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Introduction: Motor imagery-based brain-computer interfaces (BCIs) are a 
technique for decoding and classifying the intention of motor execution, solely 
based on imagined (rather than executed) movements. Although deep learning 
techniques have increased the potential of BCIs, the complexity of decoding 
unilateral upper limb motor imagery remains challenging. To understand 
whether neurophysiological features, which are directly related to neural 
mechanisms of motor imagery, might influence classification accuracy, most 
studies have largely leveraged traditional machine learning frameworks, leaving 
deep learning-based techniques underexplored.

Methods: In this work, three different deep learning models from the literature 
(EEGNet, FBCNet, NFEEG) and two common spatial pattern-based machine 
learning classifiers (SVM, LDA) were used to classify imagined right elbow flexion 
and extension from participants using electroencephalography data. From two 
recorded resting states (eyes-open, eyes-closed), absolute and relative alpha 
and beta power of the frontal, fronto-central and central electrodes were used 
to predict the accuracy of the different classifiers.

Results: The prediction of classifier accuracies by neurophysiological features 
revealed negative correlations between the relative alpha band and classifier 
accuracies and positive correlations between the absolute and relative beta 
band and classifiers accuracies. Most ipsilateral EEG channels yielded significant 
correlations with classifier accuracies, especially for the machine learning classifier.

Discussion: This pattern contrasts with previous findings from bilateral MI paradigms, 
where contralateral alpha and beta activity were more influential. These inverted 
correlations suggest task-specific neurophysiological mechanisms in unilateral MI, 
emphasizing the role of ipsilateral inhibition and attentional processes.
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1 Introduction

Brain-computer interfaces (BCIs) are a rapidly developing field of research that offers the 
potential to revolutionize how we interact with technology and the world around us. BCIs are 
systems which have the potential to restore autonomy for individuals with motor impairments, 
such as those affected by paralysis or limb loss. By enabling users to control external devices 
through imagined movements, motor imagery-based BCIs offer a non-invasive, intuitive 
alternative for interactions with the environment, ranging from robotic limbs to wheelchairs, 
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enhancing the quality of life and increasing independence (Tariq et al., 
2018; Jeong et al., 2020, 2021; Palumbo et al., 2021). While invasive and 
partially invasive BCIs require some kind of surgery, non-invasive BCIs 
are easier to set up, cheaper, and have the advantage that no surgery is 
required, while being mostly stationary (Milan and Carmena, 2010). 
The paradigm of motor imagery has already been used to facilitate 
intuitive real-world interactions using a robotic arm (Jeong et al., 2020). 
Schack et al. (2014) highlighted that an individual’s imagery ability, and 
the structure of motor representations in memory, may shape motor 
imagery-related neural activity. Combined with evidence of inter-
individual variability in motor imagery EEG patterns (Klimesch, 1997; 
Sartipi and Cetin, 2024), this suggests that subjective neurophysiological 
traits significantly influence BCI efficacy. Despite substantial progress, 
a critical challenge persists: the variability in BCI performance across 
individuals. To decrease this variability, also called BCI-illiteracy 
(Blankertz et  al., 2010), it is crucial to understand the underlying 
neuronal mechanisms of motor imagery and how they are represented 
in brain imaging devices, such as the EEG, which could lead to an 
acceleration of the development of motor imagery based BCIs.

Motor imagery (MI) is widely used in neurorehabilitation, sports, 
and brain-computer interfaces (BCIs), with classification accuracies 
reaching up to 93.56% using deep learning methods (Arı and Taçgın, 
2024). Individual differences in neurophysiological features, 
particularly alpha and beta EEG frequency bands, are known to 
influence BCI performance (Pfurtscheller et al., 2005, 2006, 1996; 
Blankertz et al., 2010). These features, mainly extracted from resting-
state (RS) EEG, have been predictive of performance in traditional 
machine learning pipelines, typically incorporating common spatial 
pattern (CSP) analysis. However, the relationship between RS EEG 
markers and performance in deep learning-based BCIs remains 
underexplored. While deep learning models eliminate the need for 
handcrafted features, studies such as Kang et  al. (2021) have not 
isolated performance by model type, limiting interpretability. Our 
work extends this gap by linking RS EEG features to deep learning-
based BCI performance in unilateral upper-limb MI, providing 
model-specific relationships with neurophysiological features that 
support more effective BCI systems in a complex motor imagery 
paradigm. By this, we aim to consider modern classification methods 
and their prediction as well as to contribute to a better understanding 
of motor imagery.

The conscious process of imagining the intended content of a 
movement, while in contrast to that the actual movement itself is 
primarily performed unconsciously is defined by Lotze and Halsband 
(2006) as motor imagery. Furthermore, it has been reported that 
conscious motor imagery and unconscious motor performance share 
common muscle and brain activities. In addition, the subjective level 
of mental resources needed to imagine a movement correlates with 
the amount of force needed to execute that imagined movement 
(Lotze and Halsband, 2006). Areas of the brain that play a crucial role 
during motor imagery include the primary motor cortex (M1), 
supplementary motor area (SMA), inferior frontal gyri (IFG), 
precentral gyri (PcG), middle frontal gyrus (MfG), premotor cortex 
(PMA), parietal cortex, inferior parietal lobule, putamen, and the 
cerebellum (Lotze and Halsband, 2006; Mizuguchi et al., 2012). The 
SMA and PMA have been highlighted by several studies as essential 
parts of the neural network for motor imagery (Ehrsson et al., 2003; 
Kasess et al., 2008; Hétu et al., 2013; Barhoun et al., 2022). For the 
PMA, it has been reported that executions involving the fingers, toes 

and tongue showed activation patterns identical to those observed 
during imagery of the corresponding movements (Ehrsson et  al., 
2003). Additionally, the ventral and dorsal premotor cortices are 
hypothesized to play important roles in the planning and preparation 
of motor imagery (Hétu et  al., 2013). During motor imagery, an 
interplay between the SMA and M1 was identified by Kasess et al. 
(2008), showing that the SMA suppresses M1 activity. Evidence was 
found for this by a rapid suppression of M1 by the SMA during motor 
imagery (Barhoun et al., 2022). The supplementary motor area (SMA) 
plays a key role in generating motor responses and mentally simulating 
them during motor imagery (Mizuguchi et al., 2012). It also integrates 
and processes visuospatial information (Hétu et al., 2013). The parietal 
cortex, including the supramarginal gyrus and inferior/superior 
parietal lobules, is highly active during sensory integration and 
visuomotor transformations. The basal ganglia, especially the putamen 
and pallidum, contribute to both motor imagery and execution (Hétu 
et al., 2013; Bear et al., 2018). Additionally, upper limb imagery mainly 
activates premotor regions, while lower limb imagery engages the 
SMA, cerebellum, putamen, and parietal areas (Hétu et al., 2013).

Neurophysiological parameters or features have been utilized to 
investigate and predict the accuracy of EEG-based BCIs (Blankertz 
et al., 2010; Ahn et al., 2013; Zhang et al., 2015; Kwon et al., 2020; Kang 
et al., 2021; Wang et al., 2022; Zhou et al., 2022). Neurophysiological 
predictors of BCI performance are primarily derived from the power 
of theta, alpha, beta, and gamma frequency bands during either an 
eyes-open or eyes-closed RS. Theta power showed mixed findings, 
while some studies found significant correlations (Ahn et al., 2013; 
Kwon et al., 2020), others did not (Kang et al., 2021). Generally, the 
eyes-open RS EEG was more predictive than eyes-closed, with higher 
relative alpha power generally linked to better BCI performance. 
Blankertz et al. (2010) demonstrated that the average PSD at 10 Hz 
from the C3 and C4 electrodes during a two-minute, eyes-open RS 
EEG correlated with motor imagery BCI accuracy (r = 0.53). 
Expanding on this, Ahn et al. (2013) analyzed a broader range of 
frequency bands between 4 and 70 Hz. The PSD of each frequency 
band was calculated and normalized by the sum of the PSD for the full 
range of 4–70 Hz. It was reported that relative theta power correlated 
negatively with BCI performance, while relative alpha power showed 
a positive correlation (|r| = 0.5). These correlations were strongest at 
C3 and C4, with theta power being particularly significant in frontal 
and posterior-parietal regions, while the alpha band showed 
significant correlations for all brain areas (Ahn et al., 2013). Further 
investigating pre-recorded RS EEG, Zhang et al. (2015) examined the 
PSE of the 0.5–14 Hz range and found the highest correlation at C3 
for eyes-closed RS (r  = 0.65, p < 0.01). Similarly, the alpha band 
exhibited the highest mean power amplitudes at C3 and C4, 
reinforcing previous findings. The dominance of the C3 electrode was 
attributed to the participants right-handedness and the corresponding 
left hemisphere dominance for motor skills. Additionally, the alpha 
band showed the highest mean power amplitudes at both the C3 and 
C4 electrodes (Zhang et al., 2015). Kwon et al. (2020) assessed the 
relationship between eyes-open and eyes-closed RSs in motor imagery 
tasks, finding that individuals with higher BCI classification accuracies 
(>70%) exhibited significantly higher relative alpha power in the eyes-
open condition, while beta power was lower. However, unlike Ahn 
et al. (2013), no significant differences were found for theta power. A 
combination of relative alpha, beta, and theta powers of the eyes-open 
condition achieved the highest correlation with BCI performance 
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(r = 0.71, p < 0.001). It was concluded that the alpha and beta 
frequency bands are more predictive of motor imagery classification 
accuracy, while theta power is not as important as alpha or beta power 
(Kwon et al., 2020). Wang et al. (2022) examined spectral features and 
complexity measures, including RPL, PSE, and Lempel-Ziv complexity 
(LZC). The strongest correlations with BCI performance were 
observed in the alpha band at the C4 electrode (r = 0.5 for RPL, 
r = −0.53 for PSE, r = −0.46 for LZC). Zhou et  al. (2022) further 
highlighted the importance of alpha power by employing 
neurofeedback training, which led to an increase in relative alpha 
power and improved BCI performance by 8.25 ± 12.66% (p < 0.05). 
Kang et al. (2021) explored both spectral and non-linear features in 
RS EEG, comparing multiple CSP based machine learning classifiers 
and three different deep learning classifiers (ShallowConvNet, 
DeepConvNet, EEGNet). Since there were no significant differences 
between the classifiers, the accuracies of all the motor imagery 
classifiers were averaged. Contrary to previous studies, they reported 
no significant correlations for eyes-closed RS features, with only eyes-
open features showing a connection to BCI performance. They found 
significant correlations between theta-to-beta power ratios in frontal 
regions (F3, r = 0.37, p < 0.001).

Building upon these findings, this study identifies a significant gap 
in the literature concerning the predictive neurophysiological markers 
of classifier performance in unilateral upper limb motor imagery 
paradigms. While bilateral motor imagery has been extensively 
studied, the unilateral context remains underexplored, particularly in 
relation to the distinct spectral characteristics that may influence 
decoding accuracy. Moreover, prior work has predominantly focused 
on conventional machine learning approaches, leaving the potential 
of deep learning-based classification underutilized. To address this, 
the present study integrates advanced deep learning architectures, 
recognized for their increasing utility in EEG-based BCI systems, to 
systematically investigate which resting-state EEG features (e.g., 
relative alpha and beta power, spectral complexity metrics) most 
reliably predict classifier outcomes. This approach aims to enhance the 
precision of motor imagery decoding by identifying robust 
neurophysiological predictors tailored to unilateral motor 
imagery tasks.

2 Materials and methods

2.1 Participants

Twenty-six participants (mean age = 24, 32; SD = 4, 66; age 
range = 18–37 years; 15 females) were recruited in the experiment. All 
of them were right-handed, as evaluated by the German version of the 
Edinburgh Handedness Inventory (Oldfield, 1971; M = 4.81, SD = 
0.28). Educational backgrounds varied, ranging from Abitur (German 
university entrance qualification) to doctoral (PhD) level. All 
participants reported normal or corrected to normal vision as well as 
no mental illnesses or cognitive impairments. The participants had no 
prior experience with EEG recording, motor imagery and BCIs before 
except for two participants who had minimal experience with motor 
imagery. They were compensated by course credits if wanted. The 
experiment was reviewed in advance and approved by the Ethics 
Committee of Bielefeld University. The test subjects were also 
informed about the study procedure before the experiment was 

carried out. All participants gave their written consent under the 
Declaration of Helsinki before the experiment and the experimental 
protocol was approved by the ethics committee of Bielefeld University.

2.2 Study design and experiment setup

The main task was to execute or to imagine the flexion or 
extension of the right elbow. One trial consisted of a fixation cross 
which was presented for 2.5 s followed by a square for 4 s. Participants 
were instructed to start execution/imagery the moment they perceived 
the square’s color and finish their execution/imagery within 4 s such 
that the starting position would always be the same for all trials. For 
every ten trials of motor imagery (5 times blue, 5 times yellow) two 
trials of non-task related state (2 times gray) were added. The order 
was randomly selected for each participant. The motor imagery 
experiment was separated into three phases, training, motor execution 
and motor imagery. The aim of the training phase was to check if the 
participant understood the instructions correctly. In the second phase 
data for the motor execution was collected. In the third phase the data 
for the motor imagery task was collected. The first phase consisted of 
12 trials, the second phase of 36 trials and the third of 216 trials. All 
training trials were in one block, all motor execution trials were 
completed as another block, and the motor imagery trials were 
separated into six blocks, each block consisted of 36 trials of motor 
imagery. All blocks were separated by 2-min-long breaks, which could 
be skipped when the participant felt ready to go on. The sequence of 
blocks and number of blocks can be seen in Figure 1B, in the upper 
sequence. The current work solely used data from the motor imagery 
blocks for model training. The lower sequence of Figure 1B shows the 
processing of the data from the RSs as well as the processing of the 
motor imagery data for the main data analysis.

Two different unilateral upper limb movements and one non task 
related state condition were used in the present study within the motor 
imagery experiment: extension of the right elbow, flexion of the right 
elbow and resting (non task related state). These three conditions were 
indicated by different colored squares. Blue indicated extension, 
yellow indicated the flexion and gray indicated the non task related 
state. The used trial setup is illustrated in Figure 1A. The size of the 
presented squares was 7.5 × 7.5 cm. For the stimulus presentation a 
computer screen of 22 inches and the software Psychopy (v2022.2.5) 
were used. The screen had a refreshing rate of 60 Hz and a resolution 
of 1,680 × 1,050 pixels and was placed around 70 cm away from the 
participant. A chair was placed around 40 cm in front of the table with 
the screen on it. The hole setup was placed inside of a shielded cabin 
to prevent the distortion of EEG data and to minimize external 
interference. The participants were instructed to sit on the chair 
relaxed while their right arm should be in a natural hanging position. 
In advance to the main task, two three-minute RSs (eyes-open, eyes-
closed) were recorded. During both, a fixation cross was shown, 
identical to the one in Figure 1A.

2.3 Procedure

The experiment procedure began by welcoming the participant 
and asking for their declaration of consent in a written form. 
Afterwards, the participants were informed about the experiment 
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procedure in writing and verbally by the experimenter. Any questions 
that arose were answered at any time by the experimenter and any 
unclear procedures were explained again. Subsequently, a handedness 
questionnaire, the modified German version of the Edinburgh 
Handedness Inventory from Oldfield (1971) was filled out. After that, 
the EEG cap was prepared, and the participant entered the shielded 
cabin. The participants were instructed to sit on the chair relaxed 
while their right arm should be  in a natural hanging position. In 
advance to the main task, the 3 min RSs (eyes-open, eyes-closed) were 
recorded. More information about the EEG recording can be found in 
Chapter 2.4. The experiment used a unilateral upper limb motor 
imagery paradigm similar to Marchesotti et  al. (2016), Ma et  al. 
(2020), Zhang et al. (2023), and Shi et al. (2024). The experiment 
focused on the extension and flexion of the right elbow while adding 
a non task relevant state condition. The setup was tested by the 
participants before the main EEG recording to ensure familiarity and 
comprehension of the instructions through the training phase 
mentioned in Chapter 2.2. Feedback was partially needed as 
participants finished motor execution not within the 4 s of stimuli 
presentation. No further instructions were given during the motor 
execution phase. For the motor imagery phase, participants were 
instructed to imagine the imagery of the associated movement in a 
similar way as they have performed the real movement in the earlier 
block before. No more instructions were given, to allow the 

participants to imagine the movement in a completely natural manner. 
The duration of the experiment varied from 2 to 2.5 h depending on 
the preparation of the EEG cap.

2.4 EEG data collection

The EEG signals were sampled at 512 Hz using the asalab software 
(v4.9.4 ANT neuro) and a 64-channel ANT amplifier (refa-8). The 64 
electrodes were placed according to the international 10–10 system, 
with efforts to maintain electrode impedances below 
10 kΩ. Additionally, two bipolar electrodes placed above and below 
the right eye and lateral to both eyes to record the electrooculography 
(EOG). The ground electrode served the position AFz. An online 
bandpass filter of DC to 1,000 Hz was employed and common 
reference was used during the recording.

2.5 Data analysis

The data analysis was carried out using the programming language 
Python (v3.11.6). For the analysis of the EEG data the Python module 
MNE (v1.7.0) was used (Larson et  al., 2024). Modules for the 
implementation of the neural networks were TensorFlow (v2.15.0) 

FIGURE 1

Panel (A) is the sequence of each trial shown, which began with a fixation cross, which was shown for 2.5 seconds. One of three colored squares 
followed for 4 second. The blue square indicated the extension of the right arm, the yellow square indicated the flexion of the right arm, and the gray 
square indicated relaxation. After these 4 seconds, the next trial started beginning with the fixation cross. The same stimuli are shown in every block of 
the experiment. The upper sequence in Panel (B) shows the sequence of data recording. The training phase consisted of 12 trials of motor execution 
training, the motor execution phase consisted of 36 trials and the motor imagery phase consisted of six blocks each containing 36 trials of imagery. 
Between each phase a 2 minute long break was planned but it could be skipped at any length by the participant to go on. The lower sequence shows 
the steps of data processing for the main correlation analysis. Frequency features from two RSs (eyes-open & eyes-closed) were used as well as the 
accuracy scores three different deep learning models (EEGNet, FBCNet, NFEEG) and two machine learning models (SVM, LDA).
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and PyTorch (v2.1.0). For all statistical analyses the module SciPy 
(v1.11.3) was used.

Three different neural networks were chosen to be trained for each 
participant. The EEGNet from Lawhern et al. (2018) was chosen due 
to its flexible use in different EEG paradigms as well as it has been 
established as a benchmark model in the literature (Riyad et al., 2020a; 
2020b; Kang et al., 2021; Song et al., 2022; Zhang et al., 2023; Shi et al., 
2024). The second used neural network was the FBCNet from Mane 
et al. (2021). This was done to cover the special separation and analysis 
of the filterbanks from 4 to 40 Hz. It should be  noted that the 
architecture of the model was modified according to Qiu et al. (2021), 
who applied the FBCNet with 4 spatial convolution blocks for 
unilateral upper limb motor imagery classification. The third neural 
network was the NFEEG of Arı and Taçgın (2024). This was done due 
to the models design to work with raw EEG data. To make a direct 
comparison between the literature and the current study, two machine 
learning classifiers were trained. Namly an SVM and an LDA were 
used to classify motor imagery features generated by the 
CSP algorithm.

Each model needed a different variation of preprocessing also 
shown in Table  1. For EEGNet the preprocessing followed the 
approach of Lawhern et al. (2018). Specifically, the data was resampled 
to 128 Hz and bandpass filtered between 4 and 40 Hz. In addition to 
these steps, eye and muscle artifacts were removed using independent 
component analysis (ICA), and EOG channels were excluded and the 
data was referenced by the common average to align preprocessing 
with earlier studies (Ahn et al., 2013; Aggarwal and Chugh, 2019; 
Wang et al., 2022). The left and right channels of the mastoids were 
removed afterwards. The final epoched dataset comprised a 4.5-s time 
series, sampled at 128 Hz, bandpass filtered between 4–40 Hz, and 
recorded from 62 electrodes. For FBCNet the preprocessing followed 
the approach of the authors from FBCNet (Mane et al., 2021). The data 
was resampled to 128 Hz. Nine filterbanks were extracted ranging 
from 4 to 40 Hz, where each filterbank consisted of a bandwidth of 
4 Hz (Mane et al., 2021). Additionally, an ICA was used to remove eye 
and muscle artifacts, the data was referenced by the common average 
(Aggarwal and Chugh, 2019). EOG channels as well as the mastoid 
channels were removed afterwards. The final dataset consisted of nine 
filterbanks, each with a length of 4.5 s, sampled at 128 Hz and 
recorded from 62 channels. For NFEEG no preprocessing was applied 
except for an applied notch filter at 50 Hz. EOG and mastoid channels 
were removed. This was done to align with the authors intention of the 

model to work with no to very little earlier preprocessing (Arı and 
Taçgın, 2024). As both machine learning classifiers were used as a 
baseline, their preprocessing was reasoned to be similar as the one 
from EEGNet as EEGNet established itself as a baseline deep learning 
model in other studies (Riyad et al., 2020a; 2020b; Kang et al., 2021; 
Song et al., 2022; Zhang et al., 2023; Shi et al., 2024). The data was 
resampled to 128 Hz and filtered to contain the mu and beta 
frequencies, resulting in a bandwidth of 4–40 Hz. Similar to the 
preprocessing of the data for EEGNet and FBCNet, an ICA was 
applied, the common average was used as reference. EOG and mastoid 
channels were removed afterwards. As a final step, features were 
extracted from the 4.5-s long epoched data based on the CSP 
algorithm. Because the CSP algorithm is intended to maximize the 
differences between two classes, a one-vs-the-rest approach was used 
for each class individually (Aggarwal and Chugh, 2019).

Every model was trained in a three-class classification task. Each 
model was trained on 80% of the dataset and the other 20% were used 
for validation. The final reported accuracy of each model will be the 
average of a fivefold cross validation. Cross-entropy loss was selected 
as the loss function, and the Adam algorithm as the optimizer. 
EEGNet and FBCNet were trained on a 8-batch size and a learning 
rate of 1e-4 while NFEEG was trained with a batch size of 8 and a 
learning rate of 1e-5. All models were trained for 500 epochs.

The preprocessing of the RSs was identical. First, each RS was 
epoched to a length of 180 s, and then bandpass filtered from 4 to 
40 Hz. In the next step, eye and muscle artifacts were removed using 
ICA, and EOG channels. The data was referenced by the common 
average (Ahn et al., 2013; Wang et al., 2022). The mastoid channels 
were removed afterwards. To gain the PSD of each electrode the 
Welch’s method (Welch, 1967) was used, which is a periodogram-
based spectral estimation method, using the fast Fourier transform. 
The absolute power of the frequency bands, i.e., 8–13 Hz (alpha), 
13–30 Hz (beta) and the RPL of each frequency band were used for 
further statistical analysis. The RPL for each frequency band at each 
electrode was calculated by dividing the power of each band by the 
total power across the 4–40 Hz frequency range at that electrode (Kim 
and Im, 2018; Wang et al., 2022).

Table  2 presents the hyperparameters used for each model. 
Hyperparameter values were not unified across models, as the 
configurations were chosen based on prior findings and 
recommendations from the respective authors, reflecting what was 
reported to yield the best performance (Lawhern et al., 2018; Ma et al., 

TABLE 1 Preprocessing steps for each model.

Model Elektrodes Sampling 
rate

Epoch 
length

ICA Filter Filterbanks Reference CSP 
features

EEGNet 62 128 Hz 4.5 s Yes 4–40 Hz 

Bandpass

No Common average No

FBCNet 62 128 Hz 4.5 s Yes 4–40 Hz 

Bandpass

9 filterbanks, 4 Hz 

banksize, no overlap

Common average No

NFEEG 62 512 Hz 4.5 s No 50 Hz notch 

filter

No None No

SVM 62 128 Hz 4.5 s Yes 4–40 Hz 

Bandpass

No Common average Yes

LDA 62 128 Hz 4.5 s Yes 4–40 Hz 

Bandpass

No Common average Yes
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2020; Arı and Taçgın, 2024). For the classical machine learning 
models, the SVM was configured with a regularization parameter  
C =1, an RBF kernel, a gamma value set to ‘scale’, and a tolerance of 
1e-3. The LDA model employed the SVD solver with a tolerance of 
1e-4. For the deep learning models, EEGNet and FBCNet were both 
trained using the Adam optimizer with a learning rate of 1e-4, a batch 
size of 32, and 500 training epochs. EEGNet used ELU as the activation 
function with a dropout rate of 0.5, while FBCNet applied the Swish 
activation function without dropout. Both models included batch 
normalization. NFEEG, on the other hand, used a higher learning rate 
of 1e-3, a smaller batch size of 8, and also trained for 500 epochs. It 
employed ELU activation with a dropout rate of 0.5 and batch 
normalization. The number of trainable parameters for EEGNet, 
FBCNet, and NFEEG were approximately 2,963, 2,775, and 1,260,545, 
respectively.

The statistical analysis used both prior recorded RSs to get the 
PSD (in μV2) and the RPL (in %, to reduce inter-individual power 
amplitude variability) of each frequency band from each electrode 
(Ahn et al., 2013; Zhang et al., 2015; Wang et al., 2022). Based on the 
findings of Kwon et al. (2020), Kang et al. (2021), Zhou et al. (2022), 
and Wang et al. (2022), the present study focused on the alpha and 
beta frequency bands, as well as the frontal, fronto-central, and central 
electrodes. A Pearson correlation analysis between each RS value and 
the accuracy of each classifier was conducted to find out whether there 
is a linear relationship between these variables (Pearson, 1895). This 
analysis was performed despite one of the variables violating the 
assumption of normal distribution (Ahn et al., 2013). The classifier 
accuracies (in %) served as dependent variables.

Before the main analysis, outliers with a Z-score above three 
standard deviations were removed. For hypothesis testing the value 
for significance was chosen to be α = 0.05 (Field, 2013). A comparison 
of data was thus just not significant above a p-value of ≤ 0.05. Given 
the exploratory nature of this study, which aims to identify potential 
correlations for future research, we chose not to apply False Discovery 
Rate (FDR) correction at this initial stage. Our primary objective was 
to avoid overlooking potentially important findings that might 
be filtered out by FDR in this exploratory phase. Furthermore, the 
potential for complex dependencies among the correlated variables 
could affect the reliability of standard FDR procedures that often 
assume independence or positive dependence.

3 Results

Five decoding methods, EEGNet, FBCNet, NFEEG, SVM and 
LDA, were used for an unilateral upper limb motor imagery paradigm 

in a three-class problem. As shown in Figure  2 boxplots of the 
accuracy scores for all the models are shown and did not significantly 
differ from each other based on a Freidman’s test (p > 0.05). The 
median accuracy scores of models were 48.86% EEGNET, 47.72% 
FBCNet, 44.82% NFEEG, 46.75% SVM and 46.79% LDA. Further 
evaluation parameters are shown in Table 3.

To examine how and which electrodes frequency bands of RSs 
can be  used as predictors for a unilateral upper limb motor 
imagery task, correlations between the PSD and RPL of each 
electrodes frequency bands of the RSs eyes-open and eyes-closed 
and the classifiers accuracies were calculated. All significant 
correlations of the frontal, fronto-central and central electrodes of 
EEGNet are shown in Table  1. In the open-eyes RS, EEGNet 
accuracies showed significant correlations with the PSD in the 
alpha band for the right frontal cortex (F8) and the right anterior 
frontal cortex (AF8). In the beta band, significant correlations were 
found at the left prefrontal cortex (FP1) and the medial prefrontal 
cortex (FPz). For the RPL, no significant correlations were found 
for the alpha band. In the beta band, significant correlations were 
found at the posterior parietal cortex (Pz) and the left posterior 
parietal cortex (P1). In the eyes-closed RS, no significant 
correlations were found between the PSD and EEGNet accuracies 
in any of the frequency bands. No significant correlations were 
found in the alpha or beta bands of the RPL in relation to 
EEGNet accuracies.

For FBCNet, no significant correlations were found for the PSD 
of the alpha bands in the eyes-open RS. However, in the beta band, 
significant correlations with FBCNet accuracies were observed at the 
left prefrontal cortex (FP1), medial prefrontal cortex (FPz), and 
medial frontal cortex (Fz). No significant correlations were found for 
the alpha or beta bands. In the eyes-closed RS, no significant 
correlations were found for the PSD of any frequency band with 
FBCNet accuracies. For the RPL of the alpha, and beta bands, no 
significant correlations were reported. Table 2 shows all significant 
correlations of the alpha and beta bands of the frontal, fronto-central 
and central electrodes of FBCNet.

For the eyes-open RS, NFEEG showed no significant correlations 
with the PSD of the alpha bands. However, for the beta band, 
significant correlations were found in the right anterior frontal cortex 
(AF4) with NFEEG accuracies. No significant correlations were 
reported for the RPL of any frequency band in the eyes-open RS. In 
the eyes-closed RS, no PSD of any frequency band showed significant 
correlations with NFEEG’s accuracies. The left frontal cortex (F1) was 
also significantly correlated with the RPL of the alpha band. Table 4 
shows all significant correlations of the alpha and beta bands of the 
frontal, fronto-central and central electrodes.

TABLE 2 Hyperparameters for deep learning models.

Model Learning 
rate

Batch 
size

Epochs Trainable 
parameters

Optimizer Loss 
function

BatchNorm Dropout Activation 
function

EEGNet 1e-4 32 500 2.963 Adam Cross 

Entropy Loss

Yes 0.5 ELU

FBCNet 1e-4 32 500 2.775 Adam Cross 

Entropy Loss

Yes, Non Swish

NFEEG 1e-3 8 500 1.260.545 Adam Cross 

Entropy Loss

Yes 0.5 ELU
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In the open-eyes RS, SVM accuracies were not significantly 
correlated with the PSD of the alpha bands. For the beta band, 
significant correlations were observed in the frontal areas, including 
the left prefrontal cortex (FP1), medial frontal cortex (FPz, Fz), right 
frontal cortex (F8), left anterior frontal cortex (AF7), and left fronto-
central cortex (FC4), left central areas (C2, C4). For the RPL of the 
alpha band, significant correlations were noted in the frontal areas, 
including the prefrontal cortex (FP1, FP2, FPz), left frontal area (F4, 
F2), anterior frontal cortex (AF7, AF3, AF4, AF8), fronto-central areas 

(FC1, FC2), the medial central cortex (Cz), parietal areas, including 
the posterior parietal cortex (CPz, P3), and the occipital area (Oz). The 
RPL of the beta band was correlated with the frontal areas, including 
the medial frontal cortex (Fz), right frontal area (F8), frontal areas (F1, 
F2, F4), and anterior frontal areas (AF3, AF4, AF8). Additionally, 
significant correlations were found in the fronto-central areas (FCz, 
FC1, FC2, FC4), the central cortex (Cz, C2), left parietal areas (CP3, 
Pz, P1, P3, POz, PO3, PO5, PO7), and the occipital area (Oz). In the 
eyes-closed RS, no significant correlations were found between SVM 
accuracies and the PSD of the alpha bands. However, for the beta 
band, the PSD showed a significant correlation with the right 
prefrontal cortex (FP2). No significant correlations were found for the 
RPL of the alpha bands. For the beta band, the RPL was significantly 
correlated with the SVM accuracies in the right precentral cortex 
(FC4). Table 5 shows the significant correlations of the frontal, fronto-
central or central electrodes for the alpha and beta frequency bands.

In the eyes-open RS, the PSD of the alpha bands were not 
significantly correlated with the LDA accuracies. For the beta band, 
significant correlations were observed at the frontal areas (FP1, FPz, 
Fz, F8), left fronto-central area (FC4), and central areas (C4, C2), as 
well as the left anterior frontal cortex (AF7). In addition, the alpha 
band showed significant correlations at the frontal areas (FP1, FPz, 
FP2, Fz, AF7, AF3, AF8, F2), fronto-central areas (FC1, FC2, FCz), 

FIGURE 2

Boxplots of the accuracies (in %) of the models EEGNet, FBCNet, NFEEG, SVM and LDA. All models were trained in a three class classification problem 
of a unilateral upper limb motor imagery paradigm.

TABLE 3 Table of significant correlations between EEG alpha and beta frequency bands (PSD & RPL) of all electrodes and FBCNet accuracy across RSs.

Electrode Pearson correlation 
coefficient

Frequency band Power metric Resting-state p-value

FP1 0.46* beta PSD eyes-open 0.018

FPz 0.49* beta PSD eyes-open 0.012

Fz 0.44* beta PSD eyes-open 0.023

Levels of significance are reported as follows: p < 0.05 (*).

TABLE 4 Table of significant correlations between EEG alpha and beta 
frequency bands (PSD & RPL) of all electrodes and EEGNet accuracy 
across RSs.

Model Accuracy Precision Recall F1-
Score

Roc 
Auc

EEGNet 48.86 49.30 48.86 46.37 57.34

FBCNet 47.72 49.40 47.73 45.93 61.61

NFEEG 44.82 42.96 44.82 43.37 58.67

SVM 46.75 39.63 45.45 41.37 57.68

LDA 46.79 41.10 43.18 40.52 57.06

All scores are given as the median.
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central area (Cz), posterior parietal areas (P8, CPz), and the occipital 
area (Oz). For the beta band, significant correlations were found in the 
frontal areas (Fz, F4, F8, AF4, AF8, F2, F6), fronto-central areas (FC5, 
FC1, FC2, FC6, FC4, FCz), central areas (Cz, C4, C2), parietal areas 
(CP2, CPz, CP3, CP4, P3, Pz, P4, P8, P5, P1, P2), and occipital areas 
(O1, POz, PO3, PO4, PO5, PO6, PO7, PO8, Oz). In the eyes-closed 
RS, no significant correlations were found for the alpha bands. For the 
beta band, significant correlations were noted at the left prefrontal 
cortex (FP1) and the right central area (C4). No significant correlations 
were reported for the RPL of the alpha bands in the eyes-closed RS, 
except for the beta band, where a significant correlation was found at 
the right fronto-central area (FC4). Table  3 shows the significant 
correlation of the frontal, fronto-central or central electrodes for the 
alpha and beta frequency bands.

4 Discussion

4.1 Key findings

The results of this study demonstrated the importance of 
decreased absolute and relative alpha power and increased absolute 
and relative beta power in prior recorded RS for predicting accuracies 
of unilateral upper-limb motor imagery-based classifiers. Notably, the 
eyes-open RS exhibited more predictors compared to the eyes-closed 
RS. Specifically, for each of the deep learning classifiers (EEGNet, 
FBCNet, NFEEG), only one electrode was significantly correlated with 
either absolute alpha power (EEGNet) or absolute beta power 
(FBCNet) in the eyes-open RS. For EEGNet, the AF8 and the F8 
electrode’s absolute alpha power during the eyes-open RS were 
negatively correlated with EEGNet’s accuracy, indicating that lower 
alpha power in the right lateral prefrontal cortex can serve as a 
medium strong predictor (AF8 r = −0.44; F8 r = −0.39) of EEGNet’s 
accuracy (Field, 2013). For FBCNet, the Fz electrode showed a 
significant medium strong correlation (Fz r = 0.44) between increased 
absolute beta power during the eyes-open RS and improved classifier 
accuracy. This suggests that stronger beta power in the medial and left 
frontal cortex during the RS can serve as a parameter to predict 
FBCNet’s accuracy. The accuracy of NFEEG was negatively correlated 
with the relative alpha power of the left frontal area (F1 r = −0.39) 
during the eyes-closed RS, indicating that lower alpha power relative 
to the other three frequency bands during the eyes-closed RS can 
serve as a predictor for NFEEG’s accuracy, also with a moderate effect 
size. For the machine learning classifiers, multiple channels were 
found to serve as predictors of their accuracies. For the SVM-based 

classifier, the medial frontal cortex (Fz r = 0.53) and the right central 
cortex (C4 r = 0.51) exhibited the strongest linear relationships with 
absolute beta power during the eyes-open RS and the classifier’s 
accuracy. For the SVM- and the LDA-based classifier, similar relevance 
of the right cortex was observed for predicting the accuracies, as well 
as the dominance of beta power. The highest significance (p < 0.001) 
for the LDA was observed for the relative beta power of the right 
frontal areas (F4 r = 0.49; F8 r = 0.48) and the medial frontal areas 
(FCz r = 0.50), as well as the absolute beta power of the right central 
cortex (C4 r = 0.49). A similar proportion of significant alpha and beta 
power correlations was observed between the SVM-based and 
LDA-based classifiers. In general, only a few electrodes’ frequency 
bands during the eyes-closed RS (e.g., relative beta power of FC4 for 
SVM; relative beta power of FC4 and C4 for LDA) were significant, 
emphasizing the importance of the eyes-open RS.

For all frontal, fronto-central, and central electrodes, deep 
learning and machine learning classifiers were always negatively 
correlated with alpha power with classifier accuracy, while beta power 
was always positively correlated. Furthermore, beta frequency was 
more frequently correlated with classifier accuracy than alpha 
frequency, and beta frequency also exhibited stronger correlations in 
terms of effect size (see Tables 5–8).

4.2 Interpretation of key findings

Our study identified a consistent pattern in which lower alpha 
power and higher beta power during RS EEG were associated with 
improved classification accuracy in a unilateral upper limb motor 
imagery (MI) task. This relationship held across different classifier 
types (EEGNet, NFEEG, SVM, LDA), suggesting that these spectral 
features may serve as reliable predictive markers of BCI performance. 
In particular, they may help identify individuals likely to experience 
difficulty in BCI control, commonly referred to as “BCI-illiteracy.” 
Previous studies have shown that alpha power typically decreases 
during cognitively demanding tasks and during motor imagery 
compared to rest (Pfurtscheller et  al., 1996; Klimesch, 1997; 
Pfurtscheller et al., 2006). These alpha desynchronizations are more 
pronounced in individuals with higher cognitive capacity. 
Additionally, decreases in alpha power have been observed in dorsal 
brain regions, such as the sensorimotor cortex, and linked to enhanced 
selective spatial attention (Sapir et  al., 2005; Siegel et  al., 2008). 
Notably, these effects are usually localized in the contralateral 
hemisphere. In contrast, our findings revealed that ipsilateral 
sensorimotor electrodes showed stronger correlations with 

TABLE 5 Table of significant correlations between EEG alpha and beta frequency bands (PSD & RPL) of all electrodes and EEGNet accuracy across RS.

Electrode Pearson correlation 
coefficient

Frequency band Power metric Resting-state p-value

AF8 −0.44* alpha PSD eyes-open 0.026

F8 −0.39* alpha PSD eyes-open 0.048

FP1 0.43* beta PSD eyes-open 0.029

FPz 0.39* beta PSD eyes-open 0.049

P1 0.39* beta RPL eyes-open 0.049

Pz 0.40* beta RPL eyes-open 0.046

Levels of significance are reported as follows: p < 0.05 (*).
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classification accuracy than contralateral ones. This suggests that, 
during unilateral upper limb motor imagery, increases in ipsilateral 
alpha power relative to RS may provide more distinctive and useful 
features for classifier learning than contralateral decreases. Supporting 
this, Brinkman et al. (2014) reported increased alpha-band power in 
the ipsilateral sensorimotor cortex during unilateral upper limb motor 
imagery, particularly under high movement selection demands. They 
proposed that alpha oscillations may reflect functional inhibition of 
task-irrelevant areas, helping to allocate computational resources 
efficiently. Similarly, Stolk et al. (2019) associated ipsilateral alpha 
increases in the somatosensory cortex with spatially unspecific cortical 
inhibition, potentially involved in suppressing irrelevant sensory 
inputs during motor planning and imagery.

The role of alpha power appears multifaceted. For instance, 
increased frontal alpha power has been linked to mind-wandering, 
while decreases are observed during attention-demanding tasks, 
including motor imagery (Ahn et al., 2013; Compton et al., 2019). 
Frontal alpha activity is also closely related to motor execution and 
observation (Babiloni et al., 2015; Wang et al., 2022), which share 
overlapping neural substrates with motor imagery (Lotze and 
Halsband, 2006). Thus, alpha oscillations during motor imagery may 
reflect both attentional focus and motor-related processing. In line 
with this, alpha (mu) rhythm suppression in motor-related cortex is a 
well-established marker of motor imagery (Pfurtscheller et al., 1996; 
2006; Ahn et al., 2013; Zhang et al., 2015). The observed negative 
correlation between alpha power during eyes-open RS and motor 
imagery classification performance in our study may reflect a stronger 
relative increase in alpha power during motor imagery in participants 
with lower RS alpha, thereby offering stronger features for 
classification. Reasoned by this, our findings of alpha power increase 
in frontal, fronto-central, and central regions align with known 
patterns of inhibition in the ipsilateral primary motor cortex, 
supplementary motor area, and premotor cortex during unilateral 
motor imagery (Brinkman et  al., 2014; Stolk et  al., 2019). 
Consequently, lower relative alpha power in these regions during RS 
was a significant predictor of classification accuracy, emphasizing the 
disengagement for prefrontal and motor-related areas in effective 
motor imagery-based BCI control.

Frontal beta activity has been associated with top-down motor 
inhibition (Picazio et al., 2014) and attentional processes during RSs 
(Rogala et  al., 2020). Beta power suppression in the frontal areas 
during motor imagery suggests cooperation between posterior and 
frontal regions for action planning (De Lange et al., 2008). The right 
inferior frontal cortex and motor areas exhibit beta synchronization 
to inhibit non-relevant information (Sacchet et al., 2015), a pattern 
also observed during movement cancellation, where an initial beta 
decrease is followed by a stronger increase (Vázquez Marrufo et al., 
2001; Sacchet et al., 2015). Increased absolute and relative beta power 
in frontal regions has also been linked with inhibitory processes in 
motor control (Picazio et al., 2014). Somatosensory beta oscillations 

during visual cue anticipation further highlight the role of sensory 
processing in attentional tasks (Kilavik et  al., 2013), potentially 
explaining the relationship between frontal beta power during eyes-
open RSs and classifier accuracies (Tables 5–6, 8). The present findings 
demonstrate that beta power during RS, particularly over ipsilateral 
sensorimotor regions, show significant correlations with motor 
imagery classification performance for upper limb movements. This 
suggests that ipsilateral cortical activity contributes meaningfully to 
motor imagery decoding, a notion supported by previous work 
implicating the ipsilateral M1 and the SMA in both motor execution 
and imagery (Chen et al., 1997; Van Wijk et al., 2012; Schmidt et al., 
2019). Importantly, beta power is characteristically high at rest and 
during stable postures, and decreases during motor execution and 
imagery in contralateral motor cortex, a process known as event-
related desynchronization. Following the cessation of movement, beta 
power typically rebounds in what is known as post-movement beta 
rebound or event-related synchronization (Pfurtscheller et al., 1996). 
In the context of ipsilateral beta decrease, high resting beta power 
might reflect a predisposition for stronger beta modulation during 
motor imagery, making it a potentially predictive marker for 
unimanual motor imagery decoding. Furthermore, our data revealed 
a positive correlation between beta power and classification accuracy, 
contrasting with a negative correlation for alpha power. One plausible 
explanation is that alpha activity in the left sensorimotor cortex was 
relatively uniform across imagery conditions, thereby contributing 
less class-specific information. In contrast, beta power, particularly 
from ipsilateral channels, appeared to encode more discriminative 
features, possibly due to its association with proximal arm and 
shoulder representations (Hasegawa et al., 2017).

Notably, centrally located electrodes exhibited similar patterns of 
alpha and beta power during the RSs (Tables 1–3). These patterns were 
negatively correlated with classifier accuracies for alpha power and 
positively correlated for beta power. Oscillatory activity in the medial 
wall of the motor cortex has been associated with leg movements 
(Meier et al., 2008). Given these alpha and beta power distributions, 
it is reasonable to hypothesize that these regions contributed distinct 
features to the classifiers, potentially reflecting the need to inhibit leg 
movements during the task. This interpretation aligns with prior work 
showing that successful motor imagery involves active suppression of 
non-relevant motor regions (Pfurtscheller et al., 1997).

4.3 Comparison to previous studies

Comparing the results of this study to the existing literature, 
some findings align, while others show discrepancies. Regarding 
the range of correlation coefficients reported in the literature, the 
findings of the present study are consistent. The strongest 
correlation coefficient reported in the literature was by Zhang 
et  al. (2015) for the absolute alpha power of the C3 electrode 

TABLE 6 Table of significant correlations between EEG alpha and beta frequency bands (PSD & RPL) of all electrodes and NFEEG accuracy across RSs.

Electrode Pearson correlation 
coefficient

Frequency band Power metric Resting-state p-value

AF4 −0.41* beta PSD eyes-open 0.040

F1 −0.39* alpha RPL eyes-closed 0.049

Levels of significance are reported as follows: p < 0.05 (*).
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TABLE 7 Table of significant correlations between EEG alpha and beta frequency bands (PSD & RPL) and SVM accuracy across testing-states.

Electrode Pearson correlation 
coefficient

Frequency band Power metric Resting-state p-value

Fp1 0.65** beta PSD eyes-open < 0.001

−0.46* alpha RPL eyes-open 0.017

Fpz 0.62** beta PSD eyes-open < 0.001

−0.49* alpha RPL eyes-open 0.012

Fz 0.53** beta PSD eyes-open 0.005

0.48* beta RPL eyes-open 0.014

F8 0.46* beta PSD eyes-open 0.018

0.47* beta RPL eyes-open ,015

AF7 0.53** beta PSD eyes-open 0.003

−0.47* alpha RPL eyes-open 0.020

0.43* beta RPL eyes-open 0.027

FC4 0.48* beta PSD eyes-open 0.013

0.46* beta RPL eyes-open 0.019

C2 0.45* beta PSD eyes-open 0.021

0.39* beta RPL eyes-open 0.05

C4 0.51** beta PSD eyes-open 0.007

Oz 0.41* beta RPL eyes-open 0.038

FP2 −0.52** alpha RPL eyes-open 0.006

AF3 −0.41* alpha RPL eyes-open 0.021

AF4 −0.40* alpha RPL eyes-open 0.042

F2 −0.46’ alpha RPL eyes-open 0.019

0.49* beta RPL eyes-open 0.012

FC1 −0.39* alpha RPL eyes-open 0.05

0.40* beta RPL eyes-open 0.045

FC2 −0.47* alpha RPL eyes-open 0.017

0.45* beta RPL eyes-open 0.012

Cz −0.49* alpha RPL eyes-open 0.012

0.43* beta RPL eyes-open 0.029

P3 −0.39* alpha RPL eyes-open 0.046

0.43* beta RPL eyes-open 0.031

CPz −0.39* alpha RPL eyes-open 0.045

Pz 0.42* beta RPL eyes-open 0.031

O1 0.39* beta RPL eyes-open 0.050

FCz −0.49* alpha RPL eyes-open 0.012

0.48* beta RPL eyes-open 0.013

P1 0.46* beta RPL eyes-open 0.017

PO5 0.39* beta RPL eyes-open 0.049

PO3 0.39* beta RPL eyes-open 0.048

PO7 0.39* beta RPL eyes-open 0.047

FP2 0.40* beta PSD eyes-closed 0.041

FC4 0.41* beta RPL eyes-closed 0.039

Levels of significance are reported as follows: p < 0.05 (*), p < 0.01 (**).
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(r = 0.65), while the weakest was reported by Kang et al. (2021) 
for the beta power of the F3 electrode (r = 0.37). In the current 
study, focusing on alpha and beta power in the frontal, fronto-
central, and central areas, the strongest correlation coefficient was 
observed for the absolute beta power of the Fz (r = 0.53) electrode 
during the eyes-open RS, which predicted SVM accuracy. Notable 
findings also include the absolute beta power of the C4 electrode 
for both SVM (r = 0.51) and LDA (r = 0.55). Another aspect 
where this study aligns with the literature is that electrodes around 
the sensorimotor areas (C3, C4) exhibited the strongest effect 
sizes for correlations with machine learning classifier accuracies. 
This is consistent with findings from prior studies (Blankertz 
et al., 2010; Ahn et al., 2013; Zhang et al., 2015; Kwon et al., 2020; 
Kang et al., 2021; Wang et al., 2022; Zhou et al., 2022). However, 
while these studies primarily utilized bilateral or combined upper- 
and lower-limb motor imagery, the present study identified mostly 
ipsilateral and medial located electrodes as predictors for the 
classifiers. Unlike many previous studies that employed bilateral 
motor imagery, our findings emphasize the predictive role of 

ipsilateral electrodes, likely due to the unilateral nature of the task 
(Chapter 4.2).

Besides the importance of ipsilateral electrodes compared to 
contralateral electrodes, a key finding of this study is that all alpha-
related features were negatively correlated, while all beta-related 
features were positively correlated. This observation stands in direct 
contrast to the existing literature, where alpha power features were 
consistently reported as positively correlated and beta features as 
negatively correlated (Blankertz et al., 2010; Ahn et al., 2013; Zhang 
et al., 2015; Kwon et al., 2020; Kang et al., 2021; Wang et al., 2022; 
Zhou et al., 2022). Thus, the present study reports inverted effects for 
alpha and beta-related features across both deep learning and machine 
learning classifiers, as well as for both RS conditions.

One important factor is the paradigm used in this study compared 
to those in the literature. The paradigm employed here, focusing on 
unilateral upper limb motor imagery, may reveal a reversed mechanism 
compared to the paradigms used in previous studies, where alpha and 
beta correlations are consistent with traditional findings. This 
difference suggests that unilateral motor imagery paradigms may 

TABLE 8 Table of significant correlations between EEG alpha and beta frequency bands (PSD & RPL) and LDA accuracy across testing-states.

Electrode Pearson correlation 
coefficient

Frequency band Power metric Resting-state p-value

Fp1 0.60** beta PSD eyes-open 0.001

−0.41* alpha RPL eyes-open 0.011

Fpz 0.50** beta PSD eyes-open 0.009

−0.50 alpha RPL eyes-open 0.009

Fp2 −0.53** alpha RPL eyes-open 0.005

Fz 0.49* beta PSD eyes-open 0.012

−0.42* alpha RPL eyes-open 0.032

0.48 beta RPL eyes-open 0.014

F4 0.49** beta PSD eyes-open 0.010

0.43* alpha RPL eyes-open 0.030

F8 0.48* beta PSD eyes-open 0.014

0.50** beta RPL eyes-open 0.009

Cz −0.46* alpha RPL eyes-open 0.018

0.47* beta RPL eyes-open 0.016

C4 0.55** beta PSD eyes-open 0.004

0.44* beta RPL eyes-open 0.024

FC2 −0.44* alpha RPL eyes-open 0.023

0.47* beta RPL eyes-open 0.016

AF7 0.59** beta PSD eyes-open 0.002

−0.50** alpha RPL eyes-open 0.010

AF8 −0.48* alpha RPL eyes-open 0.001

0.41* beta RPL eyes-open 0.040

FCz −0.48* alpha RPL eyes-open 0.015

0.50** beta RPL eyes-open 0.009

Fp1 0.39* beta PSD eyes-closed 0.048

C4 0.49* beta PSD eyes-closed 0.012

FC4 0.39* beta RPL eyes-closed 0.047

Levels of significance are reported as follows: p < 0.05 (*), p < 0.01 (**).
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inherently exhibit an inverted relationship between alpha and beta 
correlations for ipsilateral electrodes. In addition, an increase in alpha 
power from eyes-open to eyes-closed RS was observed in this study, a 
finding that is consistent with Kwon et al. (2020) and supports the 
validity of the present data. Additionally, Wang et al. (2022) reported 
stronger alpha power correlation coefficients during eyes-open RS 
compared to eyes-closed states, attributing this to the influence of the 
occipital alpha band (~10 Hz) power. This aligns with the present 
study, where alpha band features were exclusively significantly 
correlated during the eyes-open RS, except for NFEEG.

Taken together, the findings of this study suggest an inverted 
relationship between alpha and beta power in RS EEG and classifier 
performance in unilateral upper limb motor imagery, compared to the 
patterns typically observed in bilateral motor imagery paradigms. 
Specifically, alpha power features were negatively, and beta power 
features positively, correlated with classification accuracy—opposite 
to the trends consistently reported in prior studies (Blankertz et al., 
2010; Ahn et al., 2013; Zhang et al., 2015; Kwon et al., 2020; Kang et al., 
2021; Wang et al., 2022; Zhou et al., 2022). This inversion may reflect 
inhibitory processes in the ipsilateral motor cortex, with increased 
alpha and decreased beta activity indicating suppression of non-task-
relevant motor areas. While previous work frequently identified both 
C3 and C4 as key contributors to classification performance in 
bilateral imagery tasks, the present study found significant correlations 
only at C4, suggesting a more ipsilateral-dominant pattern. This may 
indicate that unilateral motor imagery elicits more distinctive neural 
activity in ipsilateral regions, whereas bilateral tasks may engage more 
symmetric or overlapping contralateral areas, reducing classifier 
separability. These results highlight how the motor imagery paradigm, 
unilateral vs. bilateral—can fundamentally alter the relationship 
between RS spectral features and decoding performance. They also 
underscore the importance of considering task design and laterality 
when interpreting or comparing BCI studies.

4.4 Limitation

The findings of our work are limited by some reasons. First, classifier 
accuracies were distinctly lower in the present unilateral upper-limb 
motor imagery paradigm. While our study yielded accuracy values 
ranging from median values of 44.82 to 48.86%, classic motor imagery 
paradigms (involving multiple body parts), have reported accuracies 
ranging from less than 40 to 100% (Kwon et al., 2020; Kang et al., 2021; 
Wang et  al., 2022). This might be  reasoned by the fact that earlier 
research in this field focused on classical motor imagery paradigms and 
lower accuracies across all types of classifiers were expected due to the 
more complex nature of the unilateral upper-limb motor imagery 
paradigm. Another limitation is the training size of 216 trials per 
participant, which may have been insufficient for the classifiers to fully 
learn the complexity of the task. Nevertheless, it cannot be assumed that 
the classifiers did not learn reasonably well, as the accuracies achieved 
in this study were higher compared to other studies employing similar 
motor imagery paradigms, such as those by Ma et al. (2020) and Zhang 
et al. (2023). It can be stated that larger datasets, such as those used in 
Shi et al. (2024), would more likely have resulted in improved accuracies. 
Data augmentation methods were considered as a possible solution to 
artificially increase the training size. However, due to the lack of a golden 
standard for EEG data augmentation and the model-dependent nature 
of existing augmentation methods, no data augmentation was applied 

in this study. Moreover, EEG data augmentation is an independent and 
ongoing field of research (Rommel et al., 2022), which is out of scope of 
this study. An additional limitation is that all assumptions regarding why 
and how specific electrodes and frequency bands serve as valid 
predictors for motor imagery-based classifiers require further 
investigation. The non-linear mapping of classifiers from EEG data to 
motor imagery classes necessitates methods from explainable artificial 
intelligence (XAI) to better understand which features were truly 
important for classification. Therefore, these assumptions must 
be validated through investigations of what classifiers learn and how 
these features depend on each other. Such studies could provide greater 
support for why and how certain electrodes and specific frequency 
bands of RSs are valid and reliable predictors. A fourth limitation of this 
work is the inability to fully control whether participants truly engaged 
in motor imagery during the experiments. Motor imagery inherently 
relies on participants’ compliance and cognitive engagement, making it 
challenging to verify the accurate execution of imagined movements.

It must be noted that no false discovery rate (FDR) correction was 
applied, given the exploratory nature of this study. As a result, the 
possibility of false-positive correlations cannot be entirely excluded. 
However, since consistent and generalizable patterns were observed 
across all classifiers, it can be cautiously assumed that lower alpha 
power and higher beta power in ipsilateral electrodes may serve as 
distinctive neurophysiological predictors for the classification of 
unilateral upper limb motor imagery, though these findings warrant 
further validation. What can be stated with greater confidence is that 
contralateral electrodes, typically associated with higher alpha and 
lower beta power, did not contribute significantly to classifier 
predictions. Therefore, this study provides novel insights into the 
neurophysiological underpinnings and classification of motor 
imagery, specifically in the context of unilateral upper limb tasks.

4.5 Future directions

Future research should incorporate methods from explainable 
artificial intelligence (XAI) to better understand what machine learning 
classifiers have learned. Techniques such as SHAP values (Lundberg and 
Lee, 2017) or LIME (Ribeiro et  al., 2016) can provide insights into 
feature contributions, while Grad-CAM (Selvaraju et  al., 2016) and 
layer-wise relevance propagation (Bach et  al., 2015) can be  used to 
interpret CNN-based models. Consequently, RS based features could 
be combined with the results of XAI techniques to better understand 
BCI-illiteracy. Another critical factor in motor imagery research is the 
availability of high-quality and high-quantity EEG data. While prolonged 
recording sessions may reduce data quality due to participant fatigue and 
inattention, conducting multiple shorter sessions could help mitigate this 
issue and may also introduce learning effects across sessions. Thus, 
future studies should investigate how learning effects over multiple 
recording sessