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Cocaine use disorder (CUD) is characterized by cortico-striatal circuit dysregulation 
and high relapse rates, with repetitive transcranial magnetic stimulation (rTMS) 
emerging as a potential neuromodulatory intervention. This study investigates 
rTMS-induced dynamic brain network reconfigurations in 30 CUD patients using 
longitudinal resting-state fMRI from the SUDMEX-TMS cohort. Applying Leading 
Eigenvector Dynamics Analysis (LEiDA) to phase-locking states, we  identified 
four metastable network configurations mapped to canonical resting-state 
networks. Post-rTMS analyses revealed selective modulation of visual network 
(VIS)-dominant states, showing increased duration and occupancy, alongside 
reduced self-transition probabilities in frontoparietal control network (FPCN) states 
after rTMS therapy. Temporal dynamics of these states correlated with subjective 
craving intensity: increased duration of the VIS-dominant state was associated 
with lower craving severity (CCQ-N) post-treatment. These findings suggest that 
increased VIS metastability strengthened bottom-up sensory gating that attenuates 
drug-cue salience through perceptual desensitization. Although FPCN-state 
self-transition decreased significantly following stimulation, it was not directly 
linked to craving improvement, indicating a potentially supportive but nonspecific 
role in perceptual recalibration. Together, these dynamic markers highlight the 
relevance of network-level flexibility in mediating rTMS treatment efficacy for 
cocaine addiction. By establishing dynamic network state reconfiguration as a 
mechanism linking rTMS to symptom evolution, this work provides a framework for 
optimizing neuromodulation protocols and developing neurodynamics-dependent 
biomarkers in addiction therapeutics.
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Introduction

Cocaine use disorder (CUD) is a severe neuropsychiatric condition characterized by 
persistent cocaine-seeking behavior despite adverse consequences, reflecting dysregulation of 
cortico-striatal reward circuits (Huang et al., 2017). While psychosocial interventions provide 
partial symptom relief, high relapse rates persist due to limited interventions targeting the 
neurobiological substrates of addiction (Poireau et al., 2022). Repetitive transcranial magnetic 
stimulation (rTMS), a non-invasive neuromodulation technique based on electromagnetic 
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induction principles, offers potential normalizing addiction-related 
neural dysfunction by targeting prefrontal cortical regions (Shen and 
Ward, 2021).

Preclinical and clinical studies demonstrate that high-frequency 
rTMS over the dorsolateral prefrontal cortex (dlPFC) can reduce 
cocaine craving and modulate dopamine-dependent reward 
processing (Camprodon et al., 2007; Moretti et al., 2020). Theta burst 
stimulation protocols further show comparable efficacy to 
conventional rTMS in attenuating addictive behaviors, potentially 
through restoring inhibitory control over limbic-striatal systems 
(Sanna et al., 2019). Additionally, rTMS-induced improvements in 
comorbid sleep disturbances and affective symptoms suggest broader 
network-level effects beyond primary addiction circuits (Gómez Pérez 
et  al., 2020; Martinotti et  al., 2022). However, Lolli et  al. (2021) 
reported substantial variability in treatment outcomes among 
individuals receiving rTMS. In their randomized controlled trial, only 
a subset of participants achieved sustained abstinence, suggesting that 
a significant proportion of patients may show limited clinical response 
to the intervention. This heterogeneity underscores two critical 
knowledge gaps: (1) incomplete characterization of rTMS-mediated 
neural plasticity in CUD, and (2) lack of biomarkers predicting 
intervention efficacy.

