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Robot-assisted surgery (RAS) enhances surgical precision and extends surgeons’

capabilities. However, its effects on the cognitive and physical states of

surgeons remain poorly understood. It is essential to investigate the workload

and physiological stress surgeons experience during RAS. This case study

employs a neuroergonomic approach to explore how these factors relate

to task performance. A single expert surgeon performed simulated surgical

tasks under systematically varied conditions (noise level, surgical posture

and task type) to elicit variations in stress and workload. During the tasks,

multiple physiological signals were recorded, including electroencephalography

(EEG), electromyography (EMG), heart rate (HR), and electrodermal activity

(EDA). Subjective workload was also assessed using the NASA-TLX and

SURG-TLX. Several classification models, including CatBoost, random forest,

logistic regression, and support vector machines, were trained to predict task

performance. Among them, CatBoost demonstrated the highest predictive

accuracy (79.5%) and achieved an area under the curve (AUC) of 0.807.

The model interpretation was conducted using SHapley Additive exPlanations

(SHAP). The analysis revealed that subjective workload, mean HR, and muscle

activation were the most influential predictors. EEG-related features contributed

variably across conditions. This study shows that integrating subjective

assessments with physiological measures can effectively predict surgical task

performance under stress.

KEYWORDS
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1 Introduction

Robot-assisted surgery (RAS) enhances instrument flexibility,
stability, and surgical field visualization, helping to overcome the
limitations of conventional laparoscopy (Chuchulo and Ali, 2023).
However, it remains unclear how physiological stress and subjective
workload during RAS relate to task performance under different
stressors. Clarifying this relationship may enable the assessment,
prediction, and improvement of surgical performance during RAS.
Unlike conventional laparoscopy, RAS requires the surgeon to
operate via a console. Although the console is ergonomically
designed, prolonged operating in a static posture can lead to
muscle fatigue and discomfort. As a result, RAS may simply shift
postural stress rather than alleviate it (Catchpole et al., 2019).
Additionally, the lack of non-verbal cues in communication with
the surgical team may increase surgeons’ sensitivity to operating
room (OR) noise, further elevating cognitive workload (Way et al.,
2013; Tiferes et al., 2019). Both poor posture and high OR noise
levels have been associated with increased workload and stress,
potentially impair surgeons’ performance, raise the risk of errors,
and compromise surgical safety (Arabacı and Önler, 2021; Li et al.,
2023; Idrees et al., 2024).

The influence of intraoperative stressors on surgical
performance has received growing attention. Researchers have
investigated various indicators of stress and workload during
surgery. Self-report scales remain a common method, but they
are inherently subjective and may fail to capture real-time
changes (Stefanidis et al., 2010; Mouraviev et al., 2016; Norasi
et al., 2023; Fujiya et al., 2024). Wearable sensors provide an
objective method to quantify stress and workload during surgery
(Weenk et al., 2018; Morales et al., 2019; Pimentel et al., 2019;
Yang et al., 2021; Shadpour et al., 2023). However, relying on a
single physiological signal may not fully capture complex stress
and workload responses. To address this, multimodal sensing,
integrating electroencephalography (EEG), electromyography
(EMG), electrocardiography (ECG), and electrodermal activity
(EDA), has been proposed, offering a more comprehensive
assessment (Zhou et al., 2020; Almukhtar et al., 2024). Although
machine learning (ML) methods have been applied to surgical
performance prediction, most existing studies focus on kinematic
data and surgical video analysis to evaluate surgical skills (Zia et al.,
2019; Nguyen et al., 2020; Schuler et al., 2023; Shafiei et al., 2023;
Prevezanou et al., 2024). While previous studies have examined
surgeon stress and workload during RAS, the predictive value of
multimodal physiological signals and subjective assessments for
task performance during RAS has not been systematically explored.
This study aims to address this gap through a ML approach.

In this study, we conducted a controlled case study in which
a single RAS surgeon performed simulated surgical tasks under
varying conditions of task type, posture, and OR noise. To capture
both objective and subjective indicators of stress and workload,
we collected multimodal physiological signals—including EEG,
EMG, heart rate (HR), and EDA—alongside self-reported workload
assessments using NASA-TLX and SURG-TLX. ML models were
then trained to predict task performance based on these data. To
interpret the model outputs and identify key contributing features,
we applied SHapley Additive exPlanations (SHAP) analysis. These
findings may inform the development of real-time surgeon

stress and workload monitoring, and performance optimization
strategies in RAS.

2 Materials and methods

2.1 Participant

This case study involved an experienced RAS surgeon (> 250
RAS procedures). We aimed to explore the feasibility of subject-
specific predictive modeling in assessing surgical performance.
Focusing on one participant allowed us to examine intra-individual
performance patterns. This design supports the development of
accurate, personalized models and represents an initial step toward
individualized surgical support systems. Prior to the study, the
participant provided written informed consent and was explicitly
informed that task difficulty and environmental stressors would be
systematically manipulated as part of the experimental design.

2.2 Experimental setup

The experimental setup is illustrated in Figure 1A. The
participant performed two simulation tasks, Suture Sponge 1 (SS1)
and Energy Switching 1 (ES1), using the da Vinci Skills Simulator
(dVSS) connected to a da Vinci Xi surgeon console (Intuitive
Surgical, Inc., Sunnyvale, CA, USA). Three independent variables,
each with two levels, were applied to induce variability in stress
and workload: OR noise level (low vs. high), surgical posture
(expert-like vs. novice-like), and task type (SS1 vs. ES1).

High OR noise ranged from 55 to 65 dB(A), while low OR
noise was set at 40–50 dB(A). Both conditions were played through
speakers using a pre-recorded surgical environment soundtrack
(Carillo et al., 2019). For surgical posture, the expert-like condition
allowed the participant to adjust the console ergonomic controls
for optimal comfort. In the novice-like condition, the armrest
was set lower to reduce forearm support, replicating suboptimal
ergonomics that may increase muscle tension (Franklin et al., 2003;
Takayasu et al., 2018; Carillo et al., 2019).

The SS1 task involved manipulating a curved needle through
two designated points on adjacent sponge faces using both hands.
This task simulates essential suturing operations and demands
a high degree of precision and focus. The ES1 task required
the participant to adjust the camera view to identify and deal
with multiple targets using appropriate instruments. It simulated
multitask coordination in dynamic surgical scenario that requires
rapid decision-making and frequent instrument switching. These
two tasks were selected to represent distinct surgical skills.
This approach helps reduce task-specific bias and improves the
generalizability of the findings.

2.3 Data acquisition and feature
calculation

This section describes the extracted physiological and
subjective features. Physiological measures included EEG,
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FIGURE 1

Comprehensive overview of the method. (A) Experimental setup. (B) Electrode and sensor placements for physiological measurements.
(C) Experimental procedure. (D) Machine learning workflow.

EOG, EMG, EDA, and HR. Subjective workload was assessed
using the NASA-TLX and SURG-TLX. All acquired data were
preprocessed and analyzed to derive relevant metrics as features
for subsequent modeling.

Physiological signals were continuously recorded throughout
the experiment. The placement of electrodes and sensors for EEG,
EOG, EMG, EDA, and HR measurements is illustrated in Figure 1B.
EEG, EOG, EMG, and EDA signals were recorded at 1,000 Hz using
the BIOPAC MP 160 system (BIOPAC Systems Inc., Goleta, CA,
USA) with wireless transmitters and AcqKnowledge 5.0 (BIOPAC
Systems Inc., Goleta, CA, USA). HR was measured with the Polar
Verity Sense (Polar Electro Oy, Kempele, Finland) which uses
photoplethysmography (PPG) and samples at 135 Hz for pulse
detection. Subjective workload was assessed using paper-based
versions of the NASA-TLX and SURG-TLX.

2.3.1 EEG
Three scalp EEG electrodes were placed at the Fz, Cz, and

Pz locations (10–20 system), selected as a minimal montage to
reduce setup time and task interference while targeting regions
associated with cognitive workload, motor control, and attentional
processes. The recorded EEG data were processed in Acqknowledge
5.0 to remove EOG artifacts. In this study, the Beta-to-Alpha power
ratio (BAR) was used as a stress metric (Roy et al., 2022). The
powers in the α (8–13 Hz) and β (13–30 Hz) bands were computed
by integrating the power spectral density (PSD), estimated using
Welch’s method, over the corresponding frequency range using the

trapezoidal rule. The BAR was then calculated. All computations
were performed using Python.

2.3.2 EMG
Surface EMG electrodes were attached to measure six muscle

groups: the right upper trapezius, biceps brachii, extensor
digitorum communis, flexor digitorum superficialis, erector spinae,
and tibialis anterior. EMG signals were bandpass filtered from
20 to 450 Hz and notch filtered at 50 Hz to remove power-
line interference (De Luca et al., 2010). The tibialis anterior was
recorded from the left leg because in the experimental tasks, the
participant operated only the camera and foot-clutch pedals on
the left side, while the surgical instrument pedals near the right
foot remained unused. This was due to the relatively basic nature
of the tasks, which did not involve functions requiring right-foot
pedal operation. Muscle activation was quantified as the percentage
of maximal voluntary electrical activation (MVE%), calculated by
dividing the root mean square (RMS) amplitude of the EMG signal
during each task by the RMS amplitude obtained during a maximal
voluntary contraction (MVC) (Dahlqvist et al., 2018).

2.3.3 HR
The HR sensor was worn on the left forearm. Based on

the recorded HR data, the mean HR and standard deviation of
HR (SDHR), a first-order approximation of heart rate variability
(HRV), were calculated (Levin and Swoap, 2019).
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2.3.4 EDA
The EDA electrodes were placed on the thenar and hypothenar

eminences of the participant’s left hand. Recorded EDA data were
processed in Acqknowledge 5.0, with a low-pass filter at 1 Hz,
downsampled to 10 Hz, and then decomposed into phasic and
tonic components through continuous decomposition analysis
(CDA) in Ledalab V3.4.9 (Institute for Physiology, University of
Graz, Austria). SCR were identified using a threshold of 0.01 µS.
The number of significant SCR per second (nSCR/s) and the mean
SCL were calculated (Lutnyk et al., 2023).

2.3.5 NASA-TLX and SURG-TLX
The NASA-TLX measures subjective workload across six

dimensions: mental demand, physical demand, temporal demand,
performance, effort, and frustration (Hart and Staveland, 1988).
The SURG-TLX is a surgical-specific scale developed based on the
NASA-TLX. It includes six dimensions as well: mental demands,
physical demands, temporal demands, task complexity, situational
stress, and distractions (Wilson et al., 2011). The NASA-TLX
employs a Visual Analog Scale (VAS) to measure each dimension,
whereas SURG-TLX uses a 20-point Likert scale.

2.4 Experimental procedure

Figure 1C illustrates the Experimental Procedure. Two days
prior to the experiment, the participant practiced both tasks to
ensure familiarity and reduce performance variability. At the start
of each session, the participant’s skin was cleaned, and conductive
paste was applied before attaching the EEG electrodes. MVC was
measured, followed by a five-minute rest period before a 10-min
baseline recording of EEG, EDA, and HR.

The participant then performed the SS1 and ES1 tasks
in a randomized order (three repetitions per task). Subjective
evaluations were conducted after each task. A 15-min break was
provided before the next trial to minimize fatigue and carryover
effects. Over four consecutive days, the participant completed six
unique task–posture–noise combinations (each with three trials)
per day. Task order was counterbalanced to minimize order
effects. All sessions started at consistent times to control for
circadian variability. In total, the participant completed 72 trials (2
tasks × 2 noise levels × 2 postures × 9 repetitions), providing a
comprehensive dataset for modeling.

2.5 Machine learning and SHAP analysis

Task performance was evaluated by dVSS as a composite
score ranging from 0 to 100. This score incorporated completion
time, master workspace range, and task-specific precision and
error metrics (Havemann et al., 2019). Performance scores were
dichotomized into high and low categories using a median split.
The task performance prediction (high vs. low) was formulated
as a supervised classification problem using the extracted features
as input. Four classifiers were trained and compared: CatBoost,
random forest (RF), support vector machine (SVM), and logistic
regression (LR). CatBoost was chosen for its robustness in small
datasets, leveraging ordered boosting to reduce overfitting, and

FIGURE 2

ROC curves for the four ML models to predict the participant’s
simulated RAS task performance.

its symmetric tree-growing strategy, which enhances training
efficiency and model consistency. The model was trained with
355 trees and a learning rate of 0.015. These hyperparameters
were manually selected to achieve a better balance between
training and testing performance, rather than solely maximizing
test AUC (Prokhorenkova et al., 2019). The RF model used 100
trees. The SVM model applied a radial basis function (RBF)
kernel. The hyperparameters C and gamma were selected based
on empirical performance across logarithmically spaced values.
Logistic regression with L2 regularization was used as the baseline
linear model. All models were implemented in Python. Figure 1D
illustrates the overall workflow of the machine learning approach
used in this study.

Model performance was evaluated using repeated 10-fold cross-
validation. Performance metrics were averaged across folds to
ensure reliability. We used the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve and accuracy, as well
as additional confusion matrix metrics such as precision, recall, and
F1-score to provide a comprehensive assessment.

After classification, SHAP was used to interpret the best model
(Lundberg and Lee, 2017). Feature importance was quantified
by averaging the absolute SHAP values across all trials. The
distribution of SHAP values for each feature was further analyzed
to evaluate its impact on the model’s predictions.

3 Results

3.1 Classification performance

As shown in Figure 2, ROC curves were used to evaluate the
performance of the four ML models. The CatBoost model achieved
the highest test AUC of 0.807, outperforming random forest
(0.796), logistic regression (0.789), and SVM (0.777), indicating its
discriminative capability.

Additional performance metrics, including accuracy, precision,
recall, and F1 score, are listed in Supplementary Table 1. CatBoost
attained the highest accuracy of 0.795, along with similarly high
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precision (0.796), recall (0.793), and F1 score (0.795), suggesting
its stable performance across multiple evaluation dimensions.
Although random forest had the highest recall (0.818), its precision
(0.770) and F1 score (0.793) were slightly lower than CatBoost.
SVM showed moderately strong performance, particularly in
recall (0.815), but had lower precision (0.749) and F1 score
(0.781) compared to CatBoost and random forest. In contrast,
logistic regression underperformed, especially in precision (0.696)
and F1 score (0.726), indicating its limited effectiveness in
this classification task. Overall, these results highlight CatBoost’s
robustness across multiple evaluation metrics, supporting its role
as the most effective model in this study.

3.2 Feature importance analysis

As shown in Figure 3, the SHAP feature importance
plot (bar chart) ranks input features based on their average
absolute SHAP values, reflecting their overall contribution
to the model’s predictions, while the SHAP summary plot
(bee swarm) visualizes the distribution of SHAP values for
each feature, capturing both the direction and magnitude of
their effects on individual predictions. The NASA-TLX and
SURG-TLX workload scores emerged as the top two most
important predictors, suggesting a strong association between
subjective workload assessments in predicting task performance.
Additionally, the HR_mean and MVE% of several muscles
(especially MVE%_Trap and BB_MVE%) were also identified
as important features contributing to the model’s performance
predictions. Conversely, Fz_BAR, Cz_BAR, and Pz_BAR exhibited
relatively lower importance, suggesting that these EEG-derived
features were less predictive of task performance in this context.
Among EDA-related features, nSCR/s had moderate importance,
while SCL_mean showed relatively low importance. Finally,
SDHR and TA_MVE% demonstrated the lowest contribution
to the model’s predictions. While the low importance of
TA_MVE% reflects limited contribution from this specific
muscle group, the result for SDHR should be interpreted
with caution, as it is a simplified proxy that may not fully
represent HRV.

4 Discussion

This study investigated the predictive value of physiological
signals and subjective workload ratings for simulated RAS task
performance under varying stress conditions. Using ML models
and SHAP analysis, we examined the model-derived contributions
of key features to performance predictions, highlighting the
relevance of subjective workload measures and physiological
metrics such as mean HR and trapezius MVE%. These findings
offer insights into the selection into potential metrics for assessing
workload and stress in RAS. It is important to emphasize
that SHAP provides insights into model-derived associations
rather than causal mechanisms. Therefore, all interpretations
based on SHAP values should be regarded as correlational
rather than causal.

To further clarify the contribution of this study, Table 1
compares it with recent work on surgical stress and performance.

While prior studies often focused on a limited set of indicators, few
have combined subjective workload measures, multimodal
physiological signals, and interpretable machine learning
methods. Our approach uniquely integrates SHAP-based model
interpretation with validated workload scales and a comprehensive
set of physiological signals.

4.1 Insights from psychophysiological
indicators of workload and stress

The SHAP analysis indicated that NASA-TLX and SURG-
TLX were among the most influential features in the model’s
performance predictions, with higher workload scores associated
with lower predicted performance in this modeling context. NASA-
TLX appeared slightly more influential in the model’s output
than SURG-TLX, which may reflect its broader sensitivity within
this task context, though such interpretation should be drawn
cautiously given SHAP rankings are model-specific. Given the
simplified nature of the simulated RAS task, NASA-TLX may
better capture workload variations. Some dimensions of SURG-
TLX, such as task complexity and situational stress, may be less
sensitive in this setting than in real surgical procedures. However,
in real surgeries with greater procedural complexity and teamwork
demands, SURG-TLX may demonstrate stronger predictive power
(Ma et al., 2021). Nevertheless, since subjective evaluations cannot
be conducted during actual surgeries, further research is needed
to explore the relationship between subjective assessments and
physiological indicators.

