional organization of motor-related brain regions, reinforcing the 
biological plausibility of the model in effectively extracting motor-
relevant EEG features.

In the SHAP analysis, we visualize the distribution of SHAP values 
across different frequency bands as shown in Figure 6B. The x-axis 
represents SHAP value magnitudes, while the y-axis denotes various 
EEG frequency bands and channel features. Each data point is color-
coded according to feature magnitude, with red indicating higher 
values and blue representing lower values. The results reveal that the 

Beta (13–30 Hz) and Gamma (30–100 Hz) bands exhibit the most 
significant positive contributions to the model, whereas the 
contributions of Delta and Theta bands are relatively lower. Beta Band 
Closely associated with motor execution and sensory feedback, Beta 
activity typically exhibits transient synchronization and 
desynchronization during movement preparation and execution. In 
this study, Beta-band SHAP values show significant positive 
contributions at the C3 and C4 channels, suggesting that the model 
may rely on Beta activity to capture sensorimotor feedback signals 
during motor execution. Gamma Band essential for attentional 
modulation and inter-cortical communication in sensorimotor tasks 
(Liu et al., 2024) SHAP value distribution in this study indicates that 
Gamma activity contributes most prominently at the C3, C4, and Cz 
channels, implying that the model leverages high-frequency neural 
oscillations to extract fine motor control information. Alpha Band 
primarily related to attention and sensorimotor rhythms. A notable 
positive contribution is observed at the Cz channel, potentially 
reflecting the role of Alpha activity in sensory feedback processing 
during motor imagery tasks. Theta and Delta Bands exhibit lower 
SHAP contributions, suggesting that in the context of finger 
movement tasks, mid-to-high frequency features are more critical 
than low-frequency components.

Overall, the SHAP analysis highlights the dominance of Beta and 
Gamma bands in the model’s classification decisions, reinforcing their 
relevance in motor execution and sensorimotor processing. The 
observed frequency-specific contributions provide valuable insights 
into the neurophysiological basis of EEG-based motor 
intention recognition.

4.2 PLV analysis for functional connectivity

To further investigate the functional connectivity patterns 
between different brain regions, we  computed the Phase Locking 
Value (PLV) for all pairs of EEG channels to quantify phase 
synchronization between them. A higher PLV value indicates stronger 
synchronization, suggesting potential cooperative activity between 
these brain regions during the finger movement task (Wang 
et al., 2020).

We visualized the PLV heatmap for different EEG channel pairs 
as shown in Figure 7, where the horizontal and vertical axes represent 
distinct EEG channels, and the color intensity indicates the magnitude 
of the PLV value. The results reveal that regions exhibiting high 
synchronization are predominantly observed in the Beta frequency 
band, with strong functional connectivity between the central region 
(C3, C4) and the parietal region (Pz), suggesting their critical 
involvement in the finger movement task. Notably, the PLV values 
between C3 and C4 remain consistently high across different finger 
movement tasks, indicating the potential role of bilateral coordination 
within the primary motor cortex in finger movement control. In 
Figure 7, we present the PLV matrices across the Alpha, Beta, and 
Gamma frequency bands. The results indicate that in the Alpha band, 
Cz and C3/C4 exhibit strong phase synchronization, which may 
be  associated with attentional modulation and sensory feedback 
during motor tasks. In the Beta band, the PLV between C3 and C4 
significantly increases, reinforcing the crucial role of interactions 
within the primary motor cortex during motor execution. Enhanced 
Gamma band synchronization is observed across multiple channel 
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FIGURE 6

SHAP analysis of feature contributions in the multi-branch GAT-GRU-transformer model. (A) SHAP summary plot for EEG channels, showing high 
contributions from C3, C4, and Cz. (B) SHAP summary plot for frequency bands, highlighting the importance of Beta and Gamma bands.
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pairs, particularly between C3-Cz and C4-Cz, suggesting that high-
frequency oscillations may contribute to interregional information 
integration and rapid motor adjustments. These findings provide 
neurophysiological support for the SHAP analysis, which highlights 
the significance of these channels in model decision-making (Jian 
et al., 2017).

4.3 Joint SHAP-PLV analysis and neural 
mechanisms

To further explore the relationship between the learned model 
features and underlying neural mechanisms, we conducted a joint 
interpretation of SHAP and PLV results. The SHAP analysis identifies 
the key frequency-domain features and EEG channels that the model 
relies on for finger movement classification, while the PLV analysis 
reveals intercortical functional connectivity patterns across different 
frequency bands. Therefore, this joint analysis provides valuable 
insights into the neurophysiological mechanisms leveraged by the 
model during learning.

