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Introduction: Motor imagery EEG-based action recognition is an emerging field 
arising from the intersection of brain science and information science, which has 
promising applications in the fields of neurorehabilitation and human-computer 
collaboration. However, existing methods face challenges including the low 
signal-to-noise ratio of EEG signals, inter-subject variability, and model overfitting.

Methods: We propose HA-FuseNet, an end-to-end motor imagery action 
classification network. This model integrates feature fusion and attention 
mechanisms to classify left hand, right hand, foot, and tongue movements. 
Its innovations include: (1) multi-scale dense connectivity, (2) hybrid attention 
mechanism, (3) global self-attention module, and (4) lightweight design for 
reduced computational overhead.

Results: On BCI Competition IV Dataset 2A, HA-FuseNet achieved 77.89% average 
within-subject accuracy (8.42% higher than EEGNet) and 68.53% cross-subject 
accuracy.

Conclusion: The model demonstrates robustness to spatial resolution variations 
and individual differences, effectively mitigating key challenges in motor imagery 
EEG classification.
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1 Introduction

In recent years, Brain-Computer Interface (BCI), an emerging field at the intersection of 
brain science and information science, aims to establish direct communication and control 
channels between the brain and external devices, enabling bidirectional signal transmission 
(Jorgenson et al., 2015). Among BCI paradigms, Motor Imagery (MI) based on non-invasive 
Electroencephalography (EEG) has emerged as an important research direction owing to its 
low cost, high temporal resolution, and portability, with broad application prospects in areas 
such as motor function rehabilitation, intelligent human-computer interaction, and cognitive 
science research (Naddaf, 2023).

Motor imagery is a psychological process in which an individual activates physiological 
phenomena in the relevant brain regions in the brain by imagining a specific action in the 
absence of an actual action, thus providing the possibility of motor function compensation 
and device control. However, EEG signals face many challenges in motor imagery classification 
tasks due to their low signal-to-noise ratio, non-stationarity, and individual variability (Notice 
of the Ministry of Science and Technology of the People's Republic of China, 2021). Traditional 
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methods rely on a priori knowledge in the field of neuroscience for 
manual feature design, and although the introduction of deep learning 
techniques has made some progress in automated feature extraction, 
there is still room for existing methods to improve classification 
accuracy and generalization due to the small size of the EEG dataset, 
the poor quality of the data, and the high real-time requirements (Poo 
et al., 2016).

Current EEG-based motor imagery classification methods face 
several key challenges: (1) Feature extraction often relies heavily on 
domain-specific neuroscience expertise, requiring strict frequency 
band filtering and high spatio-temporal resolution. This limits their 
adaptability for practical home-based or personalized applications; (2) 
The inherent low signal-to-noise ratio (SNR) of EEG signals and 
significant inter-subject variability result in unstable model 
performance across individuals, limiting classification accuracy to 
below-desired levels; (3) EEG datasets are typically limited in size, 
whereas deep learning models often possess a large number of 
parameters and exhibit low operational efficiency. This combination 
hinders real-time performance and impedes the widespread adoption 
of these applications (Qiu et al., 2021).

To address these challenges, we propose HA-FuseNet, an end-to-end 
motor imagery EEG classification network. HA-FuseNet enhances 
feature extraction efficacy via multi-scale dense connectivity, a hybrid 
attention mechanism, and a global self-attention module. Concurrently, 
its lightweight architecture reduces computational overhead, thereby 
improving real-time performance. Experimental results demonstrate 
that HA-FuseNet significantly outperforms mainstream benchmark 
models in both intra-subject and inter-subject classification tasks. This 
study offers a novel solution that advances the practical application of 
motor imagery-based brain-computer interface systems.

2 Related research

The rapid advancement of deep learning has led to its successful 
application in motor imagery electroencephalogram (MI-EEG) 
classification, yielding promising results. Deep neural network 
architectures, particularly Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), are widely employed for Motor 
Imagery EEG signal classification. Convolutional Neural Networks 
(CNNs), among the most prevalent deep learning architectures, excel 
at capturing local signal features and hierarchically extracting higher-
level abstract representations as network depth increases. In MI 
classification tasks, CNNs demonstrate versatility by processing both 
transformed representations (e.g., time-frequency maps, spatial-
frequency maps, spatio-temporal-spectral representations) and raw 
EEG data. Schirrmeister et al. (2017) introduced the ShallowConvNet 
and DeepConvNet architectures, which classify EEG signals without 
manual feature extraction by utilizing axial convolutional layers in 
place of traditional ones. Lawhern et al. (2018) developed EEGNet, 
incorporating deep convolution and separable convolution to establish 
a compact and generalized architecture. Building upon EEGNet, Riyad 
et al. (2021) proposed MI-EEGNet, specifically optimized for the MI 
classification task. Mane et al. (2021) introduced FBCNet, integrating 
the FBCSP algorithm concept. FBCNet filters raw EEG through 
multiple narrowband filters to derive multi-band representations of the 
signal. Zhang et al. (2021) employed a multi-branch architecture for 
multi-scale feature extraction and utilized residual connections to 

accelerate network training. To capture long-term dependencies in 
EEG signals, Song et  al. (2022) integrated the Transformer model 
(Vaswani et  al., 2017) with a CNN, processing sequences output 
directly from temporal and spatial convolutional layers. Musallam et al. 
(2021) developed a ResNet-based model (He et al., 2016) specifically 
for MI-EEG classification. Miao et al. (2023) proposed a lightweight 
attention module tailored for EEG signal decoding, enhancing the 
performance of models like ShallowConvNet and EEGNet. Hsu and 
Cheng (2023) introduced a wavelet-based time-frequency attention 
mechanism. This mechanism weights feature maps using both deep 
attention and time-frequency attention derived from spectrograms. 
Wang et al. (2023a) segmented EEG signals into two bands (4–16 Hz 
and 16–40 Hz) and proposed a cross-frequency interaction module. 
This module enhances features via element-wise addition and average 
pooling. Notably, this approach exhibits a strong dependence on 
frequency band filtering. Liu et al. (2023) integrated Squeeze-and-
Excitation (SE) modules within three parallel CNN branches, 
proposing a filtering-free approach.