A fundamental limitation in current research lies in reliance on 
static functional connectivity (FC) measures, which fail to capture 
dynamic network reconfigurations central to addictive behaviors 
(Hutchison et al., 2013). One major limitation of static functional 
connectivity (FC) analysis is its assumption of temporal stationarity 
across the entire fMRI scanning session. This approach typically 
computes correlations between brain regions over several minutes, 
thereby overlooking the inherently dynamic nature of neural activity. 
As a result, important transient fluctuations in connectivity, which 
may reflect meaningful cognitive or pathological states, are effectively 
averaged out and lost. Additionally, static FC provides only undirected, 
averaged correlation patterns and does not capture the temporal 
ordering or directionality of interactions between brain regions, 
limiting its utility in understanding the mechanisms of brain network 
organization (Hutchison et  al., 2013). These shortcomings have 
prompted growing interest in dynamic FC approaches that better 
account for the time-varying nature of brain connectivity. Dynamic 
functional connectivity (dFC) captures time-varying patterns of brain 
network interactions and is more sensitive to transient neural changes 
than static FC. Given that rTMS induces temporally evolving 
neuroplastic effects, dynamic FC provides a suitable framework to 
track these changes. The Leading Eigenvector Dynamics Analysis 
(LEiDA) framework addresses this gap by quantifying transient brain 
states through phase-locking (PL) patterns in resting-state fMRI 
(rs-fMRI) signals (Alonso et  al., 2023). This method identifies 
recurring functional network configurations (dwell time) and 
transition probabilities between states—metrics particularly relevant 
for addiction phenotypes characterized by impaired cognitive 
flexibility (Wang et al., 2023). Unlike traditional static FC or dynamic 
approaches such as sliding-window correlation, LEiDA avoids 
arbitrary windowing and instead extracts the leading eigenvector of 
the BOLD phase coherence matrix at each time point, yielding a 
compact and time-resolved representation of whole-brain 
connectivity. This approach is particularly advantageous for its high 
temporal sensitivity, robustness to noise, and ability to identify 
recurrent connectivity states relevant to behavior or clinical outcomes 

(de Alteriis et al., 2024). These features make LEiDA well-suited for 
detecting subtle, fast-evolving network reconfigurations associated 
with rTMS, and for exploring potential biomarkers of treatment 
efficacy. Although LEiDA has revealed altered metastable dynamics in 
substance use disorders, its application to understand rTMS-induced 
neural changes remains unexplored (Zheng et al., 2025).

The efficacy of rTMS in addiction treatment is critically influenced 
by stimulation target localization. While novel targeting approaches 
are emerging, the left dorsolateral prefrontal cortex (dlPFC) remains 
the most empirically validated target for addictive disorders (Kazemi 
et al., 2018; Liston et al., 2014). In this study, we do not evaluate target 
placement per se, but capitalize on a standardized rTMS treatment 
paradigm—where all participants received dlLPFC stimulation—to 
address a distinct gap: how inter-individual variability in intrinsic 
brain dynamics predicts response to an otherwise fixed 
intervention protocol.

Building on this established protocol, the present study leverages 
longitudinal fMRI data from 30 selected male individuals with CUD 
undergoing rTMS treatment to (1) characterize dynamic FC 
alterations before and after intervention, and (2) map relationships 
between network dynamic reconfiguration and clinical outcomes. By 
applying LEiDA to track rTMS-mediated changes in metastable brain 
states, we establish a computational framework for understanding 
neuromodulation mechanisms in addiction. Our findings demonstrate 
dlPFC-targeted rTMS stimulation preferentially enhancing activity in 
the sensorimotor network (SMN), regulating the visual network 
(VIS), and suppressing self-directed rumination associated with the 
dynamics of the frontoparietal control network (FPCN), providing 
critical insights for optimizing therapeutic protocols.

Methods

Our analytical pipeline systematically addressed five critical 
phases of dynamic network characterization: (a) neuroimaging data 
acquisition from SUDMEX-TMS multimodal neuroimaging initiative 
(Angeles-Valdez et al., 2024); (b) preprocessing and LEiDA modeling; 
(c) optimal state number determination via elbow method inflection 
point; (d) Spatial projection of cluster centroids onto Yeo’s 7-network 
template (Yeo et al., 2011), revealing distinct configurations spanning 
canonical resting-state networks; (e) temporal feature quantification 
and statistical analysis. See Figure 1 for details.

Study participants

The discovery cohort comprised individuals with cocaine use 
disorder (CUD) recruited from the Clinical Research Division of the 
National Institute of Psychiatry in Mexico City, Mexico, as part of the 
SUDMEX-TMS multimodal neuroimaging initiative (Angeles-Valdez 
et al., 2024). Fifty-four treatment-seeking participants meeting DSM-5 
criteria for CUD were enrolled in a longitudinal rTMS intervention 
protocol. Inclusion criteria required: (1) above 1 year of documented 
cocaine use, (2) average use frequency longer than 3 days/week during 
the preceding 12 months, and (3) abstinence duration less than 
1 month in the past year. Exclusion criteria encompassed major 
neurological/neurodegenerative disorders, contraindications for MRI/
rTMS (e.g., metallic implants), and active comorbid psychiatric 
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conditions requiring hospitalization. All participants underwent 
structured clinical interviews conducted by board-certified 
psychiatrists to verify eligibility. Prior to enrollment, detailed study 
protocols, including safety considerations, potential adverse effects, 
and data anonymization procedures, were disclosed during informed 
consent sessions supervised by an independent ethics committee. For 
rTMS therapy targeting on the left dlPFC, MagPro R301 stimulator 
with figure-of-eight B65-A/P coil (MagVenture) was employed, with 
the following parameters: 5 Hz frequency, 100% resting motor 
threshold (MT) intensity (determined via Rossini method), 5,000 
pulses/day (two daily sessions: 50 trains/session, 50 pulses/train, 10 s 
inter-train interval, 15 min inter-session interval).

