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Introduction: In sudden and dangerous traffic situations, drivers are susceptible

to abnormal emotional states, such as tension and anger, which can significantly

increase safety risks while driving. Electroencephalography (EEG) signals, being

an objective measure of emotional states, offer valuable insights for identifying

and regulating these emotions.

Methods: This study collected EEG data from 54 drivers in a simulated

driving environment, resulting in a total of 1,260 samples, and developed a

recognition model for abnormal emotions—specifically tension and anger—

based on the EEG signals. Time-frequency domain features, including mean,

variance, skewness, kurtosis, root mean square, and power spectral density, were

extracted and analyzed using classification algorithms such as Back Propagation

Neural Networks (BPNN), K-Nearest Neighbors (KNN), and Support Vector

Machines (SVM), enabling precise identification of varying levels of tension and

anger. Furthermore, the study assessed the effects of music, fragrance, and their

combined application on alleviating these abnormal emotional states.

Results: Results indicated that music, fragrance, and their combination were

related to a reduction in stress and anger across different severity levels, with

subjective assessments correlating well with the objective EEG data. Notably,

music regulation was found to be most effective for mild and moderate tension,

reducing tension levels by 63.33% and 68.75%, respectively, whereas fragrance

was more efficacious in high tension situations, achieving a 43% reduction. For

anger, fragrance regulation proved more beneficial for mild and moderate anger

(reducing anger by 66.67 and 73.75%, respectively), while music regulation was

most effective in mitigating high anger levels, resulting in a 58% reduction.

Additionally, an analysis of time-domain features utilizing Hjorth parameters

revealed that the application of a single fragrance was most effective for

alleviating tension, while a singular music regulation strategy demonstrated

superior performance in calming anger.

Discussion: The reliability of both the abnormal emotion recognition model and

the emotion regulation assessment system was validated through the study.

These findings contribute valuable scientific evidence for the management of
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drivers’ emotions and suggest promising avenues for optimizing personalized

emotional regulation strategies in the future.

KEYWORDS

brain, driving emotions, music intervention, emotional regulation, fragrance
intervention

1 Introduction

Emotions play a crucial role in influencing driving behavior
(Hu et al., 2022). Drivers are particularly susceptible to
experiencing abnormal emotional states (Conceição et al.,
2023; Lin et al., 2022; Xi et al., 2022), such as stress (Han et al.,
2024; Mukherjee and Anwaruzzaman, 2024) and anger (Âbele
et al., 2020; Celiñski, 2022), which may arise from various factors
including complex road conditions, traffic congestion, and time
pressures. These negative emotions not only compromise drivers’
mental health but also pose significant threats to driving safety,
thereby greatly increasing the risk of traffic accidents (Habibifar
and Salmanzadeh, 2022; Li G. et al., 2023). Consequently, the
effective identification and regulation of abnormal emotions
in drivers have emerged as critical areas of research aimed at
enhancing overall driving safety.

Electroencephalography (EEG) serves as an intuitive reflection
of the physiological states of drivers’ brains (Peng et al., 2022),
effectively capturing their emotional states (Li J. et al., 2023).
Numerous researchers have explored the relationship between EEG
signals and emotions. Atkinson et al. (Atkinson and Campos,
2016) extracted time-domain features, including median, standard
deviation, and kurtosis, to facilitate emotion recognition using
the DEAP dataset. Khalili and Moradi (2009) utilized average,
variance, skewness, and peak values of EEG signals to identify
positive, negative, and neutral emotional states. Hasan et al. (2021)
employed various film clips to elicit five common emotional
states—calmness, joy, sadness, tension, and disgust—achieving
a maximum recognition rate of 89.22% for classifying EEG
signals associated with these emotions. Wagh and Vasanth (2022)
categorized EEG signals into alpha, beta, delta, theta, and gamma
frequency bands and combined these with machine learning
algorithms for feature extraction, enabling emotion classification,
recognition, and association analysis. Li et al. (2018) extracted time-
frequency domain features, such as arithmetic mean, root mean
square, power spectral density, power spectral entropy, singular
spectrum entropy, and approximate entropy, from EEG signals
in the SEED dataset, achieving a cross-validation classification
accuracy of 83.33% with their Support Vector Machine (SVM)
emotion recognition model. Subasi et al. (2021) introduced an
ensemble learning method that integrates Random Forest (RF)
and SVM, with results demonstrating that this ensemble approach
outperformed single classifiers across various datasets. Wu et al.
(2023) presented an emotion recognition method using only the
Fp1 and Fp2 channels of frontal lobe EEG signals, employing a
Gradient Boosting Decision Tree (GBDT) classifier to empirically
validate the effectiveness of this approach, achieving an average
classification accuracy of 75.18%.

Most current research focuses on the correlation between EEG
signals and emotions, while investigations into emotional
regulation management remain relatively limited. Studies
examining the alleviation of abnormal emotions through olfactory
or auditory stimuli are particularly scarce. Although existing
literature indicates that certain odors and musical stimuli can
elicit specific emotional responses (Chaichanasittikarn et al.,
2023; Laktionova et al., 2024; Pring et al., 2024; Putkinen et al.,
2024), many of these studies predominantly provide superficial
descriptions and lack a thorough exploration of the underlying
neurobiological mechanisms. Furthermore, there is a significant
gap in effective methods for identifying abnormal emotions, as well
as a lack of robust assessment models to evaluate the efficacy of
emotion regulation strategies, especially in the context of driving
environments.

Building on this foundation, the present study developed
a model to identify driver stress and anger using EEG signals.
Furthermore, it systematically evaluated the effects of various
emotional regulation strategies—including music, fragrance, and
their combined application—on the modulation of abnormal
emotions in drivers. The findings provide a scientific basis
and practical guidance for managing driver emotions, with
the aim of reducing the incidence of traffic accidents and
minimizing associated losses. Additionally, this study establishes
a theoretical framework for future personalized interventions
targeting driver emotions, thereby advancing the application of
emotion recognition technologies in intelligent transportation
systems and facilitating data-driven decision-making for
enhanced driving safety.

The primary contributions of this work can be summarized as
follows:

(1) This study presents a novel perspective on traffic safety
management by integrating EEG signals with musical and
olfactory interventions, thereby establishing a foundation for
data-driven emotional management decisions. Particularly
within the framework of intelligent transportation systems,
interventions tailored to the emotional states of drivers have
the potential to significantly improve traffic safety and mitigate
accidents associated with emotional instability.

(2) This study meticulously distinguishes between varying levels
of driver stress (slight, moderate, and high) and anger (slight,
moderate, and high), and assesses the effects of soothing music
and lemon fragrance on these emotional states. This refined
approach enhances the precision and personalization of
interventions, thereby offering a robust theoretical foundation
for the development of future personalized intervention
strategies tailored to driver emotional states.
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TABLE 1 Likert level 5 scale.

Likert scale

Emotion Calm
(1)

Almost
not (2)

Slight
(3)

Moderate
(4)

High (5)

Stress ◦ ◦ ◦ ◦ ◦

Anger ◦ ◦ ◦ ◦ ◦

(3) This study assessed the classification performance of three
models in identifying driver stress and anger. The results
indicate that, compared to the K-Nearest Neighbors (KNN)
and Support Vector Machine (SVM) models, the Back
Propagation Neural Network (BPNN) model exhibited
significantly higher accuracy in classifying both stress and
anger emotional states.

2 Materials and methods

2.1 Screening of emotional stimuli
materials

This study utilized a video-guided experimental paradigm that
enhances participant immersion and attentiveness during signal
collection. By integrating visual and auditory stimuli, this approach
intensifies emotional induction and prolongs the duration of
emotional experiences, ultimately leading to the generation of
higher-quality EEG signals.

The videos were filmed from a first-person perspective to
simulate a realistic driving experience. The videos designed to
induce driving stress included scenarios such as high-speed
driving, extreme weather conditions, and emergency avoidance
maneuvers. In contrast, the videos aimed at eliciting anger
portrayed situations such as traffic congestion, traffic violations,
and provocations from other drivers. To mitigate potential loss
of interest among participants due to excessive video duration,
which could negatively impact the emotional induction process, the
length was intentionally limited to 3 min, thereby helping to sustain
participants’ attention and engagement (Xu et al., 2024).

Prior to the experiment, videos intended to induce stress
and anger were meticulously screened. The video materials were
sourced from the internet. Participants’ emotional states were
assessed using a five-point Likert scale immediately after viewing
the inducing videos, with a score of 3 indicating successful
emotional induction. Specifically, a score of 1 represented “Calm,”
a score of 2 indicated “Almost not,” a score of 3 indicated “Slight,”
a score of 4 represented “Moderate,” and a score of 5 indicated
“High.” Only videos with an induction success rate exceeding 80%
were selected as emotional stimuli. The Likert scale used in this
study is presented in Table 1.