Recurrent Neural Networks (RNNs) are a class of architectures 
specifically designed for sequential data processing. Characterized by 
recurrent structures with feedback connections, they accumulate 
temporal information and are particularly suited for time-dependent 
data. Common RNN variants include Long Short-Term Memory 
(LSTM) and Gated Recurrent Unit (GRU). LSTM, a prominent RNN 
variant, addresses the vanishing gradient problem inherent in 
traditional RNNs, enabling effective capture of long-term 
dependencies. While widely used in natural language processing, 
LSTM is also effective for processing EEG sequence data in MI tasks 
and extracting embedded temporal information. Pei et al. (2021) 
modeled EEG as a multiplexed tensor, fusing multi-band features via 
tensor decomposition. This approach avoids manual band filtering 
and enhances cross-subject MI classification performance. Ma et al. 
(2018) utilized sliding windows for EEG data augmentation prior to 
LSTM-based MI classification. Wang et  al. (2018) developed an 
LSTM model incorporating 1D aggregation approximation for 
MI-EEG classification. Effectively modeling long-range dependencies 
within EEG sequences is crucial for enhancing classification 
performance. Pei et al. (2025a) proposed that leveraging joint time-
frequency dependencies significantly enhances a model’s ability to 
capture complex EEG patterns. Kumar et al. (2019) introduced a 
hybrid model integrating Common Spatial Pattern (CSP) feature 
extraction, Linear Discriminant Analysis (LDA) for dimensionality 
reduction, and Support Vector Machine (SVM) classification with 
LSTM. This model achieved accuracies of 68.19 and 82.52% on the 
GigaDB (Cho et  al., 2017) and BCI Competition IV-1 datasets, 
respectively. Wang et al. (2023b) designed an LSTM-2DCNN hybrid 
model. In this model, EEG slices are first processed by the LSTM, 
followed by spatio-temporal feature extraction using 2D convolution.

Despite achieving considerable success in motor imagery (MI) 
classification tasks by leveraging the powerful feature extraction 
capabilities of deep neural networks (DNNs), existing methods face 
several key limitations in practical implementation: (1) DNNs often 
possess a large number of parameters, resulting in low operational 
efficiency, increased susceptibility to overfitting, and a reliance on data 
augmentation techniques that compound computational demands; (2) 
Due to the inherent non-stationarity and subject-specificity of EEG 
signals, the performance of many methods exhibits high inter-subject 
variability, often achieving high accuracy on some individuals but 
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significantly lower and less stable results on others; (3) Some methods 
depend on high spatial resolution (electrode density) or specific 
frequency band filtering. However, crucial EEG information is often 
distributed across a broad frequency spectrum. Consequently, strict 
band filtering can disrupt intrinsic data relationships and discard 
valuable information; (4) Furthermore, real-world EEG acquisition 
devices often lack ideal conditions, such as high spatial resolution.

To address these challenges, we propose the HA-FuseNet model. 
HA-FuseNet optimizes feature representation through feature fusion 
and attention mechanisms, while achieving efficient classification via 
lightweight design.

3 Methods

3.1 HA-FuseNet: an end-to-end 
classification network based on feature 
fusion and attention mechanisms

Multi-domain feature fusion has been established as an effective 
paradigm for enhancing EEG decoding performance. Specifically, 
fusing features from the time domain, frequency domain, and 
nonlinear dynamics domains, and selecting complementary 
information via attentional weighting, has been demonstrated to 
outperform single-domain features in EEG-based emotion recognition 
tasks (Wang et al., 2024). Building upon this paradigm, we construct 
HA-FuseNet, an end-to-end classification network leveraging feature 

fusion and attention mechanisms. The architecture of HA-FuseNet is 
illustrated in Figure  1. HA-FuseNet performs feature extraction, 
fusion, and final classification prediction utilizing two specialized 
sub-networks. These sub-networks are: (1) DIS-Net, a convolutional 
neural network (CNN) based architecture, and (2) LS-Net, based on 
a Long Short-Term Memory network (LSTM). DIS-Net is designed to 
extract local spatio-temporal features, while LS-Net captures global 
spatio-temporal dependencies and long-range contextual information. 
Therefore, fusing features from DIS-Net and LS-Net leverages their 
complementary nature: DIS-Net’s local feature representations 
synergistically combine with LS-Net’s global contextual dependencies. 
This integration effectively establishes comprehensive spatio-temporal 
relationships while utilizing fine-grained local information, leading to 
enhanced classification accuracy.

DIS-Net enhances spatio-temporal feature fusion across depth 
dimensions via inverted bottleneck layers and incorporates multi-
scale dense connectivity by integrating dense connections into the 
Inception architecture. This design concurrently exploits shallow EEG 
features and high-level semantics during multi-scale feature 
extraction, enabling more comprehensive EEG feature representation, 
and employs an svSE hybrid attention module to selectively emphasize 
salient features. The svSE module implements spatio-temporal feature 
decoupling and leverages EEG signal variance for targeted 
feature enhancement.

LS-Net captures long-term dependencies within the spatio-
temporal domain. Specifically, it utilizes LSTM to model long short-
term temporal dependencies, and incorporates the SCoT global 

FIGURE 1

HA-FuseNet architecture.
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attention module to acquire global contextual information across the 
spatio-temporal domain. The two sub-networks interact 
bidirectionally via the C2R and R2C modules, facilitating feature 
fusion along the depth dimension. Following fusion, spatial features 
are extracted using a depthwise separable convolutional layer, 
reducing computational burden. Finally, classification prediction is 
performed by a fully connected layer. Collectively, HA-FuseNet 
enables more comprehensive extraction of discriminative features 
from MI-EEG signals, leading to improved classification performance.

3.2 DIS-Net network

DIS-Net first employs inverted bottleneck layers to expand 
receptive fields depthwise while facilitating temporal feature fusion. 
Second, two multi-scale dense connectivity modules extract temporal 
characteristics, where branch-specific kernel sizes are adapted to the 
EEG sampling frequency for scale-specific temporal/frequency 
feature extraction. These modules fuse shallow and deep features 
depthwise, integrating both low-level details and high-level 
semantics. Third, a hybrid svSE attention module follows temporal/
spatial convolutions to dually recalibrate feature importance, 
mitigating interference from redundant information and noise to 
enhance MI-EEG classification accuracy. Fourth, spatial features are 
extracted via axial depthwise separable convolutional layers. Finally, 
predictions are generated through pooling, flattening, and 
Softmax operations.

The svSE (Separate Variance-Informed Spatial and Channel 
Squeeze-and-Excitation) module is an enhancement of the scSE 
(Spatial and Channel Squeeze-and-Excitation) module. The scSE 
module integrates a channel attention mechanism with a spatial 
attention mechanism, building upon SENet by introducing two 
sub-modules: the Channel Squeeze-and-Excitation (cSE) module and 
the Spatial Squeeze-and-Excitation (sSE) module. In the scSE module, 
these sub-modules process the input features in parallel, apply spatial 

and channel-wise weighting respectively, and fuse the resulting feature 
maps. The proposed svSE module is a plug-and-play attention 
mechanism distinctly designed for MI-EEG classification tasks. It 
enhances characterization of time-varying EEG features by 
incorporating variance information, adapts to the low spatio-temporal 
correlation of EEG signals through axial spatio-temporal attention, 
and reduces computational overhead while emphasizing 
discriminative features across diverse data distributions (Pei et al., 
2025b). The structure is shown in Figure 2.

For the cSE module, global max pooling is used in place of global 
average pooling to highlight salient features and generate the channel 
weight map × ×∈ 1 1

ctt DA R . Regarding the sSE module, we propose two 
improvements; the weights obtained from both methods are combined 
to produce the final output.

 1. For input × ×∈ D C TX R , global mean pooling and global 
variance computation operations in the depth dimension are 
used instead of the compression operation in the original 
module to obtain × ×∈ 2

pool
C TX R . Subsequently, the feature 

maps are aggregated in the depth dimension by 1 × 1 
convolution, and the resulting weight map × ×∈ 1

vtt C TA R is 
obtained to better characterize the temporal variability of the 
EEG signal;

 2. Considering the low correlation of spatio-temporal weights in 
the EEG signal, features are extracted in two dimensions to 
obtain the axial attention. For input × ×∈ D C TX R , in the spatial 
dimension, first a deep compression operation using 1 × 1 
convolution is performed to obtain × ×∈ 1

sf
C TX R .followed by 

average pooling and maximum pooling on the temporal 
dimension to obtain two feature maps to obtain × ×∈ 2 1

spool
CX R .  

and fusion of these two feature maps by 1 × 1 convolution to 
obtain × ×∈ 1 1

s
CX R . For the temporal dimension, a convolution 

operation on the spatial dimension is performed in order to 
obtain the temporal weight × ×∈ 1 1

t
TX R . Finally, the spatial 

FIGURE 2

svSE structure.

https://doi.org/10.3389/fnhum.2025.1611229
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fnhum.2025.1611229

Frontiers in Human Neuroscience 05 frontiersin.org

weights and temporal weights are multiplied by Kronecker 
product (Kronecker) to recover the dimensionality and obtain 
the final weight map × ×∈ 1

stt C TA R .

where D denotes the input depth, C the channel dimension and 
T the time dimension. The Softmax activation function is adopted in 
place of the Sigmoid function to better leverage global context. The 
complete formulation of the svSE module is given in Equation (1).

 

( )
( )

= ⊕
= ⊗
= ⊗

= ⊕

vs v s

1 vs

2 c

1 2

tt tt tt
xpand tt
xpand tt

svSE

A A A
X E A X
X E A X
X X X  

(1)

Where ⊕ denotes element-wise summation, ⊗ denotes element-
wise multiplication, and svSEX  is the weighted output.

3.3 LS-Net network

The network architecture combining LSTM with SCoT, shown in 
Figure 3, is termed LS-Net (LSTM-SCoT Net).

The input of LS-Net is a tensor ×∈ C TX R , where C represents the 
number of channels (features per time sample) and T represents the 
time sequence length (number of temporal sampling points). During 
processing, the LSTM sequentially processes each time point in the 
input sequence, and the output from each LSTM layer is a tensor 

×∈ H TY R , where H is the hidden state dimension (size). After 
processing through each Layer, Y is computed by the SCoT module for 
global spatio-temporal self-attention. Although H originates from the 
LSTM’s hidden state dimension, within the SCoT module, it is treated 
as a channel dimension. This processing integrates the features derived 
from the LSTM output, enhancing the network’s capacity to capture 
global spatio-temporal dependencies within the input EEG signal.

While Long Short-Term Memory (LSTM) networks can capture 
long-term dependencies in sequential data to some extent, EEG 
signals possess global spatial characteristics as well as long-range 
temporal dependencies. This characteristic makes LSTM insufficient 
for fully mining and integrating dependency information across the 
global spatio-temporal domain. Therefore, building upon 
improvements derived from two global self-attention mechanisms 
Non-local (Wang et al., 2018) and Contextual Transformer (CoT) 
(Li et al., 2022), this work proposes the SCoT module, specifically 
designed to address the characteristics of EEG signals. It aims to 
more comprehensively capture long-term dependencies within the 
spatio-temporal domain, thereby enhancing the model’s global 
modeling capability.

The SCoT attention module adopts a step-by-step strategy to 
compute global self-attention across the spatio-temporal domain. For 
spatial information, characterized by weak local correlation and 
limited data size, the Non-local module is adapted for spatial self-
attention computation. Conversely, for temporal information 
exhibiting strong local correlation and large data size, computation of 
temporal self-attention is enhanced using Contextual Transformer 
(CoT). The overall structure of the SCoT module is illustrated in 
Figure 4.

SCoT computes the global spatio-temporal attention of the EEG 
signal in two processes. First, the spatial self-attention in the spatial 
domain is computed, and after the inputs are weighted using the spatial 
self-attention, the spatio-temporal domain self-attention is computed 
based on the weighted data. The spatial self-attention can allocate more 
attention to the important channels and highlight the relative importance 
of different channels in the case of weak local correlation. The spatio-
temporal domain self-attention leverages the local correlation within the 
time series data and the spatial feature information that has been 
enhanced by the spatial self-attention weighting, so as to capture the 
global spatio-temporal dependence in the EEG signal more 
comprehensively and precisely, while also calibrating the attention 
obtained in the previous step. Additionally, this two-stage computation 

FIGURE 3

LS-Net structure.
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helps reduce computational complexity. The overall process of calculating 
the attention in the SCoT module is shown in Equation (2).

 ( ) ( )( ) × ×= ∈ 1o , C T
st sSC T X Att Att X X R  (2)

where X is the EEG signal input, C denotes the number of 
channels, T signifies the number of time steps, Atts is the spatial self-
attention module, and Attst is the spatio-temporal self-
attention module.

Non-local is a classical model that applies self-attention to 
computer vision, capturing dependencies between any two positions 
in feature maps. Its structure is shown in Figure  5a. For input 

× ×∈ C H WX R , the number of channels is first compressed from C to 
C
2  by three ×1 1 convolutions, resulting in three feature maps φθ ⊥X X  
and gX representing the query, key, and value matrices, respectively. 
Subsequently, φθ ⊥ ⊥ gX X X are flattened, and the similarity 
matrices of θX  and φX are computed by the dot-product operation S
. The matrices represent the associations between the positions in the 
input feature maps. Next, the Softmax function is used to normalize 
the similarity matrix. S so that it is transformed into a probability 
distribution and multiplied with the value matrix gX  to obtain the 

result matrix 
× ×

∈
C H W
2Y R . Finally, the dimension of Y is recovered 

to be the same as that of X by ×1 1 convolution to obtain the weighted 
result by element-by-element summation. Non-local captures global 
dependencies through direct computation of long-range interactions, 
but incurs high computational costs with large-scale data.

CoT considers the problem that Non-local ignores the neighboring 
key context information and proposes a way to integrate the context 
information mining capability into the self-attention mechanism, whose 
structure is shown in Figure 5b. For input × ×∈ C H WX R , CoT primarily 
involves obtaining the static context information of the feature map using 
×3 3 convolution as the key matrix K. Meanwhile, the query matrix Q is 

directly obtained by ×1 1 convolution to the value matrix V , and then K 
and Q are aggregated in depth dimension and the attention weight map 
A is obtained by two consecutive ×1 1 convolution, and the feature map 
is obtained by the multiplication of the attention weight map A and the 
value matrix V  to the dynamic context information. Finally, the static 
and dynamic context features are fused.

3.4 Improved lightweight network based 
on GhostNet

To optimize real-time performance of HA-FuseNet, this paper 
enhances the Ghost module and constructs the SG module 
(Separable Ghost Module) using depthwise separable convolution. 
As shown in Figure  6, the SG module strengthens feature map 
interactions through two convolutional layers (depthwise and 
pointwise convolutions). The dotted box indicates the replacement 
for the original convolutional layer, where Din denotes input 
channels, Dout denotes output channels, and ratio is the 
compression hyperparameter.

In the SG module, the number of input feature maps is 
Dout × ratio, and the number of output feature maps is Dout - ratio × 
Dout to maintain consistent output channel dimensions. The 
convolution kernel size is determined based on sampling frequency 
characteristics. For clarity, taking the temporal feature extraction 
convolution as an example, its kernel size is set to 1 × 25. For the 
BCI Competition IV Dataset 2A sampled at 250 Hz, this 
corresponds to a 100-millisecond temporal window for feature 
extraction. In the lightweight convolutional layer: (1) Features are 
first processed by a 1 × 25 depthwise separable convolution without 
altering channel count; (2) After batch normalization, features 
interact via a 1 × 1 pointwise convolution that modifies channel 
dimensions; (3) Finally processed through batch normalization 
with GELU activation.

The number of input feature maps for the lightweight 
transformed convolutional layer is Dout × ratio and the number of 
output feature maps is Dout – ratio × Dout to ensure that the number 
of output feature maps is unbiased. The number of output feature 
maps passed directly from the standard convolution is Dout × ratio, 
and all feature maps are aggregated in the depth dimension to 
obtain the final output.

4 Model training and evaluation

4.1 Experimental equipment

The proposed HA-FuseNet network was trained on a laboratory 
server, and the software/hardware environment used is shown in  
Table 1.

FIGURE 4

SCoT structure.
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4.2 Dataset description

Several public EEG datasets exist for motor imagery research. 
We primarily utilized BCI Competition IV Dataset 2A (Brunner et al., 
2008) for model training and evaluation. This dataset contains motor 
imagery EEG (MI-EEG) recordings from nine subjects, comprising four 
motor imagery tasks: left hand, right hand, feet, and tongue movements.

Each subject completed two sessions recorded on different dates, 
designated, respectively, as training set (T) and test set (E). Data were 
stored in GDF format, with each subject having two files (e.g., Subject 
1 has A01T.gdf and A01E.gdf). The training set file (A01T.gdf) 
includes annotation labels, while the test set file (A01E.gdf) requires 
separate label information provided in the corresponding A01E.
mat file.

