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Introduction: Neurodegenerative diseases (NDs) are progressive disorders with 
an increasing global health impact. Neural injury biomarkers have emerged as 
potential tools for early diagnosis and disease monitoring.

Methods: To map research trends in this field, we conducted a comprehensive 
bibliometric analysis of 1,228 peer-reviewed articles published from 1991 to 
2024 using CiteSpace and the Bibliometrix R package.

Results: Our analysis revealed steady publication growth, particularly accelerating 
after 2015. The United States, United Kingdom, and China produced the highest 
volume of publications and citations, with institutions such as the University of 
California System and Harvard University serving as key collaboration hubs. Early 
research prioritized tau, amyloid-beta (Aβ), cerebrospinal fluid (CSF), and mild 
cognitive impairment (MCI). Since 2020, the focus has expanded to blood-based 
biomarkers, exosomal microRNAs, and inflammation-related markers such as glial 
fibrillary acidic protein (GFAP) and translocator protein (TSPO). Through citation 
and clustering analyses, we identified three developmental phases: (1) CSF-based 
amyloid/tau validation, (2) multimodal and genetic biomarker integration, and (3) 
the emergence of plasma and neuroinflammatory markers.

Discussion: These trends reflect a paradigm shift toward minimally invasive and 
multifactorial diagnostic approaches. Our findings underscore evolving priorities 
in NDs biomarker research and highlight the importance of multi-omics, artificial 
intelligence (AI), and interdisciplinary collaboration for translational discovery 
and clinical application.
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1 Introduction

Neurodegenerative diseases (NDs), including Alzheimer’s disease (AD), Parkinson’s 
disease (PD), and frontotemporal dementia (FTD), are defined by progressive neuronal 
degeneration, frequently accompanied by cognitive decline and motor dysfunction (Dugger 
and Dickson, 2017). With aging populations worldwide, the number of individuals with 
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dementia is projected to reach 152.8 million by 2050 (Collaborators, 
2022), of which AD accounts for approximately 70% of cases (Reitz 
and Mayeux, 2014). This escalation poses substantial societal and 
economic burdens globally. While advancements in genetics and 
neuroimaging have enhanced our understanding of NDs 
pathophysiology, the lack of definitive, non-invasive diagnostic 
tools remains a critical barrier to early detection and disease-
modifying therapies.

A key challenge in managing NDs is the absence of reliable 
biomarkers for early diagnosis (Logroscino et al., 2022). Emerging 
evidence highlights neural injury biomarkers—encompassing 
proteins (Raghunathan et  al., 2022), lipids (Wei et  al., 2023), 
biofluids (Alcolea et al., 2023), and imaging markers (Dilliott et al., 
2023)—as pivotal indicators of neuroinflammation, oxidative stress 
(OS), and neurodegeneration. Despite their promise, gaps persist in 
translating these biomarkers into clinical practice (Cheslow et al., 
2024). Major hurdles include standardizing protocols for sample 
collection, improving assay reproducibility, and establishing 
population-specific cutoff thresholds. Additionally, limited disease 
specificity restricts the clinical utility of many biomarkers. 
Addressing these challenges is essential to bridge the gap between 
discovery and clinical implementation.

Bibliometric analysis has proven effective for mapping research 
trends, identifying key contributors, and forecasting emerging topics 
(Hicks et  al., 2015; Wei et  al., 2022). Although prior studies have 
broadly examined NDs, few focus specifically on neural injury 
biomarkers. This study aims to provide a comprehensive bibliometric 
analysis of research trends, key contributors, and future directions in 
the application of neural injury biomarkers for NDs.

2 Data and methods

2.1 Retrieval strategy and data collection

We extracted data from the Web of Science (WOS) Core 
Collection database, selected for its coverage of over 12,000 academic 
journals and frequent use in prior bibliometric studies (Ege et al., 
2023; Jiang et  al., 2023; Wang et  al., 2024). Our search strategy 
targeted studies on neural injury biomarkers in NDs, filtering for 
“Article” and “Review” document types in English (1991–2024; 
search date: December 11, 2024). Data were exported in plain text 

format. The search strategy is detailed in Table 1. A topic search (TS) 
was conducted, encompassing titles, abstracts, and keywords. The 
search query combined terms via Boolean operators: TS = (“Neural 
injury biomarkers” OR “Neurological biomarkers” OR NSE OR 
S100B OR GFAP OR Tau OR UCH-L1) AND (Neurodegenerative 
diseases OR “Alzheimer’s disease” OR “Parkinson’s disease” OR 
“Huntington’s disease” OR “Amyotrophic lateral sclerosis” OR 
“Multiple sclerosis”). A total of 1,228 articles were retrieved 
for analysis.

