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Introduction:Understanding individual di�erences in brain dynamics is a central

goal in neuroscience. While conventional time series features capture signal

properties of local brain regions, they often fail to reveal the deeper structure

embedded in the brain’s complex activity patterns.

Methods: Resting-state fMRI data from approximately 1,000 subjects in

the Human Connectome Project were analyzed. A TDA-based framework

integrating time-delay embeddings and persistent homology was employed

to extract global dynamic features from resting-state fMRI data. Classification

models and canonical correlation analysis (CCA) were employed to examine the

associations between brain topological features and individual characteristics,

including gender and behavioral traits.

Results: Topological features exhibited high test-retest reliability and enabled

accurate individual identification across sessions. In classification tasks, these

features outperformed commonly used temporal features in predicting gender.

Canonical correlation analysis identified a significant brain-behavior mode that

links topological brain patterns to cognitive measures and psychopathological

risks. Regression analyses across behavioral domains showed that persistent

homology features matched or exceeded the predictive performance of

traditional features in higher-order domains such as cognition, emotion, and

personality, while traditional features performed slightly better in sensory-related

domains.

Discussion: These findings highlight persistent homology as a robust and

informative framework for modeling individual di�erences in brain function,

o�ering promising avenues for personalized neuroimaging analysis.

KEYWORDS

functionalmagnetic resonance imaging, topological data analysis, persistent homology,

individual di�erences, brain-behavior relationships

1 Introduction

Understanding individual differences in brain function is key to exploring healthy

variations related to personality, gender, age, as well as advancing personalized treatments

for neuropsychiatric disorders. Recent technological advancements have enhanced the

sensitivity of fMRI, enabling the capture of individualized, refined brain states while

minimizing noise interference (Vidaurre et al., 2017; Bitan, 2024). As a result, utilizing

neuroimaging data to investigate these individual differences has become increasingly

important and popular (Dubois and Adolphs, 2016; Huskey et al., 2020).
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Previous studies have demonstrated that spontaneous brain

activity during resting-state conditions can be used to predict a

range of individual behavioral traits, including age (Gonneaud

et al., 2021), gender (Ryali et al., 2024), cognition (Smith et al.,

2015; Cabral et al., 2017; Liu et al., 2023), personality dimensions

(He et al., 2024), and susceptibility to mental disorders (Li

et al., 2020; Zhang et al., 2024; Aborode et al., 2025). Currently,

the functional connectome-based (FC-based) approach has been

widely adopted to characterize individual differences in brain

function (Miranda-Dominguez et al., 2014; Finn et al., 2015; Finn

and Todd Constable, 2016; Shen et al., 2017). In this framework,

the rich temporal dynamics of fMRI signals are compressed into a

static network representation, enabling a compact and interpretable

summary of brain-wide functional organization. Studies have

shown that these methods are robust and effective in capturing

inter-individual variability, and they have been widely used to

predict behavioral and clinical outcomes (Shen et al., 2017; Sui

et al., 2020). However, FC-based methods have certain limitations.

Specifically, FC relies on the assumption of linear, symmetric, and

stationary interactions between brain regions, which may not fully

reflect the non-linear and time-varying nature of neural processes

(Hutchison et al., 2013; Lindquist et al., 2014). Moreover, by

summarizing the entire time series into a single correlation value,

FC discards potentially informative temporal features, such as

transient dynamics, non-linearity, and phase relationships, which

may carry unique individual-specific signatures (Lurie et al., 2020;

Shafiei et al., 2020; Liu et al., 2023).

These limitations motivate the exploration of alternative

representations that retain more of the intrinsic structure of

brain dynamics. Therefore, temporal features extracted directly

from the ROI time series have become another focus of

attention (Zou et al., 2008; Garrett et al., 2010). These features

aim to characterize the intrinsic statistical and dynamical

properties of brain activity within each region, rather than inter-

regional relationships. Commonly used metrics include variance,

autocorrelation, self-predictability and various indicators of non-

linearity and complexity, such as entropy or fractal dimension

(Sokunbi et al., 2013; Fulcher and Jones, 2017; Lubba et al.,

2019). Nevertheless, studies directly extracting features from time

series also have inherent limitations. Many of the temporal

features are manually crafted and depend on specific statistical

assumptions, potentially limiting their generalizability across

subjects or cognitive states. Additionally, while they retain more

temporal information than FC, they still often overlook the

underlying geometric or structural organization of the time series

in its full high-dimensional space.

