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This review explores the vectorial principles underlying sensorimotor decoding

across diverse biological systems. From the encoding of light wavelength in

retinal cones to direction-specific motor cortex activity in primates, neural

representations frequently rely on population vector coding–a scheme, in

which neurons with directional or modality-specific preferences integrate their

activity to encode stimuli or motor commands. Early studies on color vision

and motor control introduced concepts of vector summation and neuronal

tuning, evolving toward more precise models such as the von Mises distribution.

Research in invertebrates, including leeches and snails, reveals that even simple

nervous systems utilize population vector principles for reflexes and coordinated

movements. Furthermore, analysis of joint limb motion suggests biomechanical

optimization aligned with Fibonacci proportions, facilitating efficient neural

and mechanical control. The review highlights that motor units and neurons

often display multimodal or overlapping tuning fields, reinforcing the need

for population-based decoding strategies. These findings suggest a unifying

vectorial framework for sensory and motor coding, with implications for

periprosthetic and brain-machine interface.

KEYWORDS

sensorimotor system, motor control, sensory systems, perception, sensory and motor
coding

1 Introduction: population vectors as a common
language of the nervous system

The concepts of multiple neuron participation in coding, neuronal arcs, and neuronal
populations have evolved over time. Early electrophysiological studies focused on recording
individual neurons and examining their responses to different stimuli, leading to a
“classical” view of neuronal coding, where the modulation of firing rates influenced
neuronal output. However, it eventually became clear that individual neurons are part
of a larger network responsible for coding. Two key concepts emerged: (1) Neuronal
Arc: Neurons are hierarchically interconnected with direct and feedback loops. These
connections can involve sensory elements, interneurons, and effectors, forming open
or closed loops known as arcs. (2) Multineuronal Arc (Neuronal Network): Multiple
neurons work in parallel, with their integrative action creating a coordinated output.
This concept was articulated by Levine (2007). Additionally, the trichromatic theory of
color vision was developed by Young and von Helmholtz and was later advanced by
Schrödinger suggesting that three sets of specialized neurons simultaneously code color
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perception, forming a vector space (Niall, 2017; Feynman et al.,
1963). Interestingly, initial visual processing in the retina includes
signal decorrelation, generating linearly independent color vectors
that likely form part of an orthogonal basis for color perception
(Iniushin and Stankevich, 2001).

The first neuronal net-type model for codifying and
recognizing patterns was developed (McCulloch and Pitts,
1943). Additionally, the idea of neuronal populations processing
information in groups was proposed through cell assembly theory
(Attneave and Hebb, 1950). Over time, it became clear that sensory
information could be represented using combinatorial systems,
akin to vector coding, known as Parallel Distributed Processing
(Churchland, 1995). This vector coding system enables precise
analysis and recognition of sensory inputs. The brain processes
neuronal activation patterns through synaptic connections in
a way similar to vector transformations. Synapses modify input
patterns (vectors) to produce output patterns (also vectors). Parallel
Distributed Processing involves simultaneous computations across
networks, much like parallel vector processing. Similar ideas related
to vector coding have been developed worldwide (Sokolov and
Vatkyavichus, 1988). Vector-based concepts in neurophysiology
have become more advanced with the introduction of the neuronal
population vector, which plays a key role in sensorimotor decoding
(Georgopoulos et al., 1983; Mahan and Georgopoulos, 2013; Pais-
Vieira et al., 2023). It was Georgopoulos et al. who demonstrated
a clear neuronal implementation: the direction of a primate’s
arm movement could be predicted by summing vectors aligned
with the preferred directions of individual motor-cortex neurons.
This concept involves three key elements: a behavioral measure
represented in multidimensional space, a neuronal population, and
an orderly variation in the neural activity of the neurons within that
population corresponding to changes in the behavioral measure.
The computation is a weighted vector sum of neural activities,
providing an estimate of the behavioral outcome. This idea closely
echoes Sherrington’s earlier concepts of neural coordination. This
area of research is rapidly evolving, challenging traditional ideas,
and undergoing significant transformation. In this context, we
review the literature on sensorimotor vector decoding and examine
the specific studies that display the foundation for these ideas.

Roadmap of the review: Section 1 introduces foundational
vector concepts; Section 2 surveys exemplar sensory systems;
Section 3 discusses motor implementations; Section 4 provides
an overview of vector-motoneurons; Section 5 provides an
integrative Discussion and future directions; and Section 5.1
summarizes Conclusions.

2 Coding of color frequency by the
population of specialized sensory
neurons (cones) in the vertebrate
retina and the trichromatic theory of
color vision

Newton’s seminal experiments with prisms, documented in
his 1,704 work Opticks, demonstrated that sunlight could be
refracted into a spectrum of colors when passed through a
glass prism, and proved that white light itself is a composite of

all visible hues (Newton, 2010). By isolating individual colors
and recombining them using lenses and secondary prisms, he
regenerated white light, conclusively showing that color arises from
the separation and interaction of light’s constituent wavelengths,
thus establishing the continuous nature of the color gradations
and introducing wavelength scale. Refracting sunlight through
prisms, he demonstrated that white light decomposes into a
constant spectrum of hues, which he arbitrarily divided into seven
colors (ROYGBIV) for symbolic alignment with musical scales
but identified three primary colors–red, green, and indigo (blue)
(RGB)–based on their capacity to regenerate white light when
combined.

This insight marked the birth of additive color theory,
where light wavelengths are superimposed to create new hues.
He also introduced Newton’s circular color wheel (Circle of
Colors), the first graphical representation of color relationships,
positioning these primaries opposite their complementary colors
(e.g., red opposite cyan), illustrating that pairs of complementary
lights mix to produce white. To explain primary colors and
additive color theory, Thomas Young in 1802 proposed a
biological basis for trichromacy, that the eye contains three
types of “particles” (later termed cones) sensitive to distinct
portions of the spectrum. Drawing direct inspiration from
Newton’s additive primaries, Young hypothesized that each
receptor type responds preferentially to red, green, or violet
(blue) light. This triadic model mirrored Newton’s observation
that three spectral primaries suffice to simulate all perceived
colors through additive mixing. After establishing Christiaan
Huygens’ wave theory, it was already known that the visible
spectrum spans wavelengths from approximately 400 (violet) to
700 nm (red), with each hue corresponding to a specific range,
and Young suggested that color is the visible manifestation of
light’s wavelength.

Hermann von Helmholtz expanded Young’s theoretical
framework through rigorous psychophysical experiments in
the 1,850’s–60’s. Using color-matching tasks, he demonstrated
that observers could replicate any hue by adjusting the intensity
of three monochromatic lights–red (long wavelength), green
(medium), and blue-violet (short). He also accurately quantified
spectral sensitivity, showing the non-linearity of trichromat
space. Helmholtz recognized that perceptual color differences
do not map linearly to physical wavelengths, prompting
his exploration of Riemannian metrics–a mathematical
tool for describing curved spaces. He introduced a line
element to correlate perceptual just-noticeable differences
(JNDs) with infinitesimal distances in a 3D color space
(von Helmholtz and Southall, 1962).

Genius physicist Maxwell, practically at the same time (1,857),
in a series of similar color-mixing psychophysical experiments,
confirmed Newton’s color-additive theory and the near linearity of
three principal colors. Moreover, speaking on a graphical method
of exhibiting the relations of colors suggested that “the method
which exhibits to the eye most clearly the results of this theory
of the three elements of color is that which supposes each color
to be represented by a point in space, whose distances from
three co-ordinate planes are proportional to the three elements
of color,” and “this requiring space of three dimensions.” Maxwell
(1857) also decided, that Newton’s Circle of Colors and Mayer and
Young’s Color Triangle and any method by which the operations
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are confined to a plane “has been adopted for convenience”
only.

Another famous name in the development of the trichromatic
theory was Erwin Schrödinger, best known for his foundational
contributions to quantum mechanics. His foray into color theory
during the 1920’s positioned him as an intellectual successor to
Helmholtz. In his 1920 papers, entitled Grundlinien einer Theorie
der Farbmetrik im Tagessehen (Foundations of a Theory of Color
Metrics in Daylight Vision), Schrödinger revisited Helmholtz’s
1,891–92 attempts to model color space using Riemannian
geometry. Helmholtz had proposed a non-Euclidean line element
to quantify perceptual color differences, but his model faced
mathematical inconsistencies. Schrödinger posited that adaptation
to illuminants corresponds to linear automorphisms of color
space, preserving the cone’s convex structure, and his refinements
resolved issues, cementing Helmholtz’s intuitive leap into a rigorous
framework (Niall, 2017; Provenzi, 2020). Another Nobel in Physics,
Richard Feynman, popularized 3D-vector color space in Volume
1 of his famous Lectures on Physics, mentioning Schrödinger’s
work, and providing an accessible, physics-oriented exposition
of Schrödinger’s color-metric, fostering adoption in neuroscience
(Feynman et al., 1963).

Nowadays, the data on the structure and functioning of
color channels in the eye retina are confirmed by modern
physiology, with microspectrophotometry of all types of cones
and characterization of opsins and their genes, including human
opsins. Speaking about vertebrate animals, some are dichromatic
(like male marmoset monkeys, which have only short-wavelength
“S” cones and a single type of medium/long-wavelength “M/L”
cones (Solomon and Rosa, 2014), while others, like turtles, have
tetrachromatic vision with cones specifically sensitive to different
wavelengths, including red, green, blue, and ultraviolet (UV) light,
suggesting that there is a separate ultraviolet channel and a neural
basis for tetrachromacy (Fuortes et al., 1973; Ventura et al.,
2001). Many vertebrates have trichromatic eyes because the retina
catches the light frequency by specialized sensory neurons (cones),
with maximal sensitivity to long (R), middle (G), or short (B)
wavelengths (their normalized response curves versus wavelength
are shown in Figure 1A for carp fish retina (Cyprinus carpio).
Suppose there is light with a wavelength X entering the eye (dash
line on graph). In that case, it stimulates all three cones, each of
them producing the response, with their specific intensity so that
color X could be made by certain amounts of these three: say an
amount a of blue color (aB), an amount b of color G (bG), and an
amount c of color R (cR) makes X. We can write:

X = aB + bG + cR (see it in Figure 1B).

It may be interpreted as calculating a “population vector.” By
conceptualizing color perception within a vector space framework,
it becomes clear how different colors and their mixtures arise from
the interaction and relative intensity of signals from R-, B-, and
G-cones. If there is another color Y, it will produce the response
in cones with intensities:

Y = a′B + b′G + c′R

Then, the mixture of the two lights is obtained by taking the
sum of the components of X and Y:

Z = X + Y = ( a + a ′) B+ (b + b′)G + (c + c′)R

This is according to Newton’s additive primaries rule, and
it is a standard vector summation formula. So, the trichromatic
theory of color vision is fundamentally vector-related due to its
reliance on three types of cone cells in the retina, each sensitive
to different wavelengths of light. The relationship between these
colors can be understood through the concept of vector space, and
according to Maxwell, color X can be better visualized in three-
dimensional space with vectors R, G, and B with components
a, b, and c (Figure 1C). While the problem of non-linearity
of RGB vector space persists, the brain resolves it through the
reduction of statistical redundancy, without Riemannian geometry.
One can see that responses R, G, and B on the cones level are
correlated because activating B, for example, also activated G
and R to some extent. Barlow and Földiák (1989) hypothesized
that the role of early sensory neurons is to remove statistical
redundancy in the sensory input, which can be achieved through
the concept of coding efficiency (Simoncelli and Olshausen, 2001).
Confirming that, it was shown that on the level of horizontal cells
(next retinal layer), color functions became linearly independent
and orthogonal, forming a perfect linearly independent color
basis (Iniushin and Stankevich, 2001; Fukurotani, 1982). Such
decorrelation and orthogonalization happen due to inhibitory
feedback between retinal layers (Iniushin and Stankevich, 2001).
It also happens in many other neural networks; their initial layers
have correlated spike rates over time and/or correlated receptive
fields. Decorrelation in biological neural networks refers to a
tendency for neurons to compete and reduce redundancy in
the network’s representation of sensory input due to inhibitory
feedback (Tetzlaff et al., 2012). Now, decorrelation is an important
stage of data processing in artificial networks.

One can see that the retina is using neuronal decoding methods
such as the “population vector” to decode light frequency. The
population vector represents the sum of a population of neurons’
“preferred” responses, weighted by their respective reaction (graded
change in membrane potential or respective spike counts, etc.),
allowing for the encoding of any stimulus position on the
wavelength scale (Figure 1B). A similar coding strategy is most
obvious in biological networks calculating the “preferred direction”
of movements (Georgopoulos et al., 1983).