In the Beta and Gamma bands, SHAP analysis indicates a 
significantly increased importance of C3 and C4 channels in model 
decision-making, which aligns with the high synchronization 
observed between these channels in PLV analysis. The enhanced 
synchronization in Beta and Gamma bands may reflect information 
exchange and dynamic coordination between the primary motor 
cortices during finger movement tasks (Xu et al., 2021). This suggests 
that the model may optimize classification performance by capturing 
phase synchronization features within the sensorimotor cortex.

In the Alpha band, SHAP analysis reveals a marked increase in the 
importance of the Cz channel, consistent with the high synchronization 
observed between Cz and C3/C4  in PLV analysis (Sylvester et al., 
2024). This finding suggests that Alpha-band synchronization plays a 
critical role in sensory feedback and motor planning.

Moreover, the spatial distribution of SHAP values exhibits 
consistency with the spatial patterns of synchronization in the PLV 
heatmap. For instance, the high SHAP contributions near the central 

region (Cz) and the primary motor cortex (C3, C4) closely correspond 
to the high synchronization observed in the same regions in PLV 
analysis. Notably, the consistency between SHAP and PLV values in 
Beta and Gamma bands further supports the biological plausibility of 
the model’s ability to extract features related to motor execution and 
sensory feedback (Hosseini and Shalchyan, 2022) is finding reinforces 
the hypothesis that the model achieves high classification performance 
by capturing dynamic phase synchronization features within the 
sensorimotor cortex, thereby enhancing its ability to distinguish 
different finger movement tasks (Tian et al., 2025).

In conclusion, PLV analysis reveals the synchronization 
characteristics of intercortical communication across different 
frequency bands, while SHAP analysis confirms the importance of 
these features in model classification decisions. This joint analytical 
approach provides strong theoretical support for understanding the 
neural mechanisms underlying finger movements and contributes to 
the optimization of brain-computer interface models.

5 Conclusion and future work

This study presents a novel multi-branch GAT-GRU-
Transformer model for EEG-based classification of five-finger 
motor imagery, achieving a classification accuracy of 55.76% on 
the Kaya dataset. Although the overall accuracy remains moderate, 
it represents a notable improvement compared to baseline methods 
such as SVM (43.00%), FBCSP (46.00%), CNN (43.30%), and 
EEGNet (51.73%). The proposed architecture integrates Graph 
Attention Networks (GAT) for spatial feature extraction, 
GRU-Transformer modules for modeling temporal dependencies, 
and one-dimensional Convolutional Neural Networks (1D CNN) 
for capturing frequency-domain information. This multi-branch 
design effectively models the complex spatio-temporal-frequency 
dynamics of EEG signals.

Beyond performance improvements, the model incorporates 
interpretability through SHAP and phase-locking value (PLV) analyses. 
These analyses reveal that the model predominantly relies on EEG 

FIGURE 7

PLV connectivity matrices in the Alpha (A), Beta (B), and Gamma (C) bands, revealing strong synchronization between C3, C4, and Cz, thereby 
validating the neurophysiological relevance of the model’s prioritized EEG features.
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activity in the C3, C4, and Cz channels within the Beta and Gamma 
frequency bands—regions and rhythms well-established in motor 
imagery research. This alignment with known neurophysiological 
patterns not only enhances the transparency of the model’s decision-
making process but also provides meaningful neuroscientific insights 
into the neural correlates of fine motor intention.

While the current accuracy reflects solid performance, further 
improvements are necessary particularly in distinguishing more 
challenging classes such as the little finger. Future research 
directions include the application of data augmentation techniques, 
such as Generative Adversarial Networks (GANs), to synthesize 
EEG signals and mitigate class imbalance and inter-subject 
variability. Advanced regularization strategies and transfer learning 
approaches, including spatial dropout and pretraining on large-
scale EEG datasets, will be explored to improve generalization and 
reduce overfitting. In addition, incorporating alternative feature 
modalities such as time-frequency representations may enrich the 
input space, while ensemble learning and systematic 
hyperparameter optimization are expected to further enhance 
classification performance.

By combining robust classification performance with 
interpretability, this work contributes to both brain-computer 
interface development and neuroscience research. Unlike conventional 
BCI systems that prioritize accuracy at the expense of transparency, 
our model delivers reliable decoding of fine-grained finger motor 
imagery while shedding light on the underlying neural mechanisms. 
In clinical contexts, the ability to decode individual finger movements 
offers promising potential for motor rehabilitation in patients with 
stroke or spinal cord injuries, supporting neurofeedback-based 
interventions and targeted motor imagery training. The interpretability 
framework also enables the design of personalized rehabilitation 
protocols based on individual neural patterns.

From a research standpoint, this work provides a methodological 
foundation for further investigations into the neural dynamics of 
motor imagery. Future studies may leverage larger datasets or more 
sophisticated connectivity metrics to deepen our understanding of 
brain network behavior during imagined movement. Overall, the 
proposed model advances the synergy between BCI technology and 
neuroscience, contributing to both applied and theoretical progress in 
the field.
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