Male participants were exclusively analyzed in this study due to 
the limited number of female participants (n = 8) and the potential 
confounding influence of sex as a biological variable. The two original 
cohorts of male participants receiving active rTMS treatment were 
consequently merged, yielding a final experimental group of 30 
participants to enhance statistical power. At the baseline (T0) session, 
participants underwent a full clinical evaluation and an initial MRI 

scan before receiving any rTMS intervention. During the subsequent 
acute stage (RCT), participants received 10 sessions of rTMS over two 
consecutive weeks. Immediately following this two-week intervention, 
participants underwent a second clinical evaluation and MRI scan at 
Time 1 (T1), allowing assessment of neural changes associated with 
the initial rTMS treatment.

Participants underwent an acute phase consisting of 10 sessions 
delivered over 2 weeks (post-rTMS-2 W), followed by a maintenance 
phase comprising twice-weekly sessions for up to 3 months (post-
rTMS-3 M). The maintenance phase included up to 26 sessions, 
bringing the total number of rTMS sessions to a maximum of 36 per 
participant (10 acute + 26 maintenance).

Clinical assessment

Cocaine use disorder diagnosis was confirmed using the Spanish-
language MINI International Neuropsychiatric Interview (version 
5.0.0) administered by certified clinicians (Sheehan et  al., 1998). 

FIGURE 1

The schematic illustrations of the study methodology. (A) Neuroimaging data were collected from the SUDMEX-TMS multimodal neuroimaging 
initiative, including resting-state fMRI scans at baseline, post-rTMS, and two follow-up stages. (B) Data were preprocessed using fMRIPrep and XCP-D 
pipelines. (C) The BOLD signals extracted from each brain region were first transformed into instantaneous phase time series using the Hilbert 
transform. At each time point, a phase synchrony matrix was computed. From each matrix, the leading eigenvector was extracted to summarize the 
dominant pattern of phase synchrony at that moment, yielding a time series of principal connectivity modes. These eigenvectors were then input into 
a k-means clustering algorithm. Based on multiple clustering validity indices, the optimal number of states was determined as k = 4. (D) The spatial 
maps of each state were projected onto Yeo’s 7-network atlas, revealing distinct large-scale connectivity patterns anchored in canonical networks. 
(E) We quantified several temporal features of brain state dynamics: (1) fractional occupancy (duration), (2) frequency of occurrence, (3) transition 
probability matrix, and further examined their longitudinal changes across sessions. These dynamic metrics were then statistically correlated with 
clinical outcomes (e.g., craving, impulsivity scores) to explore potential biomarkers of rTMS efficacy.
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Comprehensive demographic profiling captured age, educational 
attainment (years), and socioeconomic status (monthly income in 
Mexican pesos, MXN). Cocaine use patterns were systematically 
documented through self-reported measures of consumption 
duration, past treatment history, onset age of cocaine use and route of 
administration. The demographic and clinical characteristics of all 
participants are demonstrated in Tables 1, 2, respectively. Four 
standardized instruments quantified addiction-related 
symptomatology: the Visual Analogue Scale (VAS) capturing 
momentary craving intensity (0–100 mm scale), the Cocaine Craving 
Questionnaire-General (CCQ-G) evaluating multidimensional 
craving traits (16 items, 7-point Likert scale), the Hamilton Anxiety 
Rating Scale (HARS) assessing somatic/psychic anxiety domains (14 
items, 0–4 severity scoring), and the Cocaine Craving 
Questionnaire-Now (10 items, 7-point Likert scale). All scales were 
administered by trained psychiatrists at each assessment timepoint.