The human brain displays intricate and often chaotic temporal

patterns, which present challenges for traditional analytical

methods. To better characterize the non-linear, high-dimensional

structure of brain dynamics, recent research has turned to

Topological Data Analysis (TDA)—a mathematical framework

designed to capture the intrinsic shape of data (Chazal and

Michel, 2021). TDA enables the identification of topological

features such as loops and voids, which describe how data

points are organized in space and evolve over time. Unlike

traditional statistics, these topological descriptors are invariant

under continuous transformations and robust to noise, making

them particularly well-suited for neural data (Caputi et al., 2021;

Skaf and Laubenbacher, 2022).

Recent studies applying TDA to individual difference

identification in small sample sizes have revealed that higher-order

topological features may serve as stable individual-specific

signatures (Santoro et al., 2024). Building upon this idea, we

propose to apply persistent homology (PH)—a core method

within TDA—to fMRI time-series data. We use over 1,000 subjects

from the Human Connectome Project (HCP) dataset to extract

temporal topological signatures from cortical ROI time series.

These signatures exhibit clear individual specificity, suggesting

their potential as functional fingerprints. To further explore

the behavioral relevance of these topological representations,

we employ canonical correlation analysis (CCA) to examine

associations between individual topological signatures and

multiple behavioral traits. Our results reveal strong and significant

relationships between brain topology and behavior. Moreover,

when compared to conventional temporal feature metrics,

persistent homology demonstrates superior performance in

both gender classification and behavioral prediction tasks,

highlighting the advantage of topological approaches in capturing

individualized brain dynamics.

2 Materials and methods

2.1 Dataset

This study uses resting-state fMRI data from 1,200 healthy

adults (aged 22–36) provided by the Human Connectome Project

(HCP) (Van Essen et al., 2012, 2013). The MRI data were acquired

using a 3T Siemens Prisma scanner, with acquisition parameters

detailed in the literature (Ugurbil et al., 2013; Van Essen et al.,

2013). During the resting-state fMRI data collection, participants

remained awake and rested quietly for 15 minutes. Each participant

underwent two sessions (day 1 and day 2), each containing two

scans with opposite phase encoding directions. The behavioral

measurements used in this study were provided by theHCP dataset.

This study uses theminimally preprocessed fMRI data provided

by the HCP (Glasser et al., 2013). The minimal preprocessing

pipeline includes steps such as gradient distortion correction,

motion correction, and concludes with non-linear registration to

the MNI152 standard space. Then, the effects of head motion,

temporal trends, cerebrospinal fluid signals, white matter signals,

and global signals are regressed out. This study includes 1,013

individuals whose data were complete and successfully processed

through the pipeline. A bandpass filter was then applied with a

frequency range of 0.01–0.08Hz. This study uses the Schaefer 200

atlas in the MNI152 standard space, which includes 200 regions of

interest (ROI) divided into 7 brain networks (Schaefer et al., 2018).

2.2 TDA framework

This study utilizes cortical functional activity data to extract

persistent landscape features from each ROI via delay embedding

and persistent homology, which are then applied to individual

identification, behavioral prediction, and other analysis. The TDA

analysis flowchart is illustrated in the Figure 1.
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FIGURE 1

Flowchart of extracting topological features of brain activity using persistent homology. The analysis consists of three main steps. (A) Delay

embedding construction: Delay embedding is applied to the original time series to reconstruct the system’s state space. For illustration, we display

two delay-embedding’s in three dimensions. (B) Feature extraction: Two types of features (0-dimention and 1-dimenstion) are extracted from the

embedded data. (C) Topological landscape construction: topological features were embedded into a computable space.

2.2.1 Delay embedding
Delay embedding is a method used to reconstruct dynamical

systems and is widely applied in non-linear dynamics analysis

(Takens, 1981; Brunton et al., 2017; Raut et al., 2025). By using delay

embedding, one can effectively reconstruct a one-dimensional

time series into a high-dimensional state space, thereby capturing

potential dynamical features (Figure 1A). The specific procedure

of delay embedding requires determining two key parameters:

embedding dimension and time delay. To ensure the optimal

reconstruction of the dynamical system, this study uses the mutual

information method to determine the optimal time delay and the

false nearest neighbor method to determine the optimal embedding

dimension (Kennel et al., 1992). After optimization using these

methods, the best embedding dimension of 4 and time delay

of 35 were determined for this experiment, and this parameter

combination was used for subsequent topological analysis.

2.2.2 Persistent homology
To extract topological features from the high-dimensional

point cloud reconstructed through delay embedding of the time

series, we performed 0-dimensional (H0) and 1-dimensional (H1)

persistent homology analysis using the Giotto-TDA toolkit (Tauzin

et al., 2021). Persistent homology is a tool for characterizing

the topological structure of data from a multi-dimensional

perspective, capable of identifying and tracking the appearance

and disappearance of topological features such as connected

components, loops, and cavities at different dimensions.

2.2.3 Persistent landscape
We used the persistence landscape (PL), as proposed by

Bubenik (2015), to describe the birth and death of topological

holes in different dimensions. Given a point cloud dataset
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X= {x1,x2,. . .,xn}⊂Rd, its topological structure across different

spatial scales can be characterized by constructing a sequence

of nested simplicial complexes. The most commonly used

construction is the Vietoris–Rips complex: for a given distance

threshold ǫ>0, an edge is added between any pair of points

whose Euclidean distance is < ǫ. More generally, a k-simplex

(Supplementary Figure 1) is included whenever all pairwise

distances among its k+1 vertices are < ǫ.

As ǫ increases, the complex grows by progressively

incorporating more simplices, leading to changes in its topological

structure. Persistent homology tracks the “birth” and “death”

of topological features (e.g., connected components, loops, and

voids) over this filtration, generating persistence diagrams (PD)

that summarize the multiscale topological organization of the

data (Figure 1B). For a given topological feature, its persistence

is defined as the difference between its death and birth times:

pers=d− b.

To facilitate downstream statistical or machine learning

analysis, we transform the PD into a PL, a functional representation

that embeds topological features into a Hilbert space. Each feature

(bi, di) is mapped to a triangular tent function:

3i (t)= [min (t−bi,di−t) ]+= max(0,min(t−bi,di−t))

Then the persistence landscape is defined as the sequence

of functions {λk (t) }k∈N, where λk (t)is the k-th largest value of

{3i (t) }i∈Iat each time t. These functions can be discretized into

vectors for efficient statistical analysis.

2.2.4 Experimental design and feature extraction
In this study, we performed persistent homology analysis at

both H0 and H1 levels for each ROI of every subject. Here, the

H0 features correspond to the evolution of connected components,

while the H1 features capture the appearance and disappearance

of loop structures. The specific steps are as follows: (a) Generate

point clouds for each ROI using delay embedding of the fMRI time

series. (b) Use the Giotto-TDA toolbox to compute 0-dimensional

(H0) and 1-dimensional (H1) persistence diagrams for each ROI,

capturing the birth and death of topological features (i.e., connected

components and loops). (c) For each ROI’s persistence diagram,

compute the corresponding persistence landscape (PL) for both H0

andH1. Each landscape is compressed to a 100-dimensional vector.

(d) All persistence landscapes are flattened and concatenated to

obtain a subject-level topological feature vector. Each subject has

200 ROIs, and each ROI yields two persistence landscapes (one for

H0 and one for H1), resulting in a total of 200× 100× 2=40000

topological feature vectors per individual (An example is shown in

Supplementary Figure 2). In this way, we preserve the topological

dynamic information of each ROI across different dimensions,

providing a foundation for further statistical analysis or individual

difference modeling.

2.3 Traditional time-series temporal
features

To characterize the intrinsic temporal dynamics of fMRI

signals, we extracted a set of canonical time-series features

using the catch22 toolbox proposed by Lubba et al. (2019).

The catch22 framework provides a collection of 22 time-series

features that were selected through a large-scale, data-driven

analysis to maximize classification performance while minimizing

redundancy. These features capture a diverse range of temporal

properties and have been validated across a wide variety of real-

world datasets.

The temporal features from catch22 span multiple

domains of time-series analysis, including but not limited to:

Autocorrelation and predictability (e.g., first-lag autocorrelation,

partial autocorrelation); Distributional properties (e.g., time

reversibility, outlier measures); Non-linear and entropy-

based features (e.g., sample entropy, fluctuation analysis);

Periodicity and frequency content (e.g., periodicity score);

Change-point and stationarity measures. For a complete list

and mathematical definitions of the 22 features, we refer the

reader to the original publication by Lubba et al. and the

official catch22 documentation. All features were computed

for each ROI independently based on the preprocessed fMRI

time series.

In addition to the standard 22 features from catch22, we further

included the mean and standard deviation (std) of each time series,

resulting in a 24-dimensional feature vector for each region of

interest (ROI).

This set of features serves as a conventional, interpretable

baseline for modeling individual differences in brain dynamics, and

provides a useful comparison point for evaluating the added value

of topological representations such as persistent homology.

2.4 Validation of the “fingerprinting” e�ect

To validate whether the topological features exhibit

stability and discriminability at the individual level, we

adopt a fingerprinting analysis framework to evaluate

their individual distinguishability (Finn et al., 2015). The

core idea of this analysis is that if a certain feature shows

consistency for the same subject across different scan

sessions and has sufficient discriminative power within the

population, it can be considered a ’topological fingerprint’ for

identifying individuals.

2.4.1 Data division and matching process
The specific process is as follows: (a) Feature Set Construction:

The topological features obtained from all subjects on day 1

are used as the database, denoted as {T
(1)
1 ,T

(1)
2 , . . . ,T

(1)
N }, where

T
(1)
i represents the topological feature vectors of subject i on day

1. The topological features obtained from all subjects on day 2

are used as the target set, denoted as {T
(2)
1 ,T

(2)
2 , . . . ,T

(2)
N }, where

T
(2)
i represents the topological feature vectors of subject i on day

2. (b) Matching Strategy: For each individual T
(2)
i in the target

set, the Pearson correlation coefficient between its topological

feature vector and those of all individuals in the database is

computed:

rij= corr
(

T
(2)
i ,T

(1)
j

)

, ∀j ∈ {1, 2, . . . ,N }
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where rij represents the similarity between the target individual

i and the database individual j. (c) Identity Prediction and

Accuracy Calculation: The database individual j∗=argmaxj rij that

maximizes rij is selected as the predicted identity for the target

individual i. If j∗=i, meaning a correct match, it is considered a

correct identification. Finally, by calculating the ratio of correctly

identified individuals to the total number of individuals, the

identification accuracy is obtained. This is used to assess the

strength of the topological feature’s fingerprinting effect.

2.4.2 Evaluation of multidimensional topological
features

To systematically evaluate the contribution of different

topological dimensions to fingerprinting performance, we perform

matching tests using the following two types of features: 0-

dimensional features (connected components) and 1-dimensional

features (loops), to comprehensively reflect the topological

structure of individuals. By comparing the identification accuracy

under these two types of features, we can reveal the contribution

of topological information from different dimensions to individual

stability and discriminability, providing theoretical support for

subsequent studies on individual differences. Beyond the whole-

brain ROI-level fingerprint analysis, we further quantified inter-

network differences in fingerprint effects by analyzing topological

features extracted from ROIs within individual networks.

2.5 CCA modeling of topological features
and behaviors

To investigate the relationship between individual subjects’

topological features and behavioral measures in a single holistic

multivariate analysis, we carried out canonical correlation analysis

(CCA) (Smith et al., 2015; Liu et al., 2023). H0 and H1 are

integrated together as topological features, or, as PL features

(1013 subjects× 40000 features). We followed the canonical

correlation analysis (CCA) pipeline described by Smith et al.

Specifically, we used 478 behavioral measures from the HCP

dataset, applied filtering procedures to exclude variables that

did not meet the inclusion criteria (resulting in 147 remaining

variables), and regressed out nuisance variables to account for

potential confounds. To mitigate overfitting, principal component

analysis (PCA) was applied to reduce the dimensionality of both

the topological features matrix and the behaviors matrix to 100

components each. Nonparametric permutation testing with 10,000

iterations was conducted to evaluate statistical significance.

To quantitatively compare the contributions of topological

features from different ROIs to the significant CCA mode, we

separated the H0 and H1 features for each ROI. For each individual

ROI, we performed principal component analysis (PCA) on the

topological features and retained the first principal component as

the representative feature for that ROI in H0 (or H1), resulting

in a dimensionality reduction from 1, 013 subjects × 100 to

1013 subjects× 1 .

2.6 Individual traits prediction and
comparison

To evaluate whether topological features can effectively

represent individual differences and compare them with traditional

time series features, we designed classification and regression tasks.

In the topological features set, both H0 and H1 features are used

together for the classification task and the regression task.

2.6.1 Gender classification task
For the input features, we compare the performance between

PL topological features and catch22 temporal features. To ensure

fairness in comparison, we performed PCA on both feature sets,

reducing them to 100 dimensions. This resulted in a unified feature

matrix (nSub× 100), which was used for downstream individual

identification modeling. We refer to the resulting 100-dimensional

representations as the topological features (for PL) and temporal

features (for catch22), respectively.

To evaluate the predictive power of different feature

representations for individual gender classification, we compared

24 selected temporal features from Catch22 and topological

features derived from persistent homology. We employed a logistic

regression classifier in a five-fold cross-validation framework.

For each feature type, class probabilities were predicted across

folds, and receiver operating characteristic (ROC) curves were

constructed based on the aggregated prediction scores. The area

under the ROC curve (AUC) was used as the primary metric to

quantify classification performance.

2.6.2 Behavior regression task
Furthermore, we utilized the categorized behavioral traits

provided by the HCP dataset. Specifically, we included six

categories of behavioral measures: Cognition (52 items), Emotion

(24 items), Personality (5 items), Psychiatric and Life Function (30

items), Sensory (13 items), and Substance Use (69 items). For each

category, we performed principal component analysis (PCA) and

extracted the first principal component, which served as a summary

score representing the major dimension of variation within that

behavioral domain. We conducted a separate analysis of the Penn

Matrix Reasoning Test (PMAT24_A_CR) due to its recognized

significance in assessing fluid intelligence (Schirner et al., 2023).

Detailed item lists and corresponding PCA loadings are provided

in Supplementary Table 1.

A linear regression model was used to predict each behavioral

summary score based on either topological features or catch22

temporal features. Model performance was evaluated using five-

fold cross-validation, repeated 10 times with different random

splits for permutation testing. In each fold, we computed the

Pearson correlation coefficient (r) between the predicted and

observed behavioral scores. Finally, we conducted a paired t-

test to compare the prediction performance of the topological

features and the catch22 temporal features across all repetitions and

behavioral categories.
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FIGURE 2

Cross-session identification accuracy of individual topological features. (A) Identification accuracy (“fingerprinting e�ect”) across sessions using three

methods: persistent homology in dimension 0 (H0), dimension 1 (H1), and a standard time-series feature set (Catch22). (B) Identification accuracy of

H0 and H1 features across seven functional networks: Visual (Vis), Somatomotor (SomMot), Dorsal Attention (DorsAttn), Salience/Ventral Attention

(SalVentAttn), Limbic, Control (Cont), and Default Mode.

FIGURE 3

ROC curves for gender classification using topological and

conventional time-series features. Receiver Operating Characteristic

(ROC) curves compare the performance of persistent homology

(PH) features and Catch22 time-series features in classifying gender.

The diagonal dashed line represents the chance level (AUC = 0.5).

3 Results

3.1 Topological features enable reliable
individual identification across sessions

We first exam whether our proposed topological features

can serve as an individual signature. We test the identity

ratio (“fingerprinting effect”) between 2 days scan (See

Method). The accuracy of successful individual identification

is compared across three feature types: H0, H1, and Catch22.

Both H0 and H1 yielded high fingerprint values (0.78 and

0.72, respectively), while Catch22 produced a substantially

lower fingerprint value (0.17), suggesting that topological

features (H0 and H1) are more effective for capturing

individual-specific patterns than the time-series feature set

(Figure 2A).

These results demonstrate that even in large-scale samples with

over a thousand participants, the topological structural features

of individuals maintain high stability and discriminability across

different scan sessions, exhibiting good cross-time individual

consistency and providing a foundation for individual-level

representation and modeling.