2.2 Inclusion and exclusion criteria

Inclusion criteria: studies categorized as “Article” or “Review” in 
the WOS database and addressing the application of neural injury 
biomarkers in NDs.

Exclusion criteria: articles excluded from the analysis included: 
(1) conference papers, newspapers, books, and other non-peer-
reviewed sources; (2) duplicate records; (3) articles with incomplete 
bibliographic information.

2.3 Data analysis

Bibliometric analysis was performed using CiteSpace v.6.2. R4 
(64-bit) and the “Bibliometrix” R package. CiteSpace is a software 
tool for visualizing and analyzing scientific literature (Chen, 2004). 
It enables exploration of citation networks, keyword co-occurrence, 
author collaboration patterns, and the identification of highly-cited 
references and keywords experiencing citation bursts over specific 
periods. These features assist in understanding research trends, 
hotspots, and the evolution of scientific fields. Bibliometrix is an 
open-source, free-to-use tool written in R (Aria and Cuccurullo, 
2017). The Bibliometrix R package was used to extract core 
bibliometric elements, including titles, abstracts, authors, references, 
institutions, countries, and keywords. It also generates graphical 
representations that facilitate the comprehensive analysis of the 
literature’s knowledge structure.

To ensure reproducibility and comparability, all analyses were 
conducted using default settings. In CiteSpace, the g-index algorithm 
was applied with a scaling factor of k = 25. CiteSpace used spectral 
clustering combined with modularity optimization (resolution 
parameter γ = 1.0, default) to identify network communities. Clusters 
were labeled using the log-likelihood ratio (LLR) algorithm, which 
prioritizes statistically significant and distinctive terms.

3 Results

3.1 Overview of main information

Analysis of the WOS Core Collection data (Figure 1) revealed 
1,228 articles published between 1991 and 2024 across 397 journals. 
Among these, 834 (67.92%) were original research articles, while 394 
(32.08%) were reviews. The field exhibited an average annual growth 
rate of 7.39%, with contributions from 6,844 authors and international 
collaboration in 30.05% of publications. The total citation count 
reached 79,916, yielding an average of 48.64 citations/article.

TABLE 1 Literature search strategy used in the web of science core 
collection.

Search 
phase

Search strategies Literature 
number

#1

TS = (“Neural injury biomarkers” OR 

“Neurological biomarkers” OR NSE OR S100B 

OR GFAP OR Tau OR UCH-L1)

176001

#2

TS = (Neurodegenerative diseases OR 

“Alzheimer’s disease” OR “Parkinson’s disease” 

OR “Huntington’s disease” OR “Amyotrophic 

lateral sclerosis” OR “Multiple sclerosis”)

44232

#3 #1 and #2 1228

Data retrieved from web of science core collection (1991–2024). Search conducted on 
December 11, 2024.
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3.2 Publication output trends

The trends in publication output reveal notable shifts in research 
focus over time (Figure 2). Between 1991 and 2015, publications on 
neural injury biomarkers remained stable. However, a marked increase 
in the volume of publications was observed from 2015 onward, with 
a peak of 188 articles published in 2020. This surge correlated with the 
advent of high-sensitivity assays such as single-molecule array 
(SIMOA) and increased funding for translational research following 
failed anti-amyloid drug trials. These trends underscore growing 
global interest in biomarkers for NDs diagnosis and prognosis.

3.3 Analysis of countries, institutions, and 
authors

As shown in Figures  3A,B, the United  States contributed the 
largest number of publications (514 articles, 41.86%), followed by the 
United Kingdom (136 articles, 11.07%), China (113 articles, 9.20%), 
Germany (108 articles, 8.79%), and Sweden (93 articles, 7.57%). These 
findings are further supported by Table  2, which shows the 
United States, Sweden, and China as the leading countries in terms of 
citation counts. This suggests that these countries are major drivers of 
research in the field of neural injury biomarkers for NDs.