2.2 Experimental scenario

Given that this experiment requires participants to drive while
experiencing altered emotional states—where real-world driving

presents significant safety risks and operational challenges—this
study employed a driving simulation experiment as a viable
alternative. The primary advantages of this approach include
enhanced safety, precise control over experimental conditions
(such as temperature, lighting, and audio), and reduced costs.
Additionally, driving simulators can effectively replicate real
driving scenarios, thereby ensuring the reliability and validity of
the experimental results. Numerous studies have shown that the
physiological responses observed in driving simulations closely
resemble those in actual driving environments (Bobermin et al.,
2021). Consequently, this study utilizes driving simulators instead
of real-world driving.

This study utilized the Forza Horizon 5 software developed
on the EA platform, in conjunction with the Laisida V99
driving simulator, to create a simulated driving environment. The
simulator effectively replicates real-world traffic conditions and
comprises three main components: the vehicle operation system,
the visual display system, and the audio system. The vehicle
operation system includes a steering wheel, gear shifter, accelerator
pedal, brake pedal, and clutch. The visual display system features
an LCD monitor that provides a first-person perspective, while the
audio system offers immersive surround sound effects to enhance
the simulated driving experience.

The experimental setting is illustrated in Figure 1. The
laboratory features adequate ventilation and sufficient lighting.

The emotional induction videos were presented using E-Prime
(Richard and Charbonneau, 2009; Verdonschot et al., 2019),
which is integrated with the EEG data collection module to
form a synchronized data acquisition system. The electrode
placements on the EEG cap followed the international 10-10
system, with CPz and the End electrodes serving as the reference
and ground, respectively. During the experimental tasks, electrode
impedance was consistently maintained below 5 k�. Additionally,
the regulating music was played through headphones connected
to E-Prime, while olfactory stimulation was delivered using an
olfactory experience testing device.

The music used for the regulation is titled “Rose Petals.” This
gentle piano piece is set in a major key and features a slow,
soft rhythm, with a 30-s excerpt used. Soft music is effective
in alleviating negative emotions (Liao, 2024; Xiao et al., 2024).
The fragrance used is lemon fragrance, which promotes positive
emotions and inner calm while soothing the nervous system
(Godfrey, 2018; Smith and Nicholson-Lord, 2024). The current
experiment also innovatively combines the soothing melodies of
soft music with the refreshing lemon fragrance to investigate their
synergistic effects on regulating emotional states.

2.3 Participant

This study employed a rigorous three-phase screening process
to recruit 54 drivers, consisting of 27 males and 27 females,
aged between 20 and 27 years. Participants with pre-existing
central nervous system disorders, rhinitis, or auditory impairments
were excluded through subjective assessment tests to minimize
potential confounding factors. Additionally, individuals who had
participated in similar experimental settings previously were also
excluded to ensure the selection of appropriate candidates. Before
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FIGURE 1

Experimental scenario.

the study commenced, all participants signed an informed consent
form that outlined the study’s objectives and the specific tasks they
would be required to undertake. The 54 drivers were divided into
two groups: the first group of 27 (Female:15, Male:12.) individuals
underwent a stress emotion regulation experiment, while the
second group of 27 (Female:12, Male:15.) individuals participated
in an anger emotion regulation experiment. Comprehensive
information regarding the participants is presented in Table 2.

2.4 Experimental procedure

The stress emotion regulation experiment was conducted first.
Prior to the formal initiation of the experiment, participants were
given 30 s to calm their mood, during which their EEG signals
were recorded in this relaxed state. Following the calming phase,
participants viewed a stress-inducing video. After 60 s of video
playback, the experimenters assessed participants’ perceived stress
levels using a five-point Likert scale. If participants reported a
stress level of 3 (slight stress) or higher, their EEG signals were
recorded for the subsequent 30 s. After this, a regulation phase
lasting 30 s was conducted, during which additional EEG data
were collected. Each stage—calm, induction, and regulation—
was clearly defined. A total of 27 participants took part in the
stress emotion regulation experiment, divided into three groups
of nine. Each group experienced a different regulatory modality:
fragrance, music, or a combination of both. Throughout the
regulation phase, the stress-inducing video continued to play, and

TABLE 2 Information of participants.

Female Male Age Driving
experience

27 27 20–27
(Mean = 23.24,

std = 2.32)

1–9
(Mean = 4.74, std = 2.67)

TABLE 3 Grouping information table.

Emotion Regulation type Number of people

Stress Music 9 (Female:6, Male:3.)

Fragrance 9 (Female:5, Male:4.)

Music and Fragrance 9 (Female:4, Male:5.)

Anger Music 9 (Female:5, Male:6.)

Fragrance 9 (Female:3, Male:4.)

Music and Fragrance 9 (Female:4, Male:5.)

participants’ stress levels were reassessed using the Likert scale after
the regulation phase concluded. The results of this assessment were
subsequently documented.

Following the completion of the stress emotion regulation
experiment, the anger emotion regulation experiment was
conducted in a similar manner. The grouping information is
presented in Table 3.

The experimental process is shown in Figure 2. This figure
illustrates the sequence of events in the experiment, including the
preparation stage, the calm stage, the emotional induction stage, the
emotion regulation experiments carried out by the participants, and
the subsequent emotional state assessments. Each stage is clearly
depicted, allowing for a better understanding of how the study was
conducted and the specific procedures followed by the participants.
The right-pointing arrow signifies that the experiment proceeds
from left to right.

2.5 Ethical approval and compliance
statement

This study was approved by the Ethics Committee of
Chongqing University of Arts and Sciences (Approval No.
CQWL202424). All procedures involving human participants
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FIGURE 2

Experimental process.

were conducted in accordance with the ethical standards of
the 2024 Helsinki Declaration and its subsequent amendments,
as well as applicable national and regional regulations. Prior
to implementation, the research protocol underwent rigorous
review by an independent institutional review board. Written
informed consent was obtained from all participants, explicitly
addressing the following aspects: (1) participation was voluntary,
with the right to withdraw at any stage without penalty; (2)
personal information was kept strictly confidential through data
anonymization techniques; (3) research data were securely stored
in encrypted formats accessible only to authorized investigators;
and (4) collected data were exclusively used for the stated
scientific purposes.

2.6 Data processing and analysis

The machine learning workflow comprises three main stages:
data preprocessing, feature extraction, and classification (Alazrai
et al., 2019). Feature extraction focuses on capturing both time-
domain and frequency-domain characteristics of the signals.
Ultimately, the selected features are input into classification
algorithms to derive the classification results.

2.6.1 Data preprocessing
The data exported from the EEG signal acquisition and analysis

software comprises signals recorded directly from the scalp, which
often contain various types of noise and artifacts. Consequently,
preprocessing and denoising are critical steps. EEG artifacts can
be classified into two categories: physiological artifacts and non-
physiological artifacts. Physiological artifacts typically arise from
blinks, eye movements, breathing, and muscle contractions (Islam
et al., 2016). In contrast, non-physiological artifacts primarily
result from environmental interference, with electrical interference
being the most common. The main preprocessing methods for

removing artifacts from EEG signals include filtering, referencing,
segmenting, and ICA-based artifact removal (Pedroni et al., 2019).
The workflow for preprocessing the EEG signals is illustrated in
Figure 3. Because the frequency bands associated with driving
fatigue overlap with alpha, theta, beta, and delta waves, low-
pass filtering at 30 Hz and high-pass filtering at 1 Hz were
applied (Sikander and Anwar, 2018). A global average reference
was selected, and the data were down sampled to 125 Hz. The
preprocessed physiological data were then segmented, specifically
extracting data from 0 to 5 seconds post-mark at 0.5-second
intervals.

2.6.2 Feature extraction of EEG signals
After preprocessing, the quality of the EEG signal data

significantly improved. However, due to the complex nature of
EEG signals, which consist of a mixture of various waveforms,
it is often necessary to transform the data into a format suitable
for statistical analysis during experimental evaluation (Das et al.,
2023). Feature extraction is then performed on the preprocessed
EEG signals to identify characteristics related to abnormal driving
emotions. Given the close relationship between the prefrontal
cortex and emotional cognition (Dixon et al., 2017), only data
from the prefrontal electrodes FP1, FP2, and FPZ were selected for
analysis.

(1) Time-domain Features: Time-domain features of EEG
signals play a crucial role in the feature extraction module. EEG
signals are time-series signals, and the EEG time-series waveform
contains a wealth of time-domain information. Extracting
time-domain features of EEG signals is common in brain
fatigue detection. Due to their simple calculation and ease of
understanding, they are often used to analyze the state of the brain.

(1) Mean Value: The mean value of all sampled values in the
EEG signal, reflecting the overall level of the signal

(2) Variance: The average of the squares of the differences
between all sampled values of the EEG signal and their mean,
reflecting the degree of fluctuation in the signal.
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(3) Skewness: This feature is used to measure the asymmetry of
the statistical data distribution. Skewness is defined using the third
central moment and the second central moment (variance), with
the calculation formula as follows:

(4) Kurtosis: It is used to describe the steepness or flatness of
the distribution of all values, and its definition is as follows:

(5) Root Mean Square (RMS) is calculated as the square root
of the average of the squared values of all EEG signal samples. It
is commonly used to quantify the amplitude of EEG signals and
provides an indication of the overall amplitude of the signal.

(2) Frequency-domain Features: These refer to the distribution
of energy of the EEG signal at different frequencies. Changes in
the signal can be obtained from changes in frequency bands, which
is the main advantage of frequency-domain analysis compared to
time-domain analysis.

(3) Power Spectral Density (PSD): It represents the signal power
per unit frequency band and is used to describe the distribution
pattern of a signal as it varies with frequency within a certain
region. It is a way to study signals from an energy perspective.
Generally, the Fourier transform is used to convert EEG signals
into frequency-domain signals within a specified frequency band.
Power Spectral Density is the most common frequency-domain
feature of signals.

Time-domain features capture the dynamic changes and
fluctuations of EEG signals, while frequency-domain features
reveal the energy distribution of brain signals across different
frequencies. During states of stress, both the temporal variations
and frequency components of brain signals are impacted. Utilizing
both time-domain and frequency-domain features enables a
more comprehensive representation of emotional changes, thereby
enhancing the accuracy of classification models.

2.6.3 Establishment of a classification model
based on EEG signals

After selecting a feature subset with the highest information
content, the next step is to learn the mapping function between the
features and class labels. This study employed three classification
algorithms: K-Nearest Neighbors (KNN) (Shashidhar et al., 2023),
Support Vector Machine (SVM) (Son and Kim, 2021), and
Backpropagation Neural Network (BPNN) (Sari et al., 2019).

KNN is a straightforward supervised learning algorithm that
identifies the K nearest neighbors by calculating the distance
between the sample to be classified and the training samples.
It classifies the sample based on majority voting among these
neighbors, making KNN easy to implement and well-suited
for small datasets.

SVM is a robust algorithm designed for binary classification,
which seeks the optimal hyperplane to maximize the margin
between different classes. By utilizing kernel techniques, SVM
effectively handles non-linear problems and can identify linearly
separable solutions in high-dimensional spaces.

As a multilayer feedforward neural network, the BPNN
possesses robust non-linear modeling capabilities (Zhang
et al., 2019), making it well-suited to capture the complex
relationships inherent in emotional states, which are influenced
by various factors and characterized by high non-linearity.
Furthermore, the model continuously adjusts its weights through
the backpropagation algorithm, allowing for gradual optimization

(Bai et al., 2021). This process enables the model to adapt to
different input data and enhances its recognition ability as the
number of training samples increases. Through this continuous
learning capacity, the BPNN effectively extracts valuable emotional
information from extensive EEG signal datasets.

The dataset used for this research consisted of two groups, each
containing 630 data samples. The first group encompassed five
categories: calm, nearly stress-free, slight stress, moderate stress,
and high stress, with 270 samples in the calm category and 90
samples for each of the other levels. The second group also included
630 samples for the categories: calm, nearly anger-free, slight anger,
moderate anger, and high anger, with 90 samples for each of the
four anger levels. The classification models for abnormal emotions
were developed using MATLAB.

Organize the information as shown in Table 4.

2.6.4 Model evaluation
This study evaluates the performance of the classification

models for recognizing drivers’ abnormal emotional states,
designating the model with the highest overall score as the
final model. Four assessment metrics were considered: accuracy,
precision, recall, and F1 score.

2.6.5 Hjorth parameter analysis and validation
In this study, we conducted a Hjorth parameter analysis on

the EEG signals from each stage to assess the effects of music and
fragrance on emotional regulation. The Hjorth parameters, which
include Activity, Mobility, and Complexity, reflect the energy of the
signal, the dispersion of frequency distribution, and the complexity
of the waveform, respectively.

For the purpose of analysis, we combined different levels
of stress (slight, moderate, high) into a single category labeled
“stress,” as well as combining slight, moderate, and high
anger into a category labeled “anger.” Through time-frequency
analysis of the combined signals, we further validated the
effectiveness of music and fragrance in regulating emotional states.
This analytical approach helps reveal the impact of different
interventions on emotions.

3 Results

3.1 Comparison and analysis results of
machine learning models

The performance of K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), and Backpropagation Neural Network
(BPNN) in recognizing driving stress and anger in terms of
accuracy, precision, recall, and F1 score is presented in Table 5.

According to the results presented in Table 3, the
Backpropagation Neural Network (BPNN) demonstrates
exceptional performance in recognizing driving stress and
anger. The BPNN model outperforms all other models across all
metrics, exhibiting the highest accuracy, precision, recall, and F1
score. Therefore, the BPNN model is selected as the final model for
recognizing stress and anger emotions.

The confusion matrix analysis results for the BPNN stress
emotion recognition model developed in this study indicate that
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TABLE 4 Overview of emotion recognition classification model based on EEG features.

Emotion label Number of
samples

Extracted features EEG
characteristic

channel

The algorithm
used

Stress Calm 270 Time Domain:Mean, variance,
skewness, kurtosis, root mean

square, Root Mean Square
Frequency Domain: Power

Spectral Density

Frontal pole: FP1, FP2,
FPZ

KNN, SVM, BPNN

Almost no-stress 90

Slight stress 90

Moderate stress 90

High stress 90

Anger Calm 270

Almost no-anger 90

Slight anger 90

Moderate anger 90

High anger 90

TABLE 5 Comparison of emotion recognition model performance.

Emotion Model Accuracy Precision Recall F1 score

Stress KNN 0.7153 0.5444 0.5178 0.5308

SVM 0.8056 0.6889 0.7708 0.7275

BPNN 0.8819 0.8111 0.8318 0.8214

Anger KNN 0.75 0.6 0.5333 0.5621

SVM 0.75 0.6117 0.7733 0.6831

BPNN 0.8333 0.75 0.6939 0.7209

the model achieved 100% prediction accuracy in both the high
Stress and moderate stress categories, with no misclassifications.
In the slight stress category, the model correctly identified 67%
of the samples, while 33% were misclassified as almost not
stress. For the almost not stress category, the model had a
correctness rate of 61%, with 39% of samples incorrectly classified
as calm. Additionally, the prediction accuracy for the calm stage
category also reached 100%. Overall, the model performed well
in the emotion recognition task, demonstrating its effectiveness in
handling different emotional states.

And the confusion matrix for the BPNN anger emotion
recognition mode. In the high anger category, the model achieved a
prediction accuracy of 97%, with only 3% misclassified as moderate
anger. For the moderate anxious category, 78% of samples were
correctly classified, while 22% were misclassified as Slight Anger. In
the Slight anger category, the model correctly identified all samples,
achieving 100% accuracy. The Almost not anger category also saw
a perfect classification rate of 100%. For the Calm category, 22%
of the samples were classified as Almost not anger, while 78%
were correctly identified as Calm. Overall, the model demonstrates
strong performance in identifying emotions, particularly in the
Highly Anxious and Slightly Anxious categories, highlighting its
effectiveness in emotional recognition tasks.

In the stress emotion recognition model, the input layer
comprises six neurons, each corresponding to one of the six
features: mean, variance, skewness, kurtosis, root mean square, and

power spectral density. The output layer includes five neurons,
representing the five classification labels: calm, nearly no stress,
slight stress, moderate stress, and high stress. The hidden layer
consists of five neurons and was trained over 24 iterations.

In the anger emotion recognition model, the input layer
consists of six neurons, each representing one of the six features:
mean, variance, skewness, kurtosis, root mean square, and
power spectral density. The output layer contains five neurons,
corresponding to the five classification labels: calm, nearly no anger,
slight anger, moderate anger, and high anger. The hidden layer
comprises five neurons and was trained over 29 iterations.

The stress and anger emotion models, classified using the Back
Propagation Neural Network (BPNN) algorithm, have been saved
in preparation for further regulatory analyses.

3.2 Analysis of regulatory effects

3.2.1 Results of stress regulation
The EEG features obtained from participants exposed to

soft music, lemon scent, and the combination of music and
scent interventions were input into a pre-trained stress emotion
recognition model to obtain classification labels after the
intervention. The stress regulation score was calculated by
subtracting the post-regulation labels from the pre-regulation
labels, which allows us to quantify the effectiveness of the
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interventions in alleviating stress; specifically, a larger value
indicates a greater reduction in stress levels. Additionally,
subjective assessment scores collected from the experiment are
summarized. Organize as shown in Figure 4.

Figure 4 illustrates the consistency between the subjective
ratings of the three regulation methods and the objective EEG data
scores in alleviating stress. All three interventions were associated
with a reduction in stress levels. calming music was found to be the
most effective for alleviating slight stress, while music regulation
was the best method for moderating moderate stress. Additionally,
lemon fragrance proved to be most effective when combined with
other interventions during high stress. The results obtained from
the observational data indicate a mutual validation between the
subjective and objective measures.

3.2.2 Results of anger regulation
The electroencephalogram (EEG) features collected from

participants exposed to calming music, lemon fragrance, and a
combination of music and fragrance interventions were input
into the pre-trained anger emotion recognition model to derive
objective EEG data regulation scores. Additionally, the subjectively
collected evaluation scores from the experiment are summarized in
Figure 3.

Figure 3 illustrates the consistency between the subjective
ratings of the three regulation methods and the objective EEG data
scores in alleviating anger. All three interventions were associated
with a reduction in anger levels. In conditions of slight anger,
lemon fragrance was found to be the most effective. For moderate
anger, lemon fragrance alone yielded the best results, while calming
music proved to be the most effective intervention for high anger.
The results obtained from the observational data indicate a mutual
validation between the subjective and objective measures.

3.3 Hjorth parameter analysis and
validation

To further validate the effects of music and aroma
interventions, we conducted a time-frequency analysis of EEG
signals across various emotional and stress states. Specifically,
we amalgamated slight, moderate, and high-stress conditions
into a single stress category, while consolidating slight, moderate,
and high-anger conditions into a unified anger category to
facilitate analysis.

Our findings indicate a significant increase in the activity
parameter under stress conditions, reaching a value of 9.3961,
compared to 6.2258 in calm states. This suggests a strong
relationship between stress and heightened brain activity. The
mobility parameter exhibited minimal variation between the two
states, with values of 1.9424 in calm states and 1.8722 during
stress. Additionally, the complexity parameter demonstrated a
slight increase from 1.5921 in calm states to 1.6432 under
stress, reflecting a negligible change overall. In the anger state,
the activity level substantially increased to 13.3234, indicating a
higher level of physiological activation. Conversely, the mobility
and complexity parameters were recorded at 2.0213 and 1.5367,
respectively, showing no significant changes when compared to
the calm condition.

Next, the activity, mobility and complexity after receiving
music, fragrance, and combined regulation were statistically
analyzed, as shown in Figures 5, 6.

Observations indicated that the Hjorth activity parameter
of the participant, after receiving music, aroma, and combined
interventions, was lower compared to the levels observed during
tense and emotional states, approaching the activity levels
characteristic of calm states.

The analysis of Hjorth parameters indicates that, overall, the
use of music alone is the strategy that shows the greatest impact
on alleviating stress, while the use of fragrance alone is particularly
effective for mitigating anger. These findings further support the
role of both music and fragrance in alleviating abnormal emotions
and confirm the reliability of the EEG-based models for identifying
emotional states, specifically stress and anger, as well as the emotion
regulation assessment system. The multidimensional assessment of
EEG data enhances the authenticity and accuracy of the results.

4 Discussion

This study evaluated the effectiveness of an EEG-based model
for identifying abnormal emotions, specifically stress and anger,
and introduced music and fragrance as strategies for emotion
regulation. Both subjective and objective measures corroborated
the effectiveness of these interventions in alleviating drivers’
abnormal emotions. The experimental results demonstrated that
the BPNN model exhibited a significant advantage in emotional
classification accuracy compared to other commonly used machine
learning models. Music was found to be the most effective
intervention for slight and moderate stress, while fragrance proved
to be more effective during periods of high stress. For slight to
moderate anger, fragrance regulation was superior, whereas music
was most effective in alleviating high levels of anger.

4.1 Discussion on the intervention effect
of music and fragrance on emotions

Whether through music, fragrance, or a combination of both,
all interventions demonstrate a certain degree of effectiveness
in alleviating various emotional states. These findings align with
research conducted by Pei et al. (2024) and Cook et al. (2019), which
similarly validated the efficacy of music and fragrance in mitigating
abnormal emotions.

However, studies by Ning et al. (2022) and Sanyal et al.
(2013) indicate that music does not always alleviate abnormal
emotions. Certain emotionally charged music, such as sad or
intense pieces, may evoke negative feelings or memories, leading to
emotional fluctuations and increased anxiety, which can exacerbate
stress or anger. Additionally, fast-paced or overly complex music
can induce excessive cortical excitation, resulting in physiological
responses such as increased heart rate and rapid breathing,
potentially hindering emotional relief. In contrast, the gentle music
employed in this study effectively reduces heart rate and respiratory
frequency, facilitating relaxation and helping to mitigate negative
emotions. Similarly, research conducted by Barnes et al. (2018),
Wang et al. (2024), and Soars (2009) reveals that not all scents
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FIGURE 3

Scores of anger emotion regulation based on subjective and objective data. SA represents “Slight Anger,” MA represents “Moderate Anger,” and HA
represents “High Anger.” (a) Indicates the subjective evaluation score. (b) Indicates the objective evaluation score.

FIGURE 4

Scores of stress emotion regulation based on subjective and objective data. SS represents “Slight Stress,” MS represents “Moderate Stress,” and HS
represents “High Stress.” (a) Indicates the subjective evaluation score. (b) Indicates the objective evaluation score.

are effective in alleviating drivers’ abnormal emotions; for instance,
odors from car engines, body odor, and the scent of new cars can
intensify negative feelings. However, the lemon fragrance used in
this study enhances driving pleasure, effectively promotes positive
emotions, and fosters a sense of inner calm, providing a gentle
soothing effect on the nervous system.

4.2 The relationship between Hjorth
parameters and emotions

The Hjorth parameters are essential tools for signal processing
and are widely used in the analysis of electroencephalogram (EEG)
signals, particularly in studying emotional states (Fatih et al.,
2023). By analyzing Hjorth parameters, researchers can objectively
assess and understand the characteristics of EEG activity in drivers
experiencing different emotional conditions. This study further

employs Hjorth parameter analysis to investigate the effects of
music and fragrance on emotional regulation. The results indicate
that music alone is the most effective intervention for alleviating
stress, while a singular fragrance intervention is most effective in
calming anger. Moreover, this study validates the efficacy of both
music and fragrance in mitigating abnormal emotions and confirms
the reliability of EEG-based models for identifying emotional states
(stress and anger) as well as the emotion regulation assessment
system.

Hjorth activity serves as an indicator of the intensity of EEG
signals and effectively reflects the degree of emotional arousal. In
this study, Hjorth activity parameters significantly increased when
drivers experienced tension and anger, indicating heightened brain
activation in response to abnormal emotions, which aligns with the
findings of Mehmood et al. (2022). In contrast, changes in Hjorth
mobility and complexity were relatively subtle. This suggests that,
while subjects experienced emotional state changes, the effects on
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FIGURE 5

Hjorth parameter of stress emotions.

FIGURE 6

Hjorth parameter of anger emotions.

EEG signals may be concentrated in specific frequency bands or
features, leading to a lack of variability in these parameters.

4.3 Limitations and future jobs

This study has several limitations. First, the relatively small
sample size may restrict the generalizability and reliability of

the findings. Second, the investigation focused exclusively on
gentle music and lemon fragrance as stimuli, without examining
a broader range of musical genres, scents, and their interactions
with various emotional states. Importantly, we did not perform
statistical hypothesis testing to confirm the stimulus effects
due to the exploratory nature and sample size constraints of
this study; the observed effects should therefore be interpreted
as preliminary trends requiring future validation. Additionally,
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while EEG provides direct measurements of brain activity, the
complexity and multidimensional nature of emotions require
the incorporation of additional physiological indicators (such as
heart rate variability) and behavioral data to comprehensively
assess the impact of music and analyze the predictive capacity of
various signal combinations. Future research will aim to develop
more refined modeling frameworks and optimization methods
to enhance predictive accuracy, including rigorous statistical
verification of stimulus effects through controlled experimental
designs with adequate power.

5 Conclusion

This study developed an EEG-based model for recognizing
abnormal emotions, revealing the differential regulatory effects
of music, fragrance, and their combined strategies on drivers’
tension and anger. The results indicate significant heterogeneity
in responses to regulatory strategies based on various types
and levels of emotions, with a consistent relationship between
subjective experiences and EEG characteristics. This not only
provides a scientific basis for managing driver emotions but
also opens potential avenues for developing personalized emotion
regulation systems in smart cabins. Future research could further
integrate multimodal physiological data (such as heart rate and
skin conductance) and optimize real-time emotion monitoring
algorithms for dynamic driving scenarios. Additionally, exploring
the adaptability of regulatory strategies across different cultural
backgrounds and individual characteristics could enhance both
driving safety and traffic efficiency.
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