Fingerprinting effects varied across different functional

networks, indicating network-specific differences in individual

identifiability. H0 yielded consistently higher fingerprint values

than H1 across all networks (Figure 2B). The Visual, Somatomotor,

and Dorsal Attention networks showed the highest fingerprint

values under both conditions, with H0 values around 0.52–

0.53 and H1 values ranging from 0.31 to 0.39. In contrast, the

Salience/Ventral Attention, Limbic, and Control networks showed

relatively lower fingerprint values.

3.2 Topological features outperform
temporal features in gender classification

To further assess the discriminative power of the extracted

features, we evaluated the performance of topological features

and temporal features in predicting individual gender. A logistic

regression classifier was trained on each feature type using

data from 543 female and 470 male participants. Receiver

operating characteristic (ROC) curves were computed to quantify

classification performance.

As shown in Figure 3, the topological features achieved an

AUC of 0.88, while the temporal features yielded an AUC

of 0.80. These results indicate that the topological features

capture more discriminative information related to gender

than conventional time-series features, suggesting that the non-

linear and geometrical structure encoded in topological features

provides a more informative characterization of individual

brain dynamics.
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FIGURE 4

Permutation validation of Canonical Correlation Analysis. The permutation test with 10,000 iterations was performed. Only one significant

brain-behavior covariance pattern was identified, with a correlation value (red vertical line) of 0.6451 between brain topological features and

behavioral measurements.

3.3 Topological features reveal significant
brain-behavior covariation

We identified a significant mode of covariation between

topological brain features and behavioral traits using canonical

correlation analysis (CCA), with the first canonical correlation

reaching r = 0.6451 and a permutation-based p-value of 0.0001

(Figure 4). This result confirms that the extracted topological

features carry meaningful information about inter-individual

behavioral variation.

3.3.1 Network-specific topological contributions
characterize the brain-behavior association

To further interpret this brain-behavior mode, we analyzed

the regional contributions of topological features across canonical

networks. As shown in Figure 5A, the mode was characterized by

strong positive contributions from the sensorimotor, visual, and

dorsal attention networks, while the control, default mode, and

limbic networks showed relatively lower contributions. This spatial

pattern is further visualized in Figure 5B, which presents surface

maps of ROI-level contributions for both H0 and H1 features.

This finding is consistent with prior work by Santoro et al., which

demonstrated network-specific effects in topological analyses of

brain dynamics (Santoro et al., 2024).

Although H0 and H1 landscapes exhibit broadly similar

patterns across the cortex, significant differences emerge across

specific functional networks. Notably, H0 features contribute

more strongly within the visual network, whereas H1 features

dominate in the sensorimotor and dorsal attention networks.

These differences suggest that distinct topological structures (i.e.,

components vs. loops) may underlie functional specialization in

different brain systems. Taken together, these results highlight

that persistent homology captures meaningful and functionally

organized variation in brain activity, supporting its utility for

uncovering network-level structure in brain-behavior relationships.

3.3.2 CCA mode reflects cognition and
psychopathological risk

To further interpret the behavioral dimension associated with

the first CCA mode, we examined the individual behavioral items

with the highest absolute contributions (Figure 6). Interestingly,

we observed a clear dissociation between positive and negative

contributors, revealing a meaningful latent structure. The

positively weighted behaviors were primarily associated with

cognitive functions, including measures of working memory

(ListSort_Unadj, ListSort_AgeAdj), visuospatial processing

(VSPLOT_TC), vocabulary knowledge (PicVocab_Unadj,

PicVocab_AgeAdj), personality traits (NEOFAC_A), and decision-

making performance (DDisc_AUC_200, DDisc_AUC_40K).

These findings suggest that individuals with higher topological

scores along the first CCA mode tend to exhibit higher cognitive

functioning and more adaptive personality traits.