4.3 Data pre-processing

EEG signals are characterized by low signal-to-noise ratio, 
non-stationarity, and spatial variability, with typically limited sample 
sizes. Although preprocessing often benefits classification tasks, this 
study develops an end-to-end network requiring minimal 
preprocessing. The applied preprocessing includes.

 (1) Data extraction and slicing

The raw MI-EEG signals are stored in .gdf format files. Besides 
target EEG signals, these files contain electrooculography (EOG) 
signals, data gaps (represented as missing values), and non-task-related 
events. Consequently, specialized extraction procedures are required.

FIGURE 5

Two types of global self-attention. (a) Non-local structure. (b) CoT structure.

FIGURE 6

SG network structure diagram.
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First, electrooculography (EOG) channels were excluded, 
retaining only electroencephalography (EEG) channels. For 
missing values (encoded as NaN) marking run intervals, channel-
wise mean imputation was applied to ensure data continuity 
and integrity;

Second, events directly related to the motor imagery task were 
screened and extracted, and the relevant time periods were sliced. For 
the BCI Competition IV Dataset 2A dataset, the directly related events 
were both 4-class and 2-class motor imagery task events, The start of 
the task was marked by a cue signal (Cue). We extracted the data 
segment from the 1st to the 4th second after the appearance of the Cue 
(corresponding to the 3rd to 6th second of the trial cycle) as the EEG 
signal corresponding to the motor imagery task duration for 
subsequent analysis. Motor imagery-related EEG activity (e.g., ERDs/
ERSs of Mu/Beta rhythms) usually appears significantly only after a 
short delay after task onset. The choice of t = 3 s onset circumvents the 
visual evoked artifacts at the moment of Cue appearance and ensures 
that the extracted signals more purely reflect the motor imagery itself. 
Figure 7 shows a plot of ERD phenomena for right-and left-handed 
motor imagery, showing that ERD phenomena at the C3/C4 electrodes 
gradually increased after imagery onset (Blankertz et al., 2010).

 (2) Normalization

The purpose of normalization is to standardize feature scaling, 
eliminating adverse effects caused by anomalous samples while 
improving model training efficiency and stability. Z-score 
standardization and min-max normalization are classic algorithms in 
EEG signal preprocessing.

Z-score standardized data follows a standard normal distribution. 
The operation is formalized in Equation (3).

 
µ

σ
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Where x is the original data, µdenotes the mean value of x, and σ
denotes the standard deviation of x.

The operation process of the maximum-minimum normalization 
is shown in Equation (4), which is a linear transformation operation 

that maps the data to the interval [0, 1]. where X represents a set of 
channel data.
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Comparative analysis shows that Z-score, based on mean and 
standard deviation, is insensitive to outliers. Although transient noise 
or artifacts (e.g., electromyographic interference) may be present in 
the EEG signal, the linear transformation of Z-score preserves the 
overall distributional properties of the data. Maximum-minimum 
normalization relies on maximum and minimum values. However, if 
extreme values exist in the signal (e.g., transient high amplitude due 
to poor electrode contact), the normalized data will be compressed to 
a very small range, resulting in distorted information. Therefore, to 
preserve the characteristics of the EEG signal as much as possible, 
we employed the Z-Score method for EEG signal normalization to 
improve the speed and stability of model training.

4.4 Evaluation metrics

 (1) Evaluation metrics

The study mainly uses Accuracy (Acc), Kappa Consistency 
Coefficient (Kappa), and Standard Deviation (SD) as the evaluation 
metrics of the model. Among them, Accuracy, a commonly used 
evaluation metric in classification tasks, is used to measure the 
proportion of model predictions that match the true labels, which is 
calculated as the proportion of samples that are correctly classified out of 
the total samples.

Kappa consistency coefficient is used to measure the degree of 
consistency between the model prediction results and the real labels, 
which is especially effective in the case of class imbalance or random 
guessing with some effect. The Kappa coefficient is computed based 
on the confusion matrix, and its computational formula is shown in 
Equation (5).
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Where P0 is the Observed Proportion of Agreement, i.e., the 
accuracy rate, and Pe is the Expected Proportion of Agreement by 
Chance. Assuming the total number of samples is N, the total number 
of categories is c, the number of real samples for the iᵗʰ action class is 
xi, and the number of predicted samples is Pi, the formula for Pe is 
shown in Equation (6).
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The Kappa coefficient ranges from −1 to 1, usually greater than 0. 
The larger the Kappa value, the higher the degree of consistency, and 
when the Kappa value is located in the interval of [0.61, 0.80], it means 
that the prediction has a high degree of consistency with the real one.

TABLE 1 Experimental environment.

Software/hardware name Model/version

OS Ubuntu 20.04.6 LTS

GPU NVIDIA GeForce RTX 3090

CPU Intel(R) Xeon(R) Gold 5218R CPU @ 

2.10GHz

RAM 128G

GPU Memory 24G

CUDA 11.8

Python 3.11.5

Pytorch 2.0.1

MNE 1.6.0

Numpy 1.26.3
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The standard deviation is the standard deviation of the accuracy 
rate, which is used to measure the stability ability of the model 
between different subjects, and the smaller its value, indicating that 
the accuracy rate of different subjects is more similar, and the 
performance of the model between different subjects is more stable. 
The standard deviation of the accuracy rate is calculated as shown in 
Equation (7).
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N
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Where N denotes the number of subjects, xi denotes the accuracy 
rate of the iᵗʰ subject, and x  is the average of the accuracy rates of 
N subjects.

 (2) Loss function

The categorical cross-entropy loss function is employed, which 
quantifies the discrepancy between the predicted probability 
distribution and the true label distribution. Minimizing this loss 
encourages the predicted distribution to converge toward the target 
distribution. The cross-entropy loss function is defined as 
Equation (8):
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Where C represents the number of classes, yi denotes the true class 
label, and ŷi represents the predicted probability for class i. This loss 
function penalizes the model’s predictions based on the true labels, 
thereby driving the model to learn more accurate predictions.