MRI scanning parameters

MRI sequences were acquired using a Philips Ingenia 3T MR 
system (Philips Healthcare, Best, The Netherlands, and Boston, MA, 
United States), with a 32-channel head coil. Each participant received 
MRI scanning at both the baseline period (pre-rTMS) and the 
follow-up period (post-rTMS). The scan of rs-fMRI session lasted 
10 min, with 300 volumes acquired. Participants were instructed to 
keep their eyes open, relax, and avoid thinking about anything 
specific. MRI-compatible goggles displayed a fixation cross, and an 
eye-tracking camera was used to monitor participants and prevent 
sleep. Using a gradient recalled (GE) echo planar imaging (EPI) 
sequence, the rs-fMRI sequences were acquired: dummies = 5, 
repetition time (TR)/echo time (TE) = 2,000/30.001 ms, flip 
angle = 75°.matrix = 80 × 80, field of view = 240 mm2, voxel 
size = 3 × 3 × 3.33 mm, gap = 0, slice acquisition order = interleaved 
(ascending), number of slices = 36, phase encoding direction = AP.

Data preprocessing and LEiDA analysis

Head motion was assessed using framewise displacement (FD). For 
each participant, we calculated the mean FD at T0 session. Participants 
with a mean FD greater than 0.5 mm were excluded, following 

commonly used criteria in the literature (Power et al., 2012). As a result, 
no male participants were excluded due to excessive head motion. All 
remaining data underwent motion correction and standard 
realignment procedures during preprocessing. Initial processing of 
rs-fMRI data was performed using fMRIprep, which leveraged 
individual high-resolution T1-weighted anatomical images 3D FFE 
SENSE sequence (Esteban et al., 2019); from SUDMEX-TMS dataset 
for robust anatomical-functional integration. This pipeline executed 
essential steps: T1 images were warped to the MNI152NLin6Asym 
standard space (6th generation); slice-time correction, rigid-body 
motion realignment, 6 mm FWHM Gaussian smoothing, and 
0.01–0.1 Hz bandpass filtering (Angeles-Valdez et  al., 2024). 
Subsequent denoising and quality control were conducted via XCP-D 
(Mehta et  al., 2024), which executed: (1) nuisance regression (24 
motion parameters, WM/CSF signals), (2) Schaefer 400-parcel atlas-
based time series extraction, (3) functional connectivity matrix 
computation (Fisher-z transformed Pearson correlations), and (4) 
comprehensive quality assessment including framewise displacement 
and DVARS monitoring. The preprocessed BOLD signals underwent 
phase synchronization analysis through the following protocol: Time 
series from each Schaefer atlas-defined region were bandpass-filtered 
(0.01–0.1 Hz) to attenuate physiological noise while preserving 
neurovascular coupling-related oscillations. These filtered signals were 
then subjected to Hilbert transform for instantaneous phase estimation, 
enabling dynamic functional connectivity characterization. The Hilbert 
transform was applied to filtered BOLD signals to derive instantaneous 
phase estimates, enabling computation of pairwise phase differences 
across all Schaefer-400 regions. This generated a time-resolved phase 
coherence matrix (N × N dimensions, where N = 400) capturing 
moment-to-moment synchronization patterns. To reduce 
dimensionality while preserving dynamic network architecture, 
we implemented LEiDA (Koob and Volkow, 2016). For each temporal 
frame, the leading eigenvector (v1) of the phase coherence matrix was 
extracted, representing dominant synchronization topology through 
its sign-specific element values (positive/negative co-activation 
patterns). Each cluster centroid was back-projected to anatomical space 
using the Schaefer-Yeo template correspondence, revealing distinct 
RSNs configurations of each PL state. Next, we  computed three 
dynamic indices: (1) occupancy (state prevalence across timepoints), 
(2) duration (consecutive state persistence), and (3) transition 
probabilities between states (computed by counting frame-to-frame 
transitions across the PL-state time series). For the transition 
probabilities between states, depending on the difference between the 
starting state and the destination state, transitions can be divided into 
inter-state transitions and self-state transition. Inter-state transitions 
refer to the switches between two different PL states (e.g., from PL-state 
1 to PL-state 2), while self-state transitions indicate that the brain 
remains in the same PL state across adjacent timepoints (e.g., from 
PL-State 1 to PL-State 1). The self-transition probability serves as an 
indicator of temporal stability, reflecting how likely the brain is to 
remain in a given configuration without switching. A higher self-
transition probability suggests greater neural inertia or “stickiness,” 
meaning that once the brain enters that state, it tends to persist longer—
complementing other temporal metrics such as fractional occupancy 
and duration. Finally, statistical evaluation focused on identifying 
k-specific PL states showing significant longitudinal changes in 
temporal characteristics following rTMS intervention. This multi-step 
approach quantifies temporal reconfiguration of whole-brain network 

TABLE 1  Demographic characteristics of participants with CUD.