The leading institutions in this area of research include the 
University of California System (187 articles), Harvard University (180 
articles), University of London (145 articles), Washington University 
(134 articles), and University College London (112 articles) 
(Figures 4A,B). These institutions have made significant contributions 
to the field, reflecting their role as key research hubs for neural 
injury biomarkers.

These institutions have made significant contributions to the field, 
underscoring their role as central research hubs for neural injury 
biomarkers. The analysis of corresponding authors’ countries (Table 3) 
reveals that the United States leads with the highest percentage of single-
country publications (78.7%), while Germany stands out for its higher 
proportion of multi-country publications (46.8%). This highlights the 
strong international collaborative nature of research in this domain. 
Figure 5A demonstrates that Blennow K and Zetterberg H are two of the 
most active authors in this field, consistently contributing to the literature 
over time. Their substantial output reflects their critical role in advancing 

the understanding of NDs. Figure 5B further emphasizes the geographic 
distribution of research activity, with the United States, China, and the 
United Kingdom leading in terms of research output. Notably, Germany 
and Sweden exhibit a high degree of international collaboration, with over 
40% of their publications resulting from multi-country partnerships, 
reflecting the global interconnectedness of research efforts. As shown in 
Figure 5C, the production of these prominent authors has remained 
consistent over the years, with annual publications continuing to reflect 
their sustained influence and contributions to the field.

3.4 Core journals

Based on Bradford’s Law, 15 core journals were identified in this field 
(Figure 6 and Table 4). The top five journals contributing the most to this 
research area were the Journal of AD, Frontiers in Aging Neuroscience, 
International Journal of Geriatric Psychiatry, Neurobiology of Aging, and 
Journals of Gerontology Series A: Biological Sciences and Medical 
Sciences. These journals have become crucial platforms for publishing 
groundbreaking studies in the field.

3.5 Keyword frequency and research 
hotspots

The frequency of keywords was analyzed to identify research 
hotspots. The co-occurrence network (Figure  7A) highlighted 
prominent topics such as AD, mild cognitive impairment (MCI), 
dementia, amyloid beta (Aβ), cerebrospinal fluid (CSF), tau, and the 
National Institute. Figure 7B displays the top 25 keywords with the 
strongest citation bursts, with neurofibrillary tangles (NFTs) exhibiting 
the highest burst strength (10.42). Prior to 2015, research focused on 
senile dementia, FTD, and multiple sclerosis (MS), with an emphasis 
on randomized controlled trials, transgenic mouse studies, tau protein, 
amyloid precursor protein (APP), and apolipoprotein E (APOE) 
genotype. However, after 2015, there was a shift toward PD, 
frontotemporal lobar degeneration (FTLD), and CSF biomarkers. 
From 2021 to 2024, the keyword “tau” remained a focal point. 
Figure  7C illustrates the nine most representative clusters, with a 
Modularity Q value of 0.44, indicating strong clustering, and a 
Weighted Mean Silhouette S value of 0.71, signifying a compelling 

FIGURE 1

Bibliometric landscape of neurodegenerative disease biomarker research from 1991 to 2024.
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cluster structure. These clusters included MCI, OS, NFTs, positron 
emission tomography (PET), MS, cortical thickness, FTD, randomized 
controlled trials, and AD. Figure 7D illustrates the development and 
transformation of keywords in each cluster. It allows us to better 
recognize changes in a particular topic in a research field over time and 
to quickly understand the development and frontiers of the field.

Additionally, Figure 8 shows the link between keywords (left), 
authors’ nationalities (center) and institutions (right). The area of the 
rectangle is proportional to the number of publications and shows that 
AD major researchers are from the United States and that multiple 
institutions are involved in the field.

3.6 Co-cited authors and literature

Table 5 lists the top 10 most co-cited articles. Among the most 
co-cited authors, Petersen et al. (2001) (Mayo Clinic Rochester, USA) 

FIGURE 2

Annual scientific production in neurodegenerative disease biomarker research (1991–2024).

FIGURE 3

Geographic distribution and international collaboration in neurodegenerative disease biomarker research. (A) Country collaboration network. 
(B) Global publication distribution by country.

TABLE 2 Citation metrics by country in neurodegenerative disease 
biomarker research.

Rank Country Total citations 
(TC)

Average article 
citations

1 USA 21,882 53.50

2 Sweden 4,970 146.20

3 China 3,698 33.00

4 United Kingdom 3,507 41.30

5 Brazil 3,294 78.40

6 Germany 3,019 48.70

7 Australia 2,041 44.40

8 Canada 1,992 45.30

9 France 1,979 79.20

10 Italy 1,691 51.20
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FIGURE 4

Institutional contributions. (A) Co-authorship network among institutions. (B) Top contributing institutions by number of publications.

TABLE 3 Country composition of corresponding authors in neurodegenerative disease biomarker research.

Rank Country Articles Percentage (%) SCP MCP MCP %

1 USA 409 33.3 322 87 21.3

2 China 112 9.1 90 22 19.6

3 United Kingdom 85 6.9 55 30 35.3

4 Germany 62 5 33 29 46.8

5 Spain 50 4.1 29 21 42

6 Australia 46 3.7 30 16 34.8

7 Canada 44 3.6 27 17 38.6

8 Brazil 42 3.4 27 15 35.7

9 Sweden 34 2.8 17 17 50

10 Italy 33 2.7 23 10 30.3

SCP: Publications involving authors from a single country; MCP: Publications involving authors from multiple countries.

FIGURE 5

Author-level collaboration and productivity analysis. (A) Co-authorship network among authors. (B) Distribution of corresponding authors’ countries. 
(C) Temporal distribution of author productivity.
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had the highest co-citation count (3,719), establishing it as the most 
influential study in this field. Other highly co-cited works include 
those by Blennow et  al. (2006) (Sahlgren’s University Hospital, 
Sweden; citation count: 3,358) and Dubois et al. (2016) (Sorbonne 
Universities, France; citation count: 1,261). These studies have made 
seminal contributions to understanding neural injury 
biomarkers in NDs.

4 Discussion

This study presents the comprehensive bibliometric analysis 
focused specifically on neural injury biomarkers in NDs. It identifies 
evolving research priorities from CSF-based biomarkers to minimally 
invasive blood-derived markers, especially post-2020. Notably, the 
study highlights emerging interest in neuroinflammation and OS as 
integral pathological components. Furthermore, it delineates three 
distinct developmental stages of the field, offering a temporal 
framework that may guide future research and clinical translation.

4.1 Overview of development in the field

The publication volume has increased steadily over the past three 
decades, with a pronounced surge post-2015. This growth aligns with 
rising global interest in biomarkers for neurodegeneration and their 
potential to improve diagnostic and prognostic accuracy. The 
United  States, United  Kingdom, and China emerged as leading 
contributors in both publication output and citation impact.

The most frequently studied biomarkers included tau protein, Aβ, 
CSF biomarkers, and NFTs. These results corroborate established 
knowledge linking tau (Scheltens et al., 2021; Ossenkoppele et al., 
2022) and Aβ (Soderberg et  al., 2023; Jia et  al., 2024) to AD 

pathophysiology. However, our analysis revealed a paradigm shift 
toward OS-and neuroinflammation-related biomarkers post-2015. 
Although OS and neuroinflammation represent distinct pathological 
processes, they exhibit bidirectional interactions: OS triggers reactive 
oxygen species (ROS) production, leading to lipid peroxidation, 
protein misfolding, and DNA damage, while chronic 
neuroinflammation exacerbates neuronal injury via microglial 
activation (Islam, 2017; Singh et al., 2019; Teleanu et al., 2022). This 
shift underscores the multifactorial nature of NDs and the need for 
biomarkers capturing broader pathological spectra.

4.2 Analysis of countries, institutions, and 
journals

From the perspective of international cooperation and research 
teams, scientific research institutions in the United  States, the 
United  Kingdom, China, Germany and other countries dominate 
the field, forming several research teams with international influence. 
The relatively close cooperation network among these teams has 
contributed to the rapid development of research in this field. 
However, we also note that despite the significant increase in research 
results in this field, there are still many challenges in the clinical 
translational application of biomarkers, such as the specificity, 
sensitivity, and standardization of biomarkers, which still need to 
be further researched and solved. Future research should emphasize 
multidisciplinary integration and foster tighter connections between 
basic and clinical research to enhance the real-world utility of neural 
injury biomarkers. Research in this area comes from the University of 
California System, Harvard University, University of London, 
Washington University, and University College London.

Moreover, our analysis identified key journals such as Journal of 
AD and Frontiers in Aging Neuroscience as central to the 

FIGURE 6

Core journals in neural injury biomarker research: a Bradford’s law analysis.
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dissemination of research on neural injury biomarkers. These journals 
have become crucial platforms for publishing groundbreaking studies 
and significantly contributing to the field’s development.

4.3 Research hotspots and trends

Keyword co-occurrence analysis identified nine core clusters with 
AD MCI and Aβ/tau pathology forming recent investigative axes. 
MCI affects 20–50% of older adults and represents a prodromal stage 
where early intervention may delay dementia progression (Chaudhary 
et  al., 2020; Tabeeva, 2019). The Montreal Cognitive Assessment 
(MoCA) demonstrates 89% sensitivity and 75% specificity 
outperforming traditional tools (Tan and Tan, 2021).

Plasma homocysteine (Hcy) and APOE ε4 are associated with the 
risk of NDs, especially in patients with AD and MCI, with patients 
with non-carrier genotypes showing more pronounced changes in the 
neurodegenerative marker (phosphorylated tau 217) (Lin et al., 2025). 
In addition, retinal imaging, a non-invasive modality, has also shown 
promise in detecting early microvascular and structural alterations 
linked to MCI (Christinaki et al., 2022).

OS and neuroinflammation, as intertwined mechanisms, drive 
lipid peroxidation, protein aggregation, and DNA damage, 
culminating in neuronal apoptosis (Maciejczyk et al., 2020). Elevated 
OS markers such as 8-hydroxydeoxyguanosine (8-OHdG) correlate 
with cognitive decline in AD (Graille et  al., 2020; Ghezzi and 
Mooradian, 2021), while ROS overproduction activates 
pro-inflammatory cytokines (IL-1β, TNF-α), amplifying 
neuroinflammation via microglial activation (Dhapola et al., 2021; 
Leng and Edison, 2021). These findings support antioxidant and anti-
inflammatory therapies for disease mitigation.

NFTs, beyond influencing neuronal survival, correlate with 
pathological progression. Hippocampal NFTs density inversely 
correlates with cognitive impairment in AD (Iliyasu et al., 2023), while 
tauopathy-specific NFTs distribution aids differential diagnosis 

(Richardson et  al., 2024). Tau-specific PET radiotracers (e.g., 18F-
THK5351, 18F-MK-6240) enable in  vivo NFTs quantification with 
85–90% accuracy (Ishibashi et  al., 2024), and transcriptomics link 
NFTs formation to neuronal stress responses (Otero-Garcia et  al., 
2022). While PET achieves 90% amyloid detection accuracy, its 
accessibility remains limited (Doruyter et al., 2021). Conversely, blood-
based biomarkers [e.g., plasma neurofilament light chain (NfL) (Quiroz 
et  al., 2020), p-tau217 (Ashton et  al., 2022)] revolutionize scalable 
screening. Emerging frontiers include FTD-specific TAR DNA-binding 
protein 43 (TDP-43) biomarkers (Chatterjee et  al., 2024) and 
randomized controlled trial (RCT) designs for anti-amyloid therapy 
evaluation (Hoilund-Carlsen et al., 2024; Logroscino et al., 2025).

This study delineates three transformative phases in neural injury 
biomarker research, each demarcated by pivotal external events that 
reshaped the trajectory of biomarker development: (1) 1991–2015: 
Amyloid/tau hypothesis validation; (2) 2015–2020: Multimodal 
biomarker integration; (3) 2020–2024: Emergence of blood-based 
biomarkers and neuroinflammation focus.