Among the autonomic nervous system metrics, mean HR
exhibited the highest contribution to model predictions, consistent
with prior research linking increased HR to higher cognitive
workload and reduced performance (Mansikka et al., 2016; Sazuka
et al., 2024). While the SHAP analysis showed a pattern where
higher SDHR values tended to co-occur with better predicted
performance, its overall contribution to the model output was
relatively small. SDHR, calculated from PPG-derived HR rather
than ECG-based R-R intervals, may lack robustness in reflecting
autonomic modulation. Future studies should consider ECG to
obtain more reliable HRV metrics such as RMSSD and HF/LF for
a more accurate assessment of physiological stress and surgical
performance (The et al., 2020).

nSCR/s ranked eighth in feature importance. Higher values
were predominantly observed in low-performance trials. This
finding supports the view that increased electrodermal activity
reflects elevated physiological stress and cognitive load, which
may interfere with motor execution. Excessive sympathetic
activation has been associated with impaired motor control and
cognitive overload during high-precision tasks (Awtry et al.,
2025). In contrast, the mean SCL showed low feature importance
and exhibited inconsistent patterns. This may be attributed to
its sensitivity to chronic stress rather than acute task-related
demands (Visnovcova et al., 2024). Further research is needed
to clarify its relevance in predicting performance in real-world
surgical environments.

The SHAP analysis revealed notable variability in the
importance of MVE% across different muscles. The trapezius,
biceps brachii, erector spinae, and extensor digitorum communis
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FIGURE 3

(A) SHAP summary plot (beeswarm) illustrating the distribution of SHAP values across all instances. Each dot represents a single trial, with color
indicating the original feature value, ranging from high (yellow) to low (purple). Wider spread of dots along the X-axis indicates a greater impact on
the model output. (B) SHAP feature importance plot (bar) showing the average magnitude of each feature’s contribution to the CatBoost model
predictions. NASA-TLX, NASA task load index; SURG-TLX, surgery task load index; HR, heart rate; MVE%, percentage of maximal voluntary electrical
activation; Trap, trapezius; BB, biceps brachii; ES, erector spinae; EDC, extensor digitorum communis; nSCR/s, number of skin conductance
responses per second; BAR, Beta-to-Alpha power ratio; FDS, flexor digitorum superficialis; SCL, skin conductance level; SDHR, standard deviation of
heart rate; TA, tibialis anterior.

emerged as the most influential, while the flexor digitorum
superficialis and tibialis anterior contributed less to model
predictions. Higher MVE% in the erector spinae and extensor
digitorum communis was associated with lower performance,
which may reflect a pattern related to postural instability and
increased hand exertion. Conversely, greater trapezius activation
correlated with better performance, which may suggest an
association with upper limb stabilization during surgical tasks
(Rodrigues Armijo et al., 2020). Interestingly, the biceps brachii
exhibited a U-shaped SHAP pattern. Both low and high activation
levels were linked to improved performance predictions, suggesting
that this muscle may activate differently depending on task
demands. This pattern implies that distinct motor strategies may
be associated with optimal performance under varying conditions
(Takatoku and Fujiwara, 2010). It should be noted that SHAP
provides model interpretability rather than causal inference.
Therefore, further studies integrating EMG pattern analysis with

kinematic data are required to clarify the functional contributions
of these muscles.

BAR exhibited low overall predictive importance but displayed
distinct SHAP patterns across the electrode sites. At Fz, a U-shaped
relationship was observed, with extreme BAR values associated
with poorer performance and moderate values linked to better
outcomes. This trend aligns with the Yerkes–Dodson law, which
suggests that moderate arousal may enhance performance, while
excessive stress impairs it (Khazaei et al., 2021). At Cz, BAR did
not demonstrate a clear pattern, possibly due to its primary role in
motor control rather than cognitive workload (Shaw et al., 2019). At
Pz, higher BAR correlated with improved performance, potentially
indicating enhanced task monitoring or sensory integration under
increased cognitive demands on Kahya et al. (2022). The use of only
three EEG channels provided a practical, low-interference setup,
but it limits the ability to analyze region-specific or lateralized brain
dynamics involved in surgical tasks. Although BAR was not among
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TABLE 1 Predictive performances of the four ML models for predicting simulated RAS task performance.