Modern researchers have expanded our understanding of
how additional visual modalities are represented in the visual
cortex, revealing that each neuron can be interpreted as encoding
a vector (Gilbert and Wiesel, 1990; Vogels, 1990). In this
updated framework, a neuron’s preferred orientation determines
the direction of the vector, while its firing rate corresponds to
the vector’s magnitude. The collective activity of the neuronal
population represents the stimulus orientation through the vector
sum of all individual neuronal responses–an approach known as
the population vector coding scheme.

Later, similar vectorial coding was proposed for olfactory
stimuli (odors) (Schild, 1988; Berglund and Olsson, 1993; Laing
et al., 1994), and gestational stimuli (test) (Di Lorenzo, 1989;
Schifferstein and Frijters, 1993) and other sensory modalities
follow (Ince et al., 2013; Tanabe, 2013; Failor et al., 2025). Thus,
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FIGURE 1

Color frequency coding in trichromat retina. (A) Normalized responses of cone cells to the stimulus of different wavelength, (B) formula of response
of cones to the stimulus of X-wavelength, (C) visualization of vector X in three-dimensional space with vectors R, G, and B with components a, b,
and c. The cone-sensitivity curves are taken from Fukurotani (1982), with permission.

tonotopy refers to one of the key properties of the auditory system
(Tsytsarev and Tanaka, 2002). The essence of this phenomenon is
the systematic arrangement of neurons in the auditory system by
their functional preference. This means that neurons that respond
to similar frequencies are located next to each other in different
brain structures. Functional tonotopic maps are located throughout
the auditory tract, starting in the cochlea and continuing into the
brainstem, midbrain, thalamus, and auditory cortex. The sensitivity
of neurons to sensory stimulation at each level of the auditory
cortex is different, and each neuron has its own “best frequency”–
the frequency at which the neuron responds to an auditory stimulus
of minimal amplitude. As the frequency increases or decreases, the
neuron’s sensitivity decreases. Things are a bit more complicated
with other properties of sound, in particular, with the location of
the sound source (Tsytsarev et al., 2009; Dalmas et al., 2024). The
brain utilizes interaural time differences (ITD) and interaural level
differences (ILD) to localize the sound source (Schmid et al., 2023).
The medial superior olive (MSO) and lateral superior olive (LSO)
in the brainstem play a crucial role in this process (Tollin, 2003).
There is evidence for the presence of topographic representations
of auditory space in the brain, but the proof of such functional maps
is ambiguous. Certainly, the brain creates topographic maps of the
location of sound sources in space, and individual neurons encode
information about the sound source, but the structure of these maps
is complex and not fully understood.

Evidence of topographic representations of auditory space in
the brain dates back to the end of the last century, but it would
be wrong to call these representations maps–their organization is
more complex. Thus, it was shown that the external nucleus of
the inferior colliculus (ICX) of the pigmented guinea pig contains
a map of auditory space (Binns et al., 1992). Electrophysiological
studies of neural clusters in the ICX to threshold and near-threshold
stimuli have demonstrated acute spatial tuning.

The auditory system localizes the source of a sound based
on the analysis of several parameters of sound signals (Tsytsarev
et al., 2009). This analysis begins in the tonotopic pathway, then
frequency-specific information is processed in the midbrain and
forebrain. Higher-order neurons are tuned to specific locations in
space (Cohen and Knudsen, 1999).

In the midbrain, space is represented as a kind of map, while
in the forebrain, space is represented as clusters of similarly
configured neurons (Cohen and Knudsen, 1999). The location of

the sound source is represented in the brain in a rather complex
way. It can be said that these representations are dynamic in
nature, since the neurons that form them are capable of rapid
reconfiguration and change in their functional properties.

These representations reach even greater complexity in animals
capable of echolocation (Hagemann et al., 2010). Thus, topographic
cortical representations of echo delay are present in the auditory
cortex of some bats. Such cortical echo delay maps provide a
calibrated neural representation of the spatial distance of an object
(Hagemann et al., 2010).

3 Encoding the location of a touch
stimulus by the population of
mechanosensory neurons from the
segmental ganglion of the leech and
leech local bending reflex

The medicinal leech (Hirudo medicinalis) body plan consists
of 21 midbody segments with one ganglion per segment
and a corresponding nerve cord. Leeches possess a compact,
accessible nervous system with individually identifiable neurons
and stereotyped behaviors, enabling interesting findings at a
cellular level. Its population-vector touch response offers a uniquely
transparent model for linking single-neuron activity to whole-body
sensory coding, studied by Dr. William Kristan and his coauthors.
A moderate mechanical stimulus applied to the leech’s body surface
induces a localized withdrawal response at the stimulation site, a
body bend directed away from the touch site (Lockery and Kristan,
1990; Lewis and Kristan, 1998b). This response is mediated by
the contraction of longitudinal muscles at the stimulated location
while the muscles on the opposite side relax, producing a U-shaped
bend (see Figure 2B). Consequently, a stimulus on the dorsal
side elicits a dorsal bend, a ventral stimulus results in a ventral
bend, and a lateral stimulus leads to a lateral bend (see Figure 2C,
showing body perimeter with arrows showing the stimulus location
and bending direction). The local bending reflex can be triggered
within a single segmental ganglion, indicating that each of the 21
segmental ganglia in the leech possesses the necessary neurons
to generate this behavior (see Figure 2D showing ventral view of
segmental ganglion): sensory, interneurons, and motor neurons
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representing three neuronal levels (Figure 2E). Many of these
neurons are accessible with microelectrodes from the ventral part
of the ganglion in four-segment semi-intact preparation (Lewis
and Kristan, 1998b). Each ganglion contains sensory neurons that
respond to touch (T cells) and pressure (P cells), with overlapping
receptive fields (Nicholls and Baylor, 1968). Specifically, there are
three pairs of T cells, each selectively responsive to touch on
different body surfaces, encoding the velocity of a stimulus, and two
nociceptive cells. Additionally, two pairs of P cells detect pressure,
with one pair responding mainly to dorsal (P3, P4) and the other
to ventral (P1, P2) stimulation, their responses distributed evenly
around the body perimeter. Seven distinct classes of motor neurons
regulate the longitudinal muscles involved in the reflex (Figure 2A).
These include 4 excitatory and two inhibitory neurons for the
ventral and similar ones for dorsal lateral muscles, and a pair of
L-cells (excitatory), which have a combined dorsal and ventral field.
Each motor neuron type innervates only one side of the body (left
or right). The sensory neurons activate a layer of interneurons that
activate a layer of motor neurons (Lewis and Kristan, 1998b; Lewis
and Kristan, 1998a).