 (3) Training parameters

The Adam optimization algorithm was employed. For the BCI 
Competition IV Dataset 2A, the batch size was set to 32. The 
experiments were run for 300 epochs. The initial learning rate was set 
to 1 × 10−3 and the weight decay coefficient was set to 5 × 10−3.

5 Results and analysis

This paper presents a comprehensive experimental evaluation of 
the proposed HA-FuseNet model on the BCI Competition IV Dataset 
2A dataset, including within-subject (Subject Dependent) and 
between-subject (Subject Independent) comparison experiments. The 
effectiveness and cross-subject generalization ability of the HA-FuseNet 
model in motor imagery electroencephalography (MI-EEG) 
classification tasks were verified by comparing its performance with 
that of mainstream models. In addition, a lightweight version of 
HA-FuseNet [HA-FuseNet (SG)] is experimentally evaluated in this 
paper to explore its trade-off between efficiency and performance. All 
experimental results of the baseline model in this paper are based on 
the replication of the official open source code on the BCI Competition 
IV Dataset 2A dataset.

5.1 Ablation experiments

To explore the effectiveness of each proposed module and study 
the influence of different modules on HA-FuseNet’s classification 
performance, the thesis conducts ablation experiments. Starting from 
the baseline model and following the order of model construction, the 
study experimentally verifies the impact of incrementally adding new 
modules. The paper defines models with varying structures as follows:

 (1) Inception: The base Inception model with three Inception 
modules modified with convolutional kernels for the 
characteristics of EEG signals.

 (2) Base-Inception: Inception + Bottleneck, i.e., BaseNet proposed 
in the thesis. This introduces a reversed bottleneck layer on top 
of the Inception model and adjusts the number of branches, 
activation functions, etc. The convolutional kernel size is also 
adapted for EEG signal characteristics.

 (3) BI+Dense: Inception + Bottleneck + Dense Block, i.e., DI-Net 
proposed in the paper. This introduces a dense connection 
module on the basis of BaseNet.

 (4) DI + svSE: Inception + Bottleneck + Dense Block + svSE, i.e., 
DIS-Net proposed in the paper. This introduces an svSE hybrid 
attention module on the basis of DI-Net.

FIGURE 7

ERD phenomena in left-and right-handed motor imagery.
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 (5) DIS + LSTM: Inception + Bottleneck + Dense Block + svSE + 
LSTM. This introduces an LSTM network on the basis of 
DIS-Net.

 (6) DIS + LSTM+SCoT: Inception + Bottleneck + Dense Block + 
svSE + LSTM + SCoT, i.e., HA-FuseNet (combining DIS-Net 
and LS-Net) as proposed in the paper. This introduces an SCoT 
global self-attention module on top of DIS + LSTM.

Ablation experiments were conducted on the BCI IV 2a dataset, 
with the results presented in Table 2. The reported accuracy and 
Kappa coefficient represent the average performance across nine 
participants. The experimental data show that the architecture 
combining Inception, Bottleneck, Dense Block, svSE, LSTM, and 
SCoT–which constitutes the final model proposed in this paper, 
HA-FuseNet–achieved the best performance on the MI-EEG 
classification task. It attained an accuracy of 77.89% and a Kappa 
coefficient of 0.70, with a standard deviation of 10.22. These results 
demonstrate that HA-FuseNet achieved the best classification 
performance across different participants, exhibiting relatively low 
variability in accuracy between participants and indicating robust 
generalization capabilities.

As the model gradually increased in complexity, both accuracy 
and the Kappa coefficient showed an upward trend, while the standard 
deviation exhibited a downward trend. This demonstrates the 
effectiveness of each module. Furthermore, BaseNet, obtained by 
making task-specific refinements to Inception for the MI-EEG 
classification task, yielded the most significant improvement. This was 
followed, in order, by the multi-scale dense connection module, the 
svSE module, the SCoT module, and the LSTM module. In terms of 
contribution level to the final model, these results suggest that 
convolutional neural networks (CNNs) may hold a greater advantage 
over recurrent neural networks (RNNs) for MI-EEG classification tasks.

The experiments have demonstrated the effectiveness of the 
individual modules proposed in the paper. These modules collectively 
form the final model, HA-FuseNet, achieving an average accuracy of 
77.89% and an average Kappa coefficient of 0.70 on the BCI IV 2a 
dataset. The full model was used in subsequent experiments.

5.2 Intra-subject comparison experiments

The BCI IV 2A dataset has a total of nine subjects, each with an 
independent training and test set, and the intra-subject comparison 
experiment means that a model was trained for each subject using the 

corresponding training and test sets for each subject. Table 3 shows 
the accuracy rates of different models for within-subject experiments, 
with the last column being the mean of the accuracy rates for the nine 
subjects, and Table 4 demonstrates the Kappa consistency coefficients 
and standard deviation (SD) for each model, where the Kappa 
consistency coefficients are the mean of the nine subjects, and the 
standard deviation is the standard deviation of the accuracy rates. To 
present the data in a more intuitive way, the optimal values in the 
table are marked with bolding, and the models proposed in the paper 
are marked with*.