References Task type Participants Indicators ML method Objective ML model
interpretability

Lim et al., 2025 Real RAS 5 expert surgeons EEG None (statistical
modeling)

Mental
workload

N/A

Caballero et al.,
2024

Real RAS 11 surgeons EDA, blood pressure,
body temperature, body
movement

Multiple linear
regression (MLR), SVM,
multilayer perceptron
(MLP)

Stress level No

Zhou et al., 2020 Simulated RAS 12 surgeons HRV, EDA, EEG SVM, RF, k-nearest
neighbors (KNN), LR

Mental
workload

No

Takács et al.,
2024

Simulated RAS
(Sea Spikes)

5 medical students,
5 residents, 5
pre-cert surgeons

HRV, hand movement
tracking, posture,
SURG-TLX

Decision tree, KNN,
SVM, LR

Skill level, stress
level

No

This case study Simulated RAS 1 expert surgeon HR, EDA, EEG, EMG,
NASA-TLX, SURG-TLX

SVM, LR, RF,
CatBoost + SHAP

Surgical
performance

Yes

the top predictors in this study, EEG remains a valuable modality
for investigating neural mechanisms in surgical performance.
Future research should explore additional EEG-derived metrics and
refine task design to support more comprehensive analyses.

4.2 Practical implications and limitations

While several physiological indicators demonstrated predictive
value, their application in real surgeries may be limited by
practical constraints. For instance, certain EMG and EDA electrode
placements may hinder precise surgical maneuvers, as noted
by the participant. Although these measures offered valuable
insights, future studies should carefully assess their feasibility in
surgical environments. Our findings also highlight the potential of
explainable ML in surgical performance assessment. SHAP analysis
facilitates the identification of features that the model considered
influential in its predictions, thereby enhancing interpretability.
This kind of transparency is crucial for clinical adoption. If
ML models can explain their feedback (e.g., showing that high
EEG-based cognitive workload was associated with lower model-
predicted performance), surgeons are more likely to trust and
integrate them into surgical practice.

This study has several limitations. Most notably, it involved
a single participant, which limits the generalizability of the
findings. While the results offer initial insights, they cannot
be extended to broader surgeon populations without replication
in larger and more diverse samples. In particular, ML models
trained on a single participant data may overfit to individual
physiological or behavioral traits, limiting their applicability to
other surgeons. Physiological indicators such as HR and EMG
activation patterns can vary with fitness level, posture, and
coping strategies. Additionally, subjective workload ratings like
NASA-TLX may be influenced by individual interpretation bias.
To minimize interference during task execution, we used a
simplified EEG montage (Fz, Cz, Pz) and estimated HRV using
PPG-derived HR instead of ECG. While both choices improved
experimental feasibility, they limit the spatial resolution of EEG
data and the robustness of autonomic stress measurements.
Additionally, as SHAP values reflect the internal logic of a specific

model, their interpretability is limited by model quality and
data representativeness. Finally, our study involved a controlled
environment, whereas real surgeries present dynamic stressors,
such as time pressure, communication errors, or patient instability,
which were not fully replicated.

Future research should compare stress-response patterns across
surgeons with different experience levels, as key physiological
indicators may vary (e.g., experts relying more on HRV, while
novices exhibit elevated EDA associated with anxiety). Sensor
design should also be optimized to minimize interference,
exploring alternatives such as dry EEG electrodes integrated into
surgical caps or other wearable devices. In addition, to obtain more
precise autonomic stress analysis, future studies should use ECG
rather than PPG, as ECG provides more reliable HRV metrics.
Reducing the number of sensors to those with the highest predictive
value, as identified in our SHAP analysis, could enhance the
feasibility of real-time stress monitoring tools in surgical practice.

5 Conclusion

This brief report provides initial evidence that a combination of
subjective workload assessments and physiological indicators, such
as NASA-TLX scores, mean HR, and specific EMG-derived muscle
activation, can predict surgical task performance in a simulated
RAS environment. Among the machine learning models evaluated,
CatBoost demonstrated the highest predictive accuracy (79.5%,
AUC = 0.807), and SHAP analysis identified key physiological and
cognitive features contributing to performance variability. These
findings support the utility of explainable machine learning for
uncovering interpretable relationships between stress, workload,
and performance.

Although limited to a single participant and a controlled
environment, this study highlights important indicators for real-
time stress and workload monitoring in surgical contexts. Future
work should validate these results across multiple surgeons and
real surgical scenarios, while optimizing sensor configurations to
minimize interference. Additionally, reducing sensor complexity
based on SHAP-identified top contributors could improve
feasibility in clinical settings. Research should also explore adaptive
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feedback systems or workload-aware robotic assistance to mitigate
surgeon stress and enhance intraoperative performance and safety.
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