Because of the small size of this network, authors monitored
and manipulated the complete set of sensory P-inputs to the
network. The authors found that these neurons exhibit cosine-
shaped tuning curves for stimulus location, with their peaks,
or preferred stimulus locations, evenly distributed around the
body perimeter (Figure 2A). Using a previously established neural
decoding method, they estimated that stimulus location could be
encoded in the spike counts of the four P neurons with a root-
mean-squared (r.m.s.) error of just 3% (expressed as a percentage of
360◦). In contrast, the local bending behavior was directed within
8% (r.m.s.) of the actual stimulus location. The higher accuracy of
the P neuron representation compared to the behavioral response
suggests that the local bend network could utilize the spike count-
based population code of P neurons.

Neural networks with evenly distributed tuning curves are
particularly well-suited for processing directional information and
may be analyzed using neuronal decoding methods such as the
“population vector.” The population vector represents the sum of
a population of neurons’ preferred directions, weighted by their
respective spike counts, allowing for the encoding of any stimulus
location. The population vector serves as an optimal decoding
method in the case of P neurons, which exhibit near cosine tuning
and whose preferred stimulus locations form a two-dimensional
Cartesian coordinate system. For example, if we touch the body wall
in position X (see Figure 2A), we stimulate mainly neurons P1 and
P2, but to some small extent also P3 and P4. We can write:

X = aP1+bP2+cP3+dP4, where c and d are near zero, and X is
the specific response of the “population” in point X. And yes! It is
the same vectorial summation formula

To eliminate the possibility of other coding methods, like
winner-takes-all or simple averaging, authors simultaneously
activated two P -cells using intracellular stimulation and found
that the response corresponded to population vector summation.
Also, they analyzed the connection of P-cells to 17 different
interneurons. Authors found out that the synaptic strength from
P neurons to each of the 17 identified local bending interneurons
was proportional to the cosine of the difference in their preferred
stimulus locations, confirming the pattern of connections that
results in the accurate transfer of information encoded in a neural

population vector (Lewis and Kristan, 1998a). Thus, the leech’s
interneurons process the information from mechanosensory cells
by calculating a “population vector.” This vector is formed by
summing the preferred directions of each mechanosensory neuron,
weighted by their activity levels. This population vector accurately
encodes the direction to move away from the stimulus, providing a
reliable mechanism for spatial orientation.

Similar tactile representations in mammals may use multiple
populations of neurons in different regions of the brain (Nicolelis
et al., 1998). A vector is a mathematical entity characterized by both
magnitude (size) and direction. The population vector concept for
motor-related neurons (neurons that determine the movements,
like motor neurons or cortical neurons in the motor cortex)
was even intuitively easy to imagine because each active neuron
can be represented as a vector, with Direction (as its preferred
movement direction) and Magnitude (as its firing rate). Higher
firing contributes more to the final movement direction. This
concept was introduced by Georgopoulos et al. (1981, 1982, 1986),
and at first, it was a way of describing how groups of neurons in the
motor cortex encode the direction of limb movements.

4 Spatial coding of 2D-arm
movement direction by neuronal
populations in the primate cortex

In the initial experiments of the authors (Georgopoulos et al.,
1981, 1982), a rhesus monkey was positioned in front of a table
with 8-LED (light emitting diodes) positioned on a circle; and one
additional LED in the center (Figure 3B) each can be lit by the
experimenter. Also, a special manipulandum allowed the monkey
to move it in 2D and point with it to the activated light (capture
it). The animal was trained first to capture the center light and held
that position for a few s; then a peripheral LED came on and the
animal had to capture it with the freely movable manipulandum
moved by the monkey’s arm to receive a rewards. The activity
of single cells in the primary motor cortex (M1) was recorded
while monkeys made arm movements in eight directions in this
two-dimensional apparatus, each starting from the same point.
The frequency of discharge of about 75% of cells from the M1
active during movements (during the reaction time, the movement
time, and the period that preceded the earliest changes in the
electromyographic activity approximately 80 ms before movement
onset), varied in an orderly fashion with the direction of movement
(Figure 3C). Discharge was most intense with movements in a
preferred direction and was reduced gradually when movements
were made in directions farther and farther away from the preferred
one. This resulted in a bell-shaped directional tuning curve. The
authors decided that it could be significantly fit by a cosine
function for each neuron. Preferred directions differed for different
cells so that the tuning curves partially overlapped (Figure 3A).
Interestingly, some neurons were active not only during, but also
before movement onset, about 64% of the cells were activated
before the earliest electromyogram changes in muscles and 87%
before the onset of a movement in the cells’ preferred direction,
predicting future movements. Also, these neurons responded to
passive movements of the animal arm by experimenters, but
responses to passive manipulations were less pronounced and
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FIGURE 2

Leech and the local bending reflex. (A) Normalized responses of P-cells to the touch of the body wall, (B) the touch (blue arrow) and the bent (red
arrow). (C) The circular body wall is shown in polar coordinates (grades) from 0 (dorsal) to 180 (ventral); arrows show the same as in (B). (D) Cells in
the segmental ganglion (ventral view), (E) cells in the segmental bent network (inhibitory neurons not shown). Motoneurons are marked as follows:
V-ventral, VL-ventrolateral, D-dorsal, DL-dorsolateral, L-lateral. X-the point where the body wall is touched.

complex–were evoked conditionally, and depressed after a few
stimuli (Georgopoulos et al., 1982).

Thus, Georgopoulos et al. (1982) recorded motor cortex
neurons in rhesus monkeys (M1) performing two-dimensional
reaching movement and found that many neurons were active
for multiple movement directions but showed maximal firing
for specific directions (Georgopoulos, 1994). Also, by computing
the weighted sum of neuronal responses, they could predict the
overall movement direction with high accuracy. The formula
used to calculate the overall direction was the same vectorial
summation as the one for the sensory neuron populations, while
the number of participating cells was much larger (Georgopoulos
et al., 1986). It became clear that other neurons in the brain
that controlled directional movements were similarly active for
multiple movement directions but showed maximal firing for
specific directions. In earlier works, for simplicity, this vector
function was assumed to be cosine-shaped; however, it was later
clarified that such a function is much more compact and more
accurately corresponds to a circular Gaussian (the so-called von
Mises distribution) with a single peak, although in 16% of cases it
is bimodal, meaning it has two peaks (Amirikian and Georgopulos,
2000).

Besides M1, many neurons in different parts of the brain
controlling movements also possessed preferred directions. It was
found that neurons in the superior colliculus (SC) which displayed
saccade-related spike activity, have movement fields, with each
cell discharging in association with rapid eye movements that
have a particular range of directions and amplitudes (Lee et al.,
1988), and it shares mechanisms with glissades (Chen et al., 2015).
Vector-average spatial representation was demonstrated by readout

of the rostral SC controlling microsaccade execution (Hafed and
Ignashchenkova, 2013). Similarly, population coding of movements
was found in the premotor cortex (Panzeri et al., 2015). The
population vector model demonstrates that the preferred direction
is an emergent property of the collective activity of neurons. It
is widely used in brain-machine interfaces (BMIs) for decoding
intended movements from neural activity (Wessberg et al., 2000;
Carmena et al., 2003).

It was also found that M1 firing in addition to the well-
studied average directional selectivity (“preferred direction”) of
single-cell activity, was also correlated with the time-varying speed
of movement and is encoded in the same neurons controlling
the directional information (Moran and Schwartz, 1999a). Also,
populational M1 cortical activity was found to correlate with
arm position in three-dimensional space (Kettner et al., 1988),
acceleration (Flament and Hore, 1988), target position (Alexander
and Crutcher, 1990; Georgopoulos et al., 1989) and joint
configuration (Scott and Kalaska, 1997). Each neuron participated
in different activities simultaneously. If the direction of movement
was intuitively simple to be interpreted as vector direction, other
features would require a more “mathematical” interpretation of
vector, focusing on “preferred input.” The formula for calculating
the (normalized) population vector F takes the following form:

F =
∑

i mi × Fi∑
i mi

Where mi is the activity of cell i and Fi is the preferred input for
cell ij. It can be “preferred” direction, preferred speed of movement,
preferred joint angle, etc.,
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FIGURE 3

Spatial coding of movement direction by populations of neurons in primary motor cortex (M1). (A) Tuning curves of eight random neurons in M1 with
preferred directions spanning 360 degrees. (B) Experiment setup, the animal (monkey) is positioned in front of eight-LED located on a circle with an
8 cm radius, and one additional LED in the center. The monkey is trained to move a special manipulandum to touch the lit button. (C) Orderly
variation in the frequency of discharge of a motor cortical cell with the direction of movement: Upper panel impulse activity in the population of
neurons in M1 during five repetitions of movements made in each of the eight directions indicated by light: the eight directions indicated by the
center diagram. Notice the orderly variation in the cell’s activity. Lower panel Directional tuning curve of the same cell [from Georgopoulos et al.
(1982) with permission].

Interestingly, this broad understanding of neuronal preferences
brings a wider understanding of the sensory and motor fields of
individual neurons and the influence of the number of neurons in
the coding population. In both visual and motor cortex models,
the population vector leverages the bell-shaped tuning curves of
individual neurons to encode a variable. In theory, this variable
can be fully recovered using only a small number of neurons.
Without response variability, just a few neurons are sufficient to
represent the entire range of orientations, thus some part of the
population can be removed (for example, by applying a local
anesthetic). This property resembles the effect seen in holography,
then the image may be restored in full by a small part of the
hologram (Sokolov and Vatkyavichus, 1988). The data supports the
distributed coding hypothesis, where motor control emerges from
population dynamics rather than single neurons.

Interestingly, it was found that the distribution of preferred
directions in M1 is correlated to mechanical anisotropies of the
limb and may be more complex (Scott et al., 2001). Some authors
even tried to explain the emergency of population vectors as a
result of different whole-limb motor tasks, under the assumption
that cortical neurons encode low-level muscle activation and that
the conversion of muscle force to hand motion depends on the
geometry of the limb, its inertial properties and the presence of
external loads, suggesting Jacobian linear model (Todorov, 2000).

This model assumes that each pyramidal tract neuron contributes
additively, either via direct projections onto motor neurons or
indirectly through spinal interneurons, to the activation of muscle
groups (Todorov, 2000; Scott, 2000). While joint biomechanics
introduce non-linearities incompatible with the simple Jacobian
assumption (Scott, 2000), it is clear that most proposed limb
movement parameters are interconnected through fundamental
physical laws. For example, in the limb, if all segments (bones) are
connected with joints, the movement of all parts is interdependent.

5 The movement vector of the limb
interconnected by joints is a vector
sum of the movements of its
components

Suppose the limb consists of two segments (bones),
interconnected by the joint, like in a simple arm (Figure 4A).
Let initially these two bones be in one line (Figure 4AI). Then
one bone is moved (Figure 4AII), this bone movement can be
marked as a vector (red arrow). Then another bone is moved
(Figure 4AIII), this bone move can be marked also as a vector
(blue arrow), and the sum of bone movements is, actually, the
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whole limb movement and can be marked as a summary vector
(green arrow). These movements are present in three different
coordinate origins, showing that the vector representing two bone
movements (which are components of the whole movement) is
always the sum of component movements, and does not depend
on coordinate origins. Similarly, it does not depend on the number
of components united by joints, there may be any quantity of joints
(Figure 4B).

Interestingly, the human upper limb, comprising sequentially
connected bones–humerus, radius/ulna, and metacarpals–
functions as a biologically optimized manipulator. Notably,
the relative lengths of these segments often approximate a
Fibonacci sequence, wherein each number is the sum of the
two preceding terms (0, 1, 1, 2, 3, 5, 8,...) (Figure 4B). This
mathematical structure, beyond its esthetic and natural appeal,
underlies powerful optimization principles, which may explain
its recurrence in biological systems. In algorithmic theory,
Fibonacci numbers are known for their role in efficient solutions
to the coin change problem. According to Zeckendorf ’s theorem
(Pooksombat et al., 2022), any positive integer can be uniquely
represented as the sum of non-consecutive Fibonacci numbers.
This property enables a “greedy algorithm” to construct such
sums optimally by iteratively selecting the largest possible
Fibonacci number that does not exceed the remaining value.
In practical terms, this ensures minimal component usage–an
efficient solution mirrored in certain national coinage systems and
computational strategies. Analogously, a jointed manipulator–
biological or robotic–may achieve movement efficiency if its
segments follow Fibonacci proportions. In such a system, reaching
a target in space can be viewed as a decomposition task: the
end-effector’s position is composed of vector segments contributed
by individual joints. A Fibonacci-based length distribution
enables the use of a greedy motion algorithm, prioritizing longer
segments first and progressively incorporating shorter ones. This
strategy minimizes the number of joints actively engaged in a
movement, conserving both neural control effort and mechanical
energy (Figure 4C). Thus, the Fibonacci sequence may confer
biomechanical advantages in natural manipulators such as the
human arm. The Fibonacci-like scaling of ossial lengths furnishes
a geometric backbone that proportionally balances leverage across
successive joints, allowing population-vector motor commands
to map more linearly onto limb torques and thereby simplifying
neural control of the entire extremity. By enabling economical and
versatile movement through a minimal set of joint activations,
it likely represents an evolutionary convergence of form and
functional efficiency. Also, the cohesion of manipulator elements
produces interdependence, and the overall movement is always
described by individual vector summation.

The population vector analysis was used in the study to
extract information encoded in a population of motor cortical
neurons recorded during the performance of individual fingers
and wrist movements, a manipulator with advanced kinematic
structure (Georgopoulos et al., 1999). Movements were examined
using data from Schieber and Hibbard (1993), which demonstrated
that cortical neurons do not respond selectively to the flexion
or extension of individual fingers but rather become active
during movements involving all fingers or their specific subsets.
Moreover, the neuronal populations engaged in several finger
group movements exhibit overlapping spatial distributions within

the motor cortex. The discharge of motor cortex neurons related
to distinct finger movements contains information representing
the spatial geometry of the hand embedded within the flexion
and extension movement domain. The authors applied population
vector analysis and found that a majority of individual neurons
(132 out of 176) were “tuned” to specific movement directions
within the space of wrist and finger motion. Furthermore, the
computed population vector closely matched the actual direction
of finger movement. Similar findings were reported by Moran and
Schwartz (1999b), who recorded from individual neurons in the
premotor cortex of monkeys. In this study, the animal used its index
finger to trace various shapes (e.g., circles, squares) displayed on a
touch-sensitive screen. Neural activity was recorded continuously
and analyzed as a single population, drawing from four cortical
areas (three primary motor regions and one dorsal premotor
area). The resulting population vector accurately reproduced the
shapes being traced. Temporal relationships between neural activity
and finger movements were also assessed, revealing that neural
responses did not consistently precede movement onset by a fixed
delay. The movements consisted of four kinematic segments clearly
distinguishable in the population vector analysis. The population
vector successfully predicted both the direction and velocity of
finger motion. In another study, (Caminiti et al., 1991) investigated
the activity of 156 individual neurons in area 6 of the monkey
premotor cortex during arm movements performed within a three-
dimensional sphere. The vast majority of neurons (152, or 97%)
showed systematic modulation of their activity across different
movement directions, exhibiting clear directional preferences.
These preferred directions formed a continuous representation
across 3D space. However, when the animal was required to move
its hand to the same final position from different starting locations,
individual neurons adjusted their directional tuning vectors. These
shifts varied in magnitude across neurons and were particularly
evident during elbow rotations, suggesting that animals selected the
most efficient trajectory to reach the target. Similar tuning vector
changes were also observed in the primary motor cortex. In contrast
to individual tuning vectors, the population vector remained stable
and did not shift with joint rotations. Neuronal activity in both
motor and premotor cortices was significantly influenced by the
static starting position of the arm. Nevertheless, in both motor and
premotor areas, the overall population vector reliably predicted the
direction of overall movement.

While a neuronal population vector with “preferred input” may
be enough to describe many sensory and motor-related neuronal
vectors, a more profound model would have additional advantages.

6 Motor neurons as vectors

In physics and engineering, vectors are commonly used to
represent quantities that depend on multiple variables. Formally,
a vector is an array or list of numbers, known as components,
which describe its behavior across different dimensions or variables.
The activation of motoneurons can be similarly represented
using vector principles, particularly in how signals from neurons
combine to produce a resultant effect. Each motoneuron can
be conceptualized as a vector, where the magnitude represents
the level of motor activation or the strength of the signal
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FIGURE 4

Movements of the limb and its components interconnected by joints. (A) Movement of the limb that consists of two bones interconnected by the
joint, presented in three coordinate origins (I, II, and III): 1-all bones are in line, two-movement of the first bone (marked as a red arrow),
3-movement of the second bone (marked as a green arrow). Summary movement is always the sum of movements of the first and second bones
(marked as a blue arrow). (B) The arm has bones of different lengths, related to Fibonacci numbers 2-3-5-8 [approaches the Golden Ratio
(approximately 1.618)] as the sequence progresses. (C) Fibonacci numbers as the length of bones in a human hand.

transmitted through its synapses. Since a motoneuron can form
different connections, its magnitude can vary across synaptic
contacts, making it multidimensional. The direction of the vector
corresponds to the specific muscle or motor field that the neuron
innervates, which can also span multiple dimensions. When two
motoneurons partially overlap in their motor fields, their effects
can be visualized as the addition of vectors. If one motoneuron
is strongly activated while the other is moderately active, the
combined effect is represented by the resultant vector, which is the
sum of their individual contributions. This process mirrors vector
addition in physics, where the components of the vectors combine
to produce a resultant vector. The point at which a muscle reaches
its contraction threshold corresponds to the resultant vector’s
magnitude exceeding a specific threshold. Just as in physics, where a
resultant force vector must surpass a certain magnitude to produce
a physical effect, in neurophysiology, the combined activation from
two or more motoneurons must exceed a threshold to trigger
muscle contraction (Theeuwen et al., 1994). These established
findings allow for the conversion of activity level to direction
because muscles themselves have anatomical preferred directions
(Schieber and Hibbard, 1993).

7 Motor units in the mammalian
muscle have a broad range of
tuning, a unit direction changes
gradually depending on its location
within the muscle

While anatomical preference direction in muscle contraction
seems obvious, it happens that the directional activity of muscles is
broadly and often multimodally tuned: one muscle as a whole has a
fairly broad tuning range for the direction of the force it produces.
Herrmann and Flanders (1998), (Schieber and Hibbard, 1993)

measured the “best” force directions of motor units in the
biceps (both heads) and the deltoid muscle (anterior, middle, and
posterior parts) in humans by recording individual motor units
during isometric exertion in various directions (Herrmann and
Flanders, 1998). For all muscles studied, neighboring motor units
could have significantly different best directions, suggesting that
each muscle receives multiple directional commands (Herrmann
and Flanders, 1998). However, it was found that each motor unit
has its own best direction, which does not coincide with the best
directions of other motor units within the same muscle, and that
17% of motor units have two or more best directions. The best
direction of a motor unit changes gradually depending on its
location within the muscle. The directional vectors did not cluster
into any groups. It is suggested that central mechanisms, when
recruiting motor units in a muscle, also take into account the
“best” directions specific to each unit. Thus, the direction of muscle
movement depends on the population of motor units participating
in the movement, and the population of motor neurons controlling
these units. We may predict that summary movement will be the
vector summation of the population.