Experimental result analysis:

 (1) Among the benchmark models, ShallowConvNet achieves the 
highest average accuracy and Kappa value. However, its 
accuracy standard deviation reaches 12.35, indicating significant 
performance variation across subjects and relative imbalance;

 (2) EEGNet achieves the optimal standard deviation of the 
accuracy rate, indicating that the difference in the accuracy 
rate between different subjects is small and the performance 
is relatively balanced, but the average accuracy rate and 
Kappa value are 69.21% and 0.60, respectively, which are 
lower than those of ShallowConvNet, DeepConvNet and 
LMDA-Net;

 (3) LMDA-Net’s average accuracy and Kappa value are only lower 
than those of ShallowConvNet and DeepConvNet, but it 
exhibits the highest standard deviation of accuracy, indicating 
the most pronounced performance difference across subjects. 
As LMDA-Net builds upon improvements to EEGNet and 
ShallowConvNet, this variability may primarily stem from its 
proposed local channel attention and deep attention 
mechanisms, which exhibit uneven effectiveness in capturing 
features across different subjects;

Comparing the experimental results of the benchmark models 
with the proposed model, HA-FuseNet achieves the highest average 
accuracy and Kappa value and the highest accuracy on subjects 1 
and 6, and also achieves good performance for subjects 2 and 4, 
where the average performance of the other models is poor. 
Meanwhile, the standard deviation of the accuracy of HA-FuseNet 
is lower than that of ShallowConvNet with sub-optimal average 
accuracy and kappa values; HA-FuseNet(SG), utilizing the SG 
lightweight convolutional module, achieves accuracy and Kappa 
values second only to those of ShallowConvNet, and the standard 
deviation of its accuracy is also lower than that of Compared with 
HA-FuseNet, the average accuracy of HA-FuseNet(SG) only 
decreases by about 0.66 percentage points.

The experiments demonstrate the effectiveness of HA-FuseNet 
and HA-FuseNet(SG) in achieving good performance when using 
small-scale datasets. In addition, the analysis of the experimental 
results for each model corroborates the theory of previous studies 
about the excellent performance of shallow networks in MI-EEG 
classification tasks with small-scale datasets, while the multi-scale 
dense connectivity enables HA-FuseNet to utilize both the low-level 
features and the high-level semantic information at multiple scales 
simultaneously, and at the same time, through global self-attention 
mechanism and local hybrid attention mechanism for 
multidimensional weighting, and the extraction of long and short-
term dependencies in the time dimension by using LSTM, the 

TABLE 2 Comparison of HA-FuseNet ablation experiment results by 
module.

Model ACC (%) Kappa SD

Inception 67.40 0.56 16.15

Base-Inception 72.35 0.63 12.27

BI+Dense 74.42 0.65 11.92

DI + svSE 76.16 0.68 11.33

DIS + LSTM 76.78 0.69 10.72

DIS + LSTM+SCoT* 77.89 0.70 10.22

The models proposed in the paper are marked with *. The optimal values in the table are 
marked with bolding.
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combination achieves better performance than the benchmark 
model. Although F1 values are not shown for each category, the 
accuracy improvement for Subject 6 in the intra-subject experiment 
in Table 3 is significant (HA-FuseNet: 65.97% vs. ShallowConvNet: 
55.90%), suggesting that the model has increased its ability to 
recognize low divisibility categories (e.g., foot movements).

5.3 Inter-subject comparison experiments

In the inter-subject comparison experiment, for subject i, the 
training set of all other subjects were combined to form the training 
set for subject i, as defined in Equation (9), where Trainj denotes the 
training set of subject j. The test set of subject i is still used as the 
test set.

 
( ) ( )= ∈ … ∈ … ≠∑

9
r , 1,2, ,9 , 1,2, ,9 ,i j

j
T ain Train i j j i

 
(9)

Table 5 demonstrates the comparison of the accuracy results of the 
inter-subject experiments performed by each model. For example, 
[Shallow ConvNet, 1] in the table indicates the accuracy achieved by 
ShallowConvNet when trained on the combined training sets of the 
other eight subjects and tested on the test set of subject 1. Table 6 
demonstrates the comparison of the Kappa coefficient and standard 
deviation results for the inter-subject experiments. Comparing the 

experimental data of the benchmark model, the following results can 
be found:

Experimental result analysis:

 (1) Among the benchmark models, DeepConvNet achieves the 
highest average accuracy and Kappa coefficient, with an accuracy 
standard deviation of 9.54. It outperformed ShallowConvNet in 
the inter-subject experiments, potentially because DeepConvNet 
learns more abstract and high-level features, enabling better 
adaptation to data differences between subjects;

 (2) EEGNet achieved the optimal standard deviation of accuracy, 
but the average accuracy and Kappa value were 63.23% and 
0.51, which were only better than EEGConformer, which 
indicated that EEGNet had better stability, but the accuracy 
and consistency of classification were poor;

 (3) The average performance of all benchmark models was poor 
in the cross-subject experiments of subjects 2, 4, and 6. 
Comparing the experimental data of the benchmark models 
and the model proposed in the paper, it can be found that the 
HA-FuseNet proposed in the paper achieves the optimal 
average accuracy and Kappa coefficient, and the average 
accuracy is improved by about 0.63% compared with 
DeepConvNet, and the standard deviation of the accuracy of 
HA-FuseNet reaches 11.06, which is only higher than that of 
DeepConvNet by about In addition, the proposed 
HA-FuseNet outperforms DeepConvNet on subjects 1, 2, 3, 
7, 8, and 9, and underperforms DeepConvNet only on 

TABLE 3 Comparison of intra-subject experimental results between HA-FuseNet and the benchmark model on the 2A dataset (Acc %).

Model 1 2 3 4 5 6 7 8 9 Average 
value

Shallow ConvNet 84.03 61.46 94.10 70.83 73.26 55.90 85.76 89.24 85.42 77.78

Deep ConvNet 83.68 65.28 90.63 69.44 76.04 64.58 89.93 79.51 73.61 76.97

EEG Net 78.13 63.54 82.30 60.42 71.88 59.03 72.92 68.06 66.67 69.21

EEG Inception 71.18 48.26 82.29 55.90 64.58 52.43 75.00 85.41 73.61 67.63

EEG Conformer 67.71 55.21 84.72 53.82 75.69 53.47 69.10 71.53 58.68 65.55

LMDA-Net 86.46 60.46 90.97 59.02 69.10 55.90 90.28 81.94 76.04 74.50

HA-FuseNet* 87.67 62.85 92.36 67.54 75.00 65.97 89.58 81.60 78.47 77.89

HA-FuseNet(SG)* 86.81 63.89 92.01 65.54 71.88 62.85 91.67 83.68 74.95 77.23

The models proposed in the paper are marked with *. The optimal values in the table are marked with bolding.