CUD participants (n = 30) Baseline

Age 34.78 ± 7.13

Education (years) 13.12 ± 2.96

Monthly income (MXN) 5573.47 ± 8378.04

Crack cocaine as the main substance of use 28 (93.3%)

Onset age of cocaine use 22.12 ± 5.49

Years of cocaine use 11.38 ± 7.78

Received psychosocial treatment n = 7 (23.3%)

Received pharmacological treatment n = 24 (80.0%)

Continuous variables are reported as mean ± SD, and nominal as number (percentage from 
group).
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states, revealing stable connectivity patterns modulated by 
neuromodulation therapy. To evaluate the robustness of our approach, 
we assessed the consistency of brain states identified under different 
values of k in the k-means clustering. The corresponding figures and 
analyses have also been included in the Supplementary material.

Statistical analysis

Demographic and clinical characteristics, including age, gender, 
educational attainment, monthly income, age of cocaine use onset, 
and total years of use, were tabulated for cohort characterization. 
Longitudinal changes in clinical scales (VAS, CCQ-G, HARS, and 
CCQ-N) were assessed via t-tests across three timepoints: baseline 
(pre-rTMS), 2-week post-intervention (post-rTMS-2 W), and 
3-month follow-up (post-rTMS-3 M). PL state dynamics (occupancy, 
duration, and transition probabilities) were compared between 
pre-rTMS and post-rTMS-2 W periods using paired t-tests, with 
Benjamini–Hochberg false discovery rate (FDR) correction applied to 
all pairwise comparisons (q < 0.05). State metrics demonstrating 
significant longitudinal changes (pre-rTMS vs. post-rTMS-2 W) were 
subsequently entered into partial correlation analyses to examine 
monotonic associations with clinical symptom improvements 
measured at post-rTMS-2 W and post-rTMS-3 M, respectively. For 
each pair of interest, we computed Spearman partial correlations, 
statistically controlling for age, monthly income, and years of 
education as covariates. This approach allowed us to assess the direct 
association between dynamic brain state alterations and clinical 
outcome improvements, independent of potential demographic 
confounders. Analyses were restricted to PL state features showing 
FDR-corrected significance in prior group comparisons, ensuring 
hypothesis-driven inference. All statistical thresholds were set at 
FDR-adjusted p < 0.05.

Results

k-means optimal cluster number selection 
(k = 4)

The k-means clustering (cosine similarity metric) partitioned 
these eigenvectors into recurrent PL states across multiple cluster 
solutions (k = 2–20). Cluster count optimization (k = 4) was guided by 
four validation metrics: Dunn Index (maximized at k = 4), distortion 
score (elbow point at k = 4), Silhouette coefficient (peak = 0.38), and 
Davies–Bouldin index (minimum at k = 4) (Figure 2A). This four-state 
solution demonstrated neurobiological consistency with canonical 
resting-state networks while minimizing intra-state variance.

The identified PL states

Our state-space analysis revealed four distinct metastable 
configurations with differential couplings to canonical functional 
networks (Figure 2B). PL-State 1 exhibited predominant coupling with 
the default mode network (DMN), reflecting its preferential involvement 
in internally-oriented cognition including autobiographical memory 
and self-referential processing. PL-State 2 demonstrated strongest 
association with the frontoparietal control network (FPCN), with 
secondary engagements of dorsal attention (DAN), and ventral attention 
(VAN) systems. PL-State 3 showed selective engagement of visual 
network (VIS) regions coordinated with dorsal attention circuitry, 
suggesting a role in visuospatial attention and perceptual integration. 
PL-State 4 was characterized by somatomotor network (SMN) 
synchronization coupled with ventral attention co-activation, potentially 
underlying sensorimotor processing during environmental monitoring.