In contrast, the negatively weighted behaviors were dominated

by items related to psychopathology and behavioral risk,

particularly those from the Adult Self-Report (ASR) and

psychosocial domains. These include elevated scores on

thought problems (ASR_Thot_Raw, ASR_Thot_Pct), rule-

breaking behavior (ASR_Rule_Raw, ASR_Rule_Pct), aggression

(AngAggr_Unadj), perceived stress (PercStress_Unadj), and

poor sleep quality (PSQI_Score), as well as history of parental

substance abuse (FamHist_Fath_DrgAlc) and recent tobacco

use. Together, these patterns indicate that the canonical axis
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FIGURE 5

The Significant brain regional CCA weight pattern. (A) The contribution of the topological features of di�erent networks to the covariance. The t-test

compared the di�erences in network contributions between H0 and H1. P < 0.05*, p < 0.01**, p < 0.005***, p < 0.0001****, ns, non-significant. (B)

Maps of H0 ROI contribution and H0 ROI contribution. The color bar represents the CCA weights.

identified by CCA reflects a behavioral gradient spanning from

cognitive strength and psychological well-being (positive end) to

externalizing symptoms, stress, and substance use risk (negative

end). This further supports the interpretability and behavioral

relevance of the topological features in capturing meaningful

individual differences.

3.4 Behavioral relevance of topological vs.
temporal features

To further investigate the relationship between topological

brain features and different domains of behavior, we conducted a

set of linear regression analyses targeting six behavioral categories

defined by the HCP dataset: Cognition, Emotion, Personality,

Psychiatric and Life Function, Sensory, and Substance Use. For

each category, the first principal component of behavioral items

was used as the target variable, and prediction performance

was quantified using the Pearson correlation coefficient

(Supplementary Table 2).

Interestingly, acrossmultiple domains—particularly Cognition,

Emotion, and Personality—the predictive performance of

topological features significantly exceeded that of the temporal

features. For example, in the fluid intelligence domain, topological

features achieved a correlation of r = 0.17 ± 0.012, compared

to r = 0.15 ± 0.011 for temporal features, although they achieve

similar correlation in total cognition (r = 0.27 vs. r = 0.28).

Similar patterns were observed for emotion (r = 0.09 vs. r = 0.00),

personality (r= 0.12 vs. r=−0.02), psychiatric and life function (r

= 0.10 vs. r = 0.07) and substance use (r = 0.20 vs. r = 0.15), with

differences reaching high statistical significance.

In contrast, for the Sensory category, catch22 features showed

slightly better predictive power (r= 0.05± 0.014) than PL features

(r= 0.04± 0.018).
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FIGURE 6

The set of behavioral measurements most strongly associated with the CCA mode of population variability. Display only the top ten behaviors

corresponding to the CCA weights.

These findings suggest that topological features derived from

persistent homology are more strongly associated with higher-

order psychological and cognitive traits, potentially reflecting

global or structured patterns in brain dynamics relevant to complex

behaviors. In contrast, low-level or externally driven behaviors,

such as sensory, may be more closely related to local or low-order

temporal features captured by traditional time-series metrics.

4 Discussion

Traditional functional connectivity analyses condense fMRI

time-series into static correlations between brain regions, but

this approach overlooks rich temporal dynamics. By analyzing

fMRI from a temporal perspective—using delay embedding to

reconstruct the trajectory of each region’s activity—we capture

information that static connectivity alone cannot (Anderson et al.,

2018). This dynamical-systems view treats the brain as an evolving

trajectory in a high-dimensional state space, allowing us to

characterize patterns like recurrent oscillations or transitions that

are invisible to static correlationmeasures. Our findings underscore

the value of this approach: the persistent homology features

extracted from time-delay embedding’s encode distinct aspects such

as cognition and personality. In essence, the temporal structure of

neural signals containsmeaningful signatures of brain function that

complement and enrich conventional connectivity analyses. This

supports a growing recognition in network neuroscience that brain

function is inherently dynamic and that temporal features (e.g.,

variability, transitions, recurrences) can illuminate individual traits

and states in ways static functional connectivity cannot.

Our results show that the proposed framework effectively

extracts meaningful and stable representations from fMRI time-

series. The derived persistent landscape (PL) features, whether from

H0 or H1, serve as reliable individual “fingerprints”, capturing

distinctive and reproducible patterns in each person’s brain

dynamics—similar to how static connectomes uniquely identify

individuals (Finn et al., 2015). These features are robust to

noise, summarizing each ROI’s trajectory across multiple scales

in a compact, information-rich form. Importantly, Topological

features also carry biological relevance: they enable accurate gender

classification from resting-state data, reaching accuracy comparable

to traditional connectivity-based methods (Zhang et al., 2018).