4.3.1 Phase I (1991–2015): amyloid and tau 
hypothesis validation

Foundational work validated the amyloid cascade hypothesis, 
focusing on CSF Aβ42 and tau detection. Hardy and Higgins 
established Aβ’s role in AD progression (Hardy and Higgins, 1992), 
while Blennow et al. (2006) demonstrated diagnostic utility of CSF 
p-tau/Aβ42 ratios. Despite APP/PS1 transgenic models linking 
amyloid pathology to cognitive deficits (Jankowsky et al., 2003), clinical 
translation faced challenges due to CSF invasiveness and poor early-
stage correlation (Jack, 2012). Growing skepticism toward amyloid-
centric therapies emerged as clinical benefits remained elusive.

4.3.2 Phase II (2015–2020): multimodal 
biomarker integration, prompted by trial failures

The failure of bapineuzumab Phase 3 trials (Salloway et al., 2014) 
prompted a paradigm shift toward multimodal integration. 

TABLE 4 Core journals identified in neurodegenerative disease biomarker research according to Bradford’s Law.

Rank Journal Frequency Cumulative Frequency

1 Journal of Alzheimers Disease 125 125

2 Frontiers in Aging Neuroscience 36 161

3 International Journal of Geriatric Psychiatry 35 196

4 Neurobiology of Aging 31 227

5 Journals of Gerontology Series A-Biological Sciences And Medical Sciences 26 253

6 Alzheimers and Dementia 20 273

7 Alzheimers Research and Therapy 20 293

8 Frontiers in Neuroscience 17 310

9 Frontiers in Psychiatry 17 327

10 International Journal of Molecular Sciences 17 344

11 International Psychogeriatrics 16 360

12 Brain 15 375

13 Current Opinion in Psychiatry 14 389

14 Neurobiology of Learning and Memory 13 402

15 Physiology and Behavior 13 415
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MTBR-tau243 in CSF correlated strongly with tau-PET (r = 0.83), 
surpassing conventional p-tau markers (Horie et al., 2023). Genetic 
risk factors (APOE ε4, TREM2) gained traction as prognostic 

indicators (Yeh et al., 2017; Jia et al., 2020). The SIMOA platform 
achieved 0.62 pg./mL sensitivity, exceeding ELISA and 
electrochemiluminescence (ECL) assays (Kuhle et al., 2016).

FIGURE 7

Evolution of research hotspots and thematic trends in neurodegenerative disease biomarker research. (A) Keyword co-occurrence network. (B) Top 25 
keywords with the strongest citation bursts. (C) Keyword clusters based on log-likelihood ratio (LLR) analysis. (D) Timeline visualization of keyword 
cluster development (1991–2024).

FIGURE 8

Interlinkages among keywords, author countries, and institutions in neurodegenerative disease biomarker research.
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4.3.3 Phase III (2020–2024): rise of blood 
biomarkers and focus on neuroinflammation

Recent advancements emphasize blood-based biomarkers and 
neuroinflammation. Plasma p-tau181 reduces tau-PET screening 
failures by ~50% (Moscoso et al., 2022), while plasma glial fibrillary 
acidic protein (GFAP) mediates Aβ-PET effects on tau-PET burden 
and cognitive decline (Pereira et al., 2021). Blood exosomes reflect 
amyloid and NFTs pathology (Liu et al., 2022), and translocator protein 
(TSPO) PET maps neuroinflammation in vivo (De Picker et al., 2023). 
While PET radio-ligands provide regional specificity, integrating fluid-
based biomarkers—such as CSF cytokines or plasma GFAP—with 
neuroimaging endophenotypes offers unprecedented insights into the 
spatiotemporal interplay between neuroinflammation and AD 
pathophysiology (Hampel et  al., 2020). The ATI(N) framework 
incorporates inflammation into the amyloid/tau/neurodegeneration 
(ATN) scheme (Lista et  al., 2024), enabling multidimensional 
assessment via PET, blood biomarkers, and machine learning.