Temporal features of PL states

Longitudinal analysis of temporal dynamics across PL states 
revealed selective neuromodulatory effects following rTMS 
intervention (Figure  3). Notably, PL-State 3 (VIS-dominated) 
exhibited a significant increase in duration, for post-rTMS-2 W 
compared to pre-rTMS (p = 0.02). In contrast, PL-State 2 (FPCN-
centric) and the SMN-dominated PL-State 4 showed minimal 
temporal alterations. Likewise, the DMN-centric PL-State 1 remained 
temporally stable across sessions. Longitudinal changes in metastable 
state transitions were also quantified through probabilistic modeling 
of phase-locking dynamics (Figures 4A,B). Our findings demonstrate 
that dlPFC-targeted rTMS elicited distinct alterations in dynamic 
brain states: (1) decreased self-transition probability of State 2 
(frontoparietal control network-dominant) (p < 0.05), suggesting 
stabilization of cognitive control processes (see Figure  4B); (2) 
significantly increased dwell time and fractional occupancy of State 3 
(visual network-dominant) (p < 0.05), indicating prolonged 
engagement of sensory processing systems (see Figure 4A).

Clinical symptom modulation through PL 
state reconfiguration

While neuromodulation studies have established rTMS-induced 
changes in static connectivity patterns, the temporal dynamics linking 
network state transitions to symptom evolution remain poorly 
characterized. To address this mechanistic gap, we  interrogated 
longitudinal relationships between dynamic phase-locking (PL) state 
reconfiguration and multi-domain clinical improvement. Longitudinal 

TABLE 2  Clinical scales for CUD with statistical results using paired t-tests.

Clinical phenotypes pre-rTMS (n = 30) post-rTMS-2 W (n = 30) t-value p-value

VAS 3.5123 ± 3.5501 1.3700 ± 2.2932 4.5874 0.0001

CCQ-G 182.4667 ± 52.0919 147.6000 ± 50.2659 3.9598 0.0004

HARS 15.6667 ± 11.3117 8.0000 ± 8.1790 3.8079 0.0007

CCQ-N 146.8667 ± 48.9798 119.1333 ± 45.6997 4.0396 0.0004

VAS, Visual Analogue Scale; CCQ-G, General Craving Scale-General; HARS, Hamilton Anxiety Rating Scale; CCQ-N, General Craving Scale-Now.
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Spearman correlations revealed state-specific associations between 
dynamic network reconfiguration and symptom improvement 
(Figure 4C). At 2-week follow-up, decreased cocaine craving severity 
(CCQ-N) correlated with increased duration time of State 3 
(r = −0.4068, p = 0.0352). No statistically significant correlations were 
observed between other PL-state metrics and clinical scale changes 
across assessment periods.

Discussion

Our study elucidates the neuromodulatory effects of rTMS on 
dynamic brain network reorganization in CUD. Through LEiDA 
analysis, we demonstrate three key rTMS-induced effects: (1) decreased 
self-transition probability of State 2 (FPCN-dominant), indicating 
reduced metastability of cognitive control networks; (2) significantly 
increased dwell time and occupancy of State 3 (VIS-dominant); and 

(3) a robust negative correlation between State 3 dwell time and craving 
reduction (r = −0.4068, fp = 0.0352). These results collectively suggest 
a compensatory network reconfiguration mechanism wherein 
diminished FPCN stability permits enhanced sensory processing 
through VIS network engagement. We propose that reduced FPCN 
metastability reflects therapeutic disruption of maladaptive overcontrol 
patterns, while prolonged VIS states facilitate bottom-up reprocessing 
of craving stimuli through sensory extinction mechanisms (Torregrossa 
et  al., 2011). The inverse VIS-craving relationship confirms this 
sensory-driven therapeutic action, positioning VIS state dynamics as 
a novel biomarker for rTMS efficacy in addiction treatment.

Effects on brain networks

Our findings demonstrate that rTMS induces significant 
reorganization of dynamic brain states, particularly modulating VIS 

FIGURE 2

Correlation of brain functional networks obtained based on cluster analysis and indices for evaluating the quality of these clustering results. (A) Trend 
graph of four different clustering evaluation indicators changing with the number of clusters. When the number of clusters is 4, the Davis–Boulding 
index is low, which also indicates that the clustering effect is good. (B) Pearson correlation coefficients between the spatial pattern of each dynamic 
state (State 1–4) and the seven resting-state networks. It aims to functionally characterize the four dynamic brain states identified via k-means 
clustering by mapping each state’s spatial distribution to the canonical resting-state networks defined by Yeo. This approach infers the dominant 
functional systems associated with each state (e.g., whether a state reflects default mode, visual, or control-related activation patterns), thereby 
enhancing the interpretability of dynamic state transitions. Each bar reflects the spatial correlation between the mean PL vector of a state and a binary 
mask for a given network. High positive values suggest a strong spatial similarity between the brain state and that functional network (*p < 0.05).
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FIGURE 3

The dynamic brain state metrics under two conditions: pre-rTMS (before rTMS treatment) and post-rTMS-2 W (2 weeks after rTMS). (A) Left panel: 
Average duration (in seconds) of each PL state. (B) Right panel: Occupancy rate (i.e., proportion of total scanning time) for each PL state. The 
horizontal axis represents the four PL states identified via clustering. In both panels, green bars indicate pre-rTMS values, and orange bars indicate 
post-rTMS-2 W values. For each state, we compare pre- and post-rTMS metrics. Asterisks (*) denote statistically significant differences between 
conditions (*p < 0.05).

FIGURE 4

Visualized data and statistically analysed index. (A) Activation patterns of different functional brain networks in four states. The activation pattern in 
each state is represented by different colors, with red and orange representing higher activation levels and blue representing lower activation levels. 
Arrows mark the transition from one state to another (*p < 0.05). (B) State transition probabilities for baseline (pre-rTMS) and follow-up (post-
rTMS-2 W). The values in each matrix represent the probability of transitioning from one state to another. The rows of the matrix represent the starting 
state and the columns represent the target state (*p < 0.05). (C) Correlation between changes in scale indicators and brain state indicators before (pre-
rTMS) and after rTMS treatment (post-rTMS-2 W). Each plot includes a fitted line and confidence interval.
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and CONTROL/FPCN networks. These alterations align with 
established models of addiction neuropathology, where impaired 
prefrontal regulation disrupts cognitive-emotional integration in 
substance use disorders (Koob and Volkow, 2016; Goldstein and 
Volkow, 2011). Crucially, we observed a significant increase in dwell 
time and fractional occupancy of the VIS-dominant state (State 3) 
post-rTMS, suggesting enhanced sensory network stabilization. This 
VIS-state prolongation was significantly negatively correlated with 
craving intensity (CCQ-N: r = −0.4086, p = 0.0352), indicating its 
direct relevance to therapeutic outcomes. We propose this reflects 
strengthened bottom-up sensory gating that attenuates drug-cue 
salience through perceptual desensitization. Concurrently, decreased 
self-transition probability in the CONTROL-dominant state (State 2) 
suggests reduced metastability of cognitive control networks. This 
decreased rigidity in top-down regulation may facilitate disengagement 
from compulsive craving patterns. These temporally specific dynamics 
extend prior static connectivity models (Dipasquale and Cercignani, 
2016), revealing that rTMS reorganizes not only spatial network 
interactions but also the temporal architecture of functional states. 
Such metastable shifts may recalibrate prefrontal-executive hierarchies, 
counteracting the hyperstable network configurations characteristic 
of addiction.

Differential network responsivity to dlPFC 
stimulation

Our temporal analysis reveals distinct neuroplasticity phases 
underlying rTMS efficacy: acute craving reduction at 2-week follow-up 
correlated significantly with destabilization of the visual network-
dominant state (State 3), evidenced by increased dwell time, indicating 
early therapeutic effects involve disrupting sensory processing of craving 
cues. Besides, the selective increase in dwell time for State 3 (visual 
network; VIS) following dlPFC-targeted rTMS, contrasted with 
non-significant alterations in States 1 (DMN), 2 (FPCN), and 4 (SMN), 
may reflect network-specific responsiveness to neuromodulation. State 
3 exhibited the highest metastability in our cohort, suggesting greater 
susceptibility to perturbation compared to more stable states. 
Methodologically, the LEiDA framework’s sensitivity to low-frequency, 
high-amplitude fluctuations characteristic of VIS activity may prioritize 
detection of visual network dynamics over subtler higher-order network 
changes. The absence of significant effects in other states does not negate 
their functional relevance but rather highlights the temporal specificity 
of acute rTMS effects, where VIS modulation may represent an early 
biomarker preceding longer-latency reorganization in cognitive networks.