Unlike network-based features that rely on predefined assumptions

about inter-regional connectivity, our approach employs persistent

homology to extract topological features directly from time-series

data, enabling the discovery of meaningful individual differences

without the constraints of inter-regional assumptions. Another

strength of our approach lies in its multiscale nature and robustness

to variations in image acquisition parameters. Persistent homology

analyzes data across a continuous range of thresholds, capturing the

entire evolution of topological features—from their birth to their

death (Kumar et al., 2023).

Our study suggests that, in multivariate behavioral analyses,

higher-order topological features (H1) tend to exhibit greater

canonical weights, potentially indicating that more complex brain

topology may provide additional information for explaining
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individual differences, particularly in several specific cognition.

These H1 features, reflecting recurrent or cyclic patterns in ROI

activity, were strongly linked to a brain–behavior mode identified

via CCA, suggesting that sustained loop interactions carry richer

behavioral relevance than simple connected components (H0).

This aligns with recent findings that higher-order topological

structures, such as cycles or simplicial motifs, better capture

individual fingerprints and cognitive variance than traditional

pairwise metrics (Expert et al., 2019; Santoro et al., 2024). Our CCA

uncovered a dominant mode linking PL features (both H0 and

H1 features) to both cognitive performance and socio-emotional

traits (e.g., ASR measures), supporting the idea that brain

dynamics integrate cognitive and affective processes (Simon et al.,

2020). This interpretation finds some support in prior literature.

Saggar et al. (2018, 2022), for instance, showed that simplifying

fMRI data to a topological backbone still preserved correlations

with task performance, implying that the relevant information

for behavior was encoded in the core dynamic topology. Our

results follow a similar logic: they highlight that individuals with

different cognitive/personality profiles have measurably different

topological “signatures” in how their brain activity evolves over

time. Notably, the most behaviorally relevant topological signatures

emerged in unimodal sensory networks—especially visual and

somatomotor regions—highlighting their key role in anchoring

individual variation. While these regions are often overlooked in

favor of higher-order association networks, recent work suggests

they exhibit strong between-subject variability and may interface

with transmodal hubs to shape individual-specific cognition and

emotion (Santoro et al., 2024). Topological features alone did not

show strong predictive power for sensory in separate behavioral

prediction analyses, the CCA pattern of the cortex potentially

support a hypothesis that the dynamic structure of time series

may facilitate the integration of information across unimodal and

transmodal regions. Together, these findings underscore the value

of topological analysis in revealing how complex, recurrent brain

dynamics—especially within sensory systems—encode stable traits

of thought, feeling, and behavior.

While our framework is promising, several limitations must

be noted. Persistent homology (PH) features, such as birth and

death times, are abstract and lack direct neurophysiological

interpretation, making biological conclusions speculative without

further validation. PH also operates at a high level of abstraction—

distinct neural processes may yield similar topological signatures,

potentially masking finer details. Our use of ROI-level signals

may overlook sub-regional or frequency-specific dynamics, and

parameter choices (e.g., embedding dimension) could affect

sensitivity. Computational complexity may limit scalability

to voxel-level or long time-series data. PH features should

complement, not replace, conventional metrics, as some effects

may be better detected by traditional methods. Finally, our

findings—based on resting-state data in a specific cohort—may not

generalize across populations or datasets, and test–retest reliability

remains to be established.

In summary, we present a novel framework combining

delay embedding and persistent homology to extract topological

signatures from fMRI time-series, capturing individual-specific,

biologically meaningful, and behaviorally relevant brain dynamics.

Persistent landscape features act as stable neural fingerprints,

enable accurate group classification (e.g., gender), and uncover

a dominant brain–behavior mode linking topological features to

cognitive and emotional traits. These findings highlight the value

of topological analysis as a dynamic, multiscale complement to

traditional connectivity metrics. Future work should explore task-

based and clinical applications, improve interpretability through

modeling, and integrate topological with conventional features.

Extending analyses across spatial and temporal scales (e.g., voxel-

level or sliding-window PH)may further reveal how brain topology

evolves with state or condition. Our results advocate for broader

use of TDA in neuroimaging, offering new tools to understand and

track individual differences in brain function.
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