8 The combined effect of
motoneurons in snails

Snails, particularly those in the genus Helix, have been
significant in neurophysiological research due to their relatively
simple nervous system compared to higher animals, making them
easier to study and understand, and having large, identifiable
neurons accessible for experimental manipulation. These neurons,
such as the giant motor neuron C3 in the cerebral ganglion, or
LPa3 in the pleural ganglion of Helix, are large enough to be easily
recorded from and stimulated, providing valuable insights into the
neural function, motor effect, and behavior (Munoz et al., 1983;
Iniushin et al., 1987; Bugai et al., 2005). Snails also exhibit a range
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of relatively complex behaviors, including feeding, mating, and
withdrawal reflexes, which can be studied in detail by analyzing
neural circuits.

Snails have no internal skeleton, and muscles in these animals
have no specific reciprocal control, like in animals with skeletons
(vertebrates and arthropods), however, they possess a sophisticated
hydraulic system that participates in tentacle and body movements
(hydraulic skeleton). The absence of reciprocal control makes the
analysis of snail movements easier and can be described as a
summation of the effects of participating motoneurons on their
motor fields. On the other hand, snails possess motoneurons
with large motor fields that span both myocardium control
(providing hydraulic pressure) and body wall, pneumostome,
and tentacle muscles (Bugai et al., 2005; Safonova et al., 1984;
Zhuravlev et al., 1989) (see Figures 5A–H).

The motoneurons and their activation in snails can be described
using vector principles. Each motoneuron can be thought of
as a vector, where the magnitude of the vector represents the
level of activation or the strength of the signal sent by the
motoneuron, and the direction represents the specific motor field
(or multiple motor fields) it innervates, thus determining the
particular direction (or various directions) of muscle movement.
When two motoneurons have partially superposed motor fields,
their effects can be considered as vector sum. This is similar to
how vectors are added in physics, where the resultant vector is the
sum of the components of the individual vectors (Taylor, 2025).
The muscles reaching the contraction threshold can be seen as the
point where the resultant vector (the combined activation from
both motoneurons) exceeds a certain magnitude.

For example, giant cholinergic motoneurons LPa3 and
RPa3 (from left and right parietal ganglions in Helix) control
muscles from the lung cavity (Figure 5E), mantle (Figure 5D),
pneumostome (Figure 5F), and heart (Figure 5C). Interestingly,
these neurons activate only the ventricle, not the atrium in the
heart (Figure 5C), thus controlling the hydraulic skeleton as
well. LPa3 and RPa3 motor fields overlap significantly. On the
other hand, smaller motoneuron LPa4 (its cell body is situated
near LPa3, and marked red in Figure 5A) has a smaller motor
field, which also overlaps with the motor field of LPa3. On the
mantle and body wall near the pneumostome one can see that
the motor field M1 of LPa3 (blue) is overlapped with motor field
M2 (red) of LPa4. Muscles in the overlapping regions generate
postsynaptic potentials (PSPs) in the muscles (Figure 5B) which
can be recorded using flexible plastic suction electrodes (Iniushin
et al., 1987). A comparison of postsynaptic potentials from different
neurons at the same point showed that postsynaptic potentials
from neuron RPa4 appeared in the mantle muscles 25–30 ms
earlier than those from RPa3 (Zhuravlev et al., 2004). Activation
of the muscle reaching the contraction threshold can be achieved
by high-frequency stimulation from each of the motoneurons,
or by the addition of stimulus from both motoneurons, working
simultaneously (Figure 5B, arrow). Interestingly, because high-
order motoneurons in snails participate in a variety of movements,
and their hi-frequency discharge leads to “escape” contraction
of main muscles leading to the hiding of the animal inside its
shell, these cells were deemed “command” neurons and even the
concept of command neuron arises (Balaban and Litvinov, 1977;
Kupfermann and Weiss, 1978). Besides LPa3 and RPa3 in Helix

FIGURE 5

(A) position of neurons LPa3, Lpa4, Rpa3, Rpa4 in the right and left parietal ganglion of Helix. Also, motor fields of LPa3 (M1), Lpa4 (M2), and RPa4
(M3) are shown (as dashed circles) near the mantle and pneumostome. Note, that all these motor fields are superimposed. (B) Synaptic potentials
recorded from the mantle, in superimposed part of LPa3 and LPa4 motor fields. Note summation of SPs (arrow), (C–F) synaptic potentials elicited by
LPa1 or RPa3 neurons in the mantle, lung cavity, heart, and around pneumostome in Helix [from Iniushin et al. (1987), with changes]. (G) Synaptic
potentials in mantle and heat from giant neurons d-VLN and d-RPLN in Achatina [from Safonova et al. (2008)], (H) distribution of motor fields
(studied as normalized synaptic potentials amplitudes along Helix mantle near pnemostome). Note, that LPA3 controls all the mantle as a whole,
while LPa4 controls the right, and RPa4 controls the left part of it.
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pomatia, similar motoneurons play crucial roles in coordinating
specific behaviors in other snails. For instance, in the tentacle
withdrawal reflex of Helix aspersa, the giant motor neuron C3 is
paramount in eliciting and forming both tentacle retraction and
bending (Prescott et al., 1997).

In the whole-body withdrawal reaction of snails, biphasic
excitation of motoneurons can arise from sensory stimulation or
spontaneously, indicating a central program that can be triggered
and modulated by feedback from motoneurons (Arshavskii and
Deliagina, 1990). Of course, hi-order motoneurons can themselves
be interneurons in another reflex arc: In Helix, the tentacle
withdrawal reflex involves the activation of motor neurons in the
tentacle ganglion, which then send signals to the cerebral ganglion
to activate the giant motor neuron C3 and other smaller motor
neurons. This coordinated action results in both tentacle retraction
and bending (Hernádi et al., 2014). In the posterior tentacles
of snails, local motor neurons can be activated by peripheral
stimuli, such as olfactory inputs, to generate local movements
without the direct involvement of the central nervous ganglions
(CNS). These local motor neurons can receive inputs from local
interneurons, modulating their activity to produce patterned
contractions (Hernádi et al., 2014). In swimming mollusks neurons
controlling cardiac functions also overlap with locomotor neurons
in certain cases. For example, heart excitatory neurons (HE) and
wing motoneurons exhibit coordinated activity during increased
locomotion (Kodirov, 2011). While not explicitly described as
vector summation, this coordination reflects how overlapping
motor fields can produce integrated physiological responses.