TABLE 4 Comparison of intra-subject experimental results between HA-FuseNet and the benchmark model on the 2A dataset (Kappa/SD).

Model Kappa SD

Shallow ConvNet (Schirrmeister et al., 2017) 0.69 12.35

Deep ConvNet (Schirrmeister et al., 2017) 0.69 9.22

EEG Net (Lawhern et al., 2018) 0.60 7.40

EEG Inception (Zhang et al., 2021) 0.56 12.41

EEG Conformer (Song et al., 2022) 0.53 10.33

LMDA-Net (Miao et al., 2023) 0.65 13.01

HA-FuseNet* 0.70 10.22

HA-FuseNet(SG)* 0.69 11.14

The models proposed in the paper are marked with *. The optimal values in the table are marked with bolding.
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subjects 4, 5, and 6; however, it should be  noted that 
HA-FuseNet achieves a more balanced classification accuracy 
on subjects 2, 4, and 6, which have a poorer average 
performance of the benchmark model. However, it should 
be  noted that HA-FuseNet achieves a more balanced 
classification accuracy on subjects 2, 4, and 6, where the 
average performance of the benchmark model is worse than 
that of DeepConvNet, and HA-FuseNet achieves a more 
balanced classification accuracy, which is lower than that of 
EEGNet on subject 2, DeepConvNet, and EEGNet on subject 
4. The experiments confirm that the proposed HA-FuseNet 
meets the research objectives, as it has a good classification 
performance and cross-subject generalization ability on the 
22-channel BCI IV 2A dataset. The experiments confirm that 
the proposed HA-FuseNet has good classification 
performance and cross-subject generalization ability on the 
BCI IV 2A dataset with 22 channels, which can satisfy the 
research objectives of the paper.

6 Conclusion

This paper proposes an end-to-end classification model, 
HA-FuseNet, based on feature fusion and attention mechanisms to 
address the problems of low signal-to-noise ratio, subject-specificity, 
and overfitting of small-sample data in the classification task of 
motor imagery electroencephalography (MI-EEG), which effectively 
fuses shallow detailed features with deeper semantic information. 

This is achieved through convolutional kernels adapted to the 
sampling frequency and the incorporation of a dense connectivity 
mechanism, enhancing the model’s ability to characterize the 
complex time-frequency characteristics of EEG signals. Information 
to improve the model’s ability to characterize the complex time-
frequency characteristics of EEG signals. The proposed svSE 
module introduces variance pooling and axial spatio-temporal 
attention separation to enhance the dynamic perception of 
important features within non-stationary EEG signals. By 
combining this with the global context modeling capability of the 
SCoT module, spatio-temporal dependencies are further optimized. 
By utilizing axial convolution alongside the improved SG 
lightweight convolution module, classification accuracy is 
maintained while reducing the number of parameters. Experiments 
on the BCI Competition IV Dataset 2A dataset show that 
HA-FuseNet achieves an average accuracy of 77.89% in intra-
subject experiments, which is an improvement of about 8.42% 
compared with mainstream models such as EEGNet; the average 
accuracy in inter-subject experiments is 68.53%, significantly 
outperforming the comparison methods.

Despite the significant progress of HA-FuseNet in the MI-EEG 
classification task, there is still room for improvement. In the 
future, multi-modal data such as near-infrared spectroscopy 
(NIRS) or electromyography (EMG) can be  combined to use 
complementary information to enhance the fine-motion 
classification ability. Transfer learning or domain adaptation 
methods can be further investigated to reduce the impact of data 
distribution differences between subjects on model performance. 

TABLE 5 Comparison of inter-subject experimental results between HA-FuseNet and the baseline model on the 2A dataset (Acc %).

Model 1 2 3 4 5 6 7 8 9 Average 
value

Shallow 

ConvNet
76.39 47.92 88.54 55.56 57.64 55.21 74.65 81.25 72.92 67.79

Deep ConvNet 71.53 50.69 84.72 61.46 69.10 59.03 75.35 74.31 64.93 67.90

EEG Net 68.75 56.60 68.75 61.11 68.75 58.68 73.61 56.60 56.25 63.23

EEG Inception 74.31 51.04 81.60 52.43 56.25 60.42 71.18 73.96 74.31 66.17

EEG Conformer 52.78 26.04 26.04 50.00 64.24 25.00 26.74 29.51 27.78 36.46

LMDA-Net 72.22 47.22 83.68 55.90 51.74 48.26 71.88 76.04 66.67 63.73

HA-FuseNet* 76.13 52.79 86.89 57.13 60.42 58.49 76.74 78.13 70.06 68.53

The models proposed in the paper are marked with *. The optimal values in the  table are marked with bolding.

TABLE 6 Comparison of inter-subject experimental results between HA-FuseNet and the benchmark model on the 2A dataset (Kappa/SD).

Model Kappa SD

Shallow ConvNet (Schirrmeister et al., 2017) 0.57 13.19

Deep ConvNet (Schirrmeister et al., 2017) 0.57 9.54

EEG Net (Lawhern et al., 2018) 0.51 6.33

EEG Inception (Zhang et al., 2021) 0.55 10.57

EEG Conformer (Song et al., 2022) 0.15 14.09

LMDA Net (Miao et al., 2023) 0.52 12.53

HA FuseNet* 0.57 11.06

The models proposed in the paper are marked with *. The optimal values in the  table are marked with bolding.
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Aiming at the real-time demand of the brain-computer interface, 
explore model compression and hardware acceleration techniques 
to improve online classification efficiency. Validate the 
effectiveness of the model in practical scenarios, such as 
neurorehabilitation and motor function compensation, and 
promote deeper integration of theory and application. The 
framework proposed in this paper provides new ideas for motor 
imagery EEG classification, and future research will focus on the 
above directions to deepen the model performance and promote 
the practical development of brain-computer interface technology.
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