Shared neurobiological mechanisms

These network-level changes support rTMS as a transdiagnostic 
modulator restoring temporal coordination across functional systems. 
The VIS-state stabilization parallels Dipasquale and Cercignani’s 
(2016) findings of rTMS-enhanced sensory-limbic integration, 
suggesting conserved mechanisms for dampening pathological 
salience. Here, prolonged VIS engagement provides critical bottom-up 
recalibration of early perceptual circuits, establishing a stabilized 
sensory foundation for higher-order regulation. Meanwhile, decreased 
CONTROL-state self-transition probability reflects reduced cognitive 

rigidity—a finding echoing Zilverstand et  al.’s (2018) framework 
linking PFC-striatal inflexibility to impaired behavioral control in 
CUD. The significant inverse VIS-craving relationship provides 
mechanistic validation: enhanced sensory network engagement 
directly suppresses subjective craving intensity. Collectively, these 
results indicate rTMS exerts therapeutic effects through three 
synergistic mechanisms: (1) stabilizing sensory networks to attenuate 
drug-cue hyperresponsiveness, (2) reducing CONTROL-network 
metastability to enable cognitive flexibility, and (3) facilitating inter-
state transitions to restore dynamic network equilibrium. Rather than 
region-specific suppression, rTMS appears to recalibrate whole-brain 
metastability—positioning the dlPFC as a flexible hub that 
reconfigures temporal hierarchies across sensory and cognitive 
domains to disrupt craving maintenance.

Comparison with healthy-control rTMS 
studies

Previous studies have shown that rTMS targeting the dlPFC can 
induce widespread reconfigurations of large-scale brain networks, 
including the SMN, VIS, FPCN, DMN, and limbic systems, even in 
healthy individuals (van Hattem et al., 2025; Singh et al., 2019). In our 
CUD cohort, we  find comparable reconfiguration patterns, 
particularly involving the SMN, VIS, and FPCN, which suggests a 
common neuromodulatory mechanism of dlPFC-rTMS. However, in 
patients with cocaine use disorder, such reconfiguration likely serves 
to normalize rather than merely modulate. Thus, the observed shifts 
in brain-state dynamics in our study may reflect therapeutically 
relevant network rebalancing, aiding improvements in decision-
making and reductions in impulsivity.

Limitations and implications

Several constraints in this study warrant consideration. First, the 
ground truth of the estimated brain states with rapid fluctuations is 
largely inaccessible in human. This limitation raises questions about the 
specificity of LEiDA-derived metastable states to rTMS 
neuromodulation effects. While fMRI-based state dynamics may 
be contaminated by systemic noise sources (e.g., physiological artifacts, 
neurovascular coupling variability), cross-modality validation studies 
demonstrate conserved spatiotemporal patterns of metastable switching. 
Nevertheless, converging patterns of neural activity and dynamic state 
switching have been validated in cross-modality studies, irrespective of 
the signal’s origin. Second, the high dropout rate (23% dropout at 
3-month follow-up) reduces power to detect delayed neuromodulatory 
effects, particularly in HARS-associated network reconfigurations 
showing later effect emergence. Besides, subsampling bootstrap 
implementation in LEiDA is not applicable due to the limitations of the 
LEiDA method. While subsampling bootstrap provides theoretical 
advantages for stability assessment, its implementation in LEiDA is 
confounded by cluster label non-identifiability and centroid matching 
ambiguity. We mitigated this through rigorous k-sensitivity validation 
by assessing the consistency of brain states identified under different 
values of k in the k-means clustering (see Supplementary material). 
Moreover, due to the limited number of female participants in the 
original dataset, our primary analysis focused exclusively on male 
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subjects. Notably, we also conducted a parallel analysis including the 
female participants using the same methodology. In both analyses, the 
four identified brain states exhibited a high degree of spatial 
correspondence with the Yeo networks, and similar patterns of state 
dynamics were observed—specifically, a significant decrease in the self-
transition probability of State 2 and a significant increase in both the 
fractional occupancy and duration of State 3. The only notable difference 
was an additional significant decrease in the transition probability from 
State 3 to State 4 in the mixed-gender sample. These findings suggest 
that the observed reconfiguration patterns are relatively robust across 
different sample compositions, and may not be strongly influenced by 
sex. However, given the small number of female participants, we cannot 
draw definitive conclusions regarding sex-related effects, which require 
further validation in larger and more gender-balanced cohorts. For 
transparency, the full results of the supplementary analysis including 
female participants have been provided in the Supplementary material.

Conclusion

In conclusion, this study deepens previous research by 
systematically analyzing coherence matrix dynamics, state transition 
patterns, and brain imaging indicators to elucidate the neuroregulatory 
mechanisms of rTMS in treating CUD. By identifying specific 
alterations in brain’s metastable states and their correlation with 
clinical symptom improvement, our findings provide a mechanistic 
framework for how rTMS modulates addiction-related neural circuits. 
The insights of our results may contribute to the advancement of 
precision medicine by paving the way for individualized 
neuromodulation strategies based on dynamic brain networks.
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