Of course, in addition to the simple summation of the
motor field of motoneurons, snails coordinate muscle contractions
through a complex interplay of central and peripheral mechanisms,
involving specific neural circuits and feedback loops. For repetitive
behaviors, like feeding and locomotion, an important central
component called central pattern generator (CPG) was found
which may generate rhythmic patterns that directly control
motoneurons. For example, during feeding in snails like Helisoma,
the buccal ganglion contains CPGs that activate distinct groups
of motor neurons during different phases of the feeding cycle
(protraction, rasp, and swallow) (Murphy, 2001; Barkan and
Zornik, 2019). These motor neurons are often electrically coupled
to interneurons, ensuring synchronized activity (Barkan and
Zornik, 2019; Staras et al., 1998).

Also, snails move by generating rhythmic muscular
contractions, known as pedal waves, on the underside of their foot.
These waves push the snail’s body forward by creating friction
between the foot and the surface. The foot secretes mucus, reducing
friction and allowing the snail to glide smoothly over various
surfaces. The waves alternate between muscular contractions and
relaxations, creating a forward motion as different parts of the foot
push against the substratum. In sea mollusks rolling pedal waves
produce undulations of the body allowing axial locomotion. The
generation of pedal waves in mollusks, such as Aplysia, involves
a single central pattern generator (CPG). Research on Aplysia
locomotion reveals that rhythmic pedal waves are produced by a
coordinating activity through two phases (phase I and II) mediated
by interneurons and electrically coupled motoneurons. The motor
neurons (P1Ns) involved in locomotion exhibit phase-specific
activity during two distinct phases of the motor program: Phase I
(168◦) involves class 1 interneurons (PI1/PI2) driving ipsilateral

motoneurons via strong electrical coupling, while Phase II (357◦)
involves class 2 interneurons (PI3) synchronizing contralateral
activity. Computational analyses suggest that the pedal ganglion
may function as a spiral attractor network, which integrates
motoneuron activity to generate smooth, propagating pedal waves.
This could be interpreted as a vector summation of motoneuron
signals across overlapping motor fields (Chen et al., 2012; Wang
et al., 2023). In Clione mollusks, there are two special (A1 and
A2 from pedal ganglion) neurons responsible for generating a
frequency of pedal waves. Neurons 1A and 2A fired reciprocally
at the beginning of the phase of elevating and lowering the
wing, respectively (Arshavsky et al., 1985). Similarly, it may be
interpreted as a vector summation of two frequencies.

Although mollusk studies do not explicitly describe
motoneurons as vectors in the mathematical sense, their
functional organization–such as overlapping motor fields,
electrical coupling, and phase-specific activation–aligns well with
the concept. The integration of motoneuron signals within CPGs
and neural circuits produces coordinated movements akin to
vector summation in physics.

9 Discussion of recent works and
future projections

While this review concentrated on the foundations of vectorial
ideas in neurobiology, our survey shows that population-vector
coding is more than a convenient read-out; it is deeply entwined
with the brain’s predictive-coding machinery. In predictive coding,
the brain continually compares incoming signals with internal
forecasts, passing forward only the mismatch (prediction error).
Recent high-density Neuropixels and two-photon studies (Failor
et al., 2025; van Beest et al., 2024; Paulk et al., 2022) reveal that
population vectors rotate through low-dimensional manifolds that
anticipate the animal’s next sensory state or motor outcome–
exactly the behavior expected if vectors embody predictions that are
updated on the fly.

This predictive role has direct consequences for brain–
machine interface (BMI) design, which uses vectoral representation
of movements in the brain as a predictive “model” that
needs to be extracted. Besides the sensitivity to instabilities
at the neural interface resulting in a degradation of decoding
performance, decoders that treat population vectors as static
“output channels” ignore the anticipatory drift embedded in
neural state space; by modeling that drift, future adaptive
BMIs can reduce latency and improve accuracy. Non-linear
Manifold Alignment with Dynamics (NoMAD), uses unsupervised
distribution alignment to update the mapping of non-stationary
neural data to a consistent set of neural dynamics (Karpowicz et al.,
2025)

The biomechanical regularities highlighted by Verrelli et al.
(2021)–Fibonacci-like scaling that linearizes limb torque mapping–
further imply that optimal prosthetic actuation should respect
native geometric ratios, ensuring that decoded neural vectors
translate into naturalistic forces. Finally, emerging links between
population-vector dynamics, self-organized criticality, and fast
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oscillatory synchrony raise the possibility that critical-state network
models may become valuable priors for both decoding algorithms
and artificial neural reservoirs (Bak et al., 1988; Bai et al., 2016; Yu
et al., 2008; Nguyen et al., 2021).

Future extensions of this review should therefore cover:

• Multichannel and optical recordings that expose predictive
vector trajectories in real time.
• Single- versus multi-site microstimulation protocols for

writing vector “priors” back into the cortex.
• Parallels between one-bit LLM updates and spike-based

weight adjustments in biological vectors.
• Roles of self-organized criticality and mesoscale synchrony in

stabilizing long-range vector coherence.

10 Conclusion and outlook

Population-vector coding provides a predictive, low-
dimensional language that the nervous system re-uses whenever
high-dimensional activity must be transformed into behaviourally
relevant commands. Modern recording and stimulation
technologies reveal that these vectors are dynamic forecasts,
tightly coupled to body geometry and nested within oscillatory
and critical-state network architectures. Open questions include:
How are vector predictions combined across cortical levels? What
network motifs maintain criticality without sacrificing stability?
How many artificially injected “votes” are required to bias a
native population vector? And can one-bit or reservoir-computing
hardware exploit the same principles to achieve energy-efficient
inference?

Translational opportunities span closed-loop prosthetics that
predict user intent before movement onset, optogenetic or electrical
feedback that embeds sensory priors directly into cortex, and
neuromorphic chips that mimic vector-based predictive coding for
edge AI. Bridging these basic and applied avenues promises both
deeper insight into neural computation and practical gains for
neuro-rehabilitation and human–machine symbiosis.
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