4.4 Future directions

Integrating neuroinflammation and OS into biomarker panels is 
critical. Plasma GFAP and soluble TREM2 reflect astrocytic and 
microglial activity, respectively, while 8-OHdG and F2-isoprostanes are 
emerging peripheral neuronal injury markers. Composite panels (e.g., 
ATI[N]) capturing amyloid, tau, synaptic loss, and inflammation better 
reflect disease complexity. Multi-omics integration—including genomics, 
proteomics, and single-nucleus RNA sequencing (snRNA-seq)—reveals 
glial subpopulations linked to inflammatory profiles (Sadick et al., 2022) 
and connects CSF proteomes to GWAS-identified risk variants (Kaiser 

et al., 2023; Tao et al., 2024). Artificial intelligence (AI) and machine 
learning (ML) handle high-dimensional datasets effectively. Deep 
learning (DL) models (e.g., InceptionV3 on 18F-FDG PET) achieve 0.98 
AUC for early AD diagnosis (Jimenez-Mesa et al., 2023). ML identifies 
PD progression subtypes with 0.87–0.95 AUCs using serum NfL as a 
rapid progression marker (Dadu et  al., 2022). Predictive models 
combining polygenic risk scores, plasma p-tau, and GFAP may stratify 
patients for targeted therapies. Liquid biopsies (e.g., plasma neuron-
derived exosomes) and single-cell spatial transcriptomics promise novel, 
minimally invasive biomarkers.

4.5 Limitations

While this bibliometric analysis provides valuable insights into the 
trends in this field, several limitations should be acknowledged. As a 
bibliometric analysis, our findings are preliminary and hypothesis-
generating rather than confirmatory. Further validation through 
clinical and experimental studies is warranted. First, our study relied 
exclusively on data from the WOS Core Collection, which, although 
comprehensive, may not capture all relevant research, particularly 
studies published in non-English languages or indexed in other 
databases like Scopus or PubMed. Second, our analysis focused solely 
on “Articles” and “Reviews,” potentially overlooking other important 
types of publications, such as conference papers or book chapters. 
Moreover, bibliometric results do not account for study quality, and 
citation metrics may be biased by factors such as journal visibility or 
open access status. Lastly, bibliometric analysis does not directly assess 
the quality of individual studies, and high citation counts may not 
necessarily reflect the scientific rigor or validity of the findings.

TABLE 5 Top 10 most co-cited articles in the field of neurodegenerative disease biomarkers.

Rank References 
(author, year)

Journal 
(abbreviation)

Article highlights TC TC per 
year

Normalized 
TC

1 Petersen et al. (2001) Arch Neurol-Chicago
Defined MCI as a transitional stage between 

aging and AD, emphasizing early biomarkers
3719 148.76 3.93

2 Blennow et al. (2006) Lancet
Comprehensive review of Aβ and tau 

pathology in AD
3358 167.90 6.51

3 Dubois et al. (2016) Alzheimers Dement
Advocated preclinical CSF biomarkers for 

clinical trials
1261 126.10 16.89

4 Bennett et al. (2006) Lancet Neurol
Linked social engagement to delayed cognitive 

decline
511 25.55 0.99

5 Guo et al. (2020) Mol Neurodegener
Proposed novel diagnostic strategies for Aβ 

and tau pathologies
506 84.33 12.55

6 Silva et al. (2019) J Biomed Sci
Analyzed modifiable risk factors for AD 

prevention
470 67.14 9.37

7
Schliebs and Arendt 

(2006)
J Neural Transm Explored cholinergic dysfunction in AD 439 21.95 0.85

8 Liu et al. (2019) Signal Transduct Tar
Synthesized hypotheses for AD therapeutic 

trials
434 62.00 8.65

9 Arendt et al. (2016) Brain Res Bull
Discussed molecular mechanisms of tau 

pathology
406 40.60 5.44

10 Kirova et al. (2015) Biomed Res Int
Advocated neuropsychological testing for MCI 

detection
390 35.45 7.85

TC, Total Citations; Normalized TC, Citations adjusted for publication year.
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5 Conclusion

This bibliometric analysis has elucidated the research trends, 
hotspots, and future directions in the application of neural 
injury biomarkers for NDs. The findings highlight the increasing 
role of OS, NFTs, and neuroimaging technologies, particularly 
PET, in understanding disease mechanisms and advancing 
early diagnosis. Moving forward, researchers should prioritize 
multi-omics approaches and the validation of biomarkers to 
enhance clinical applicability and enable personalized treatment 
strategies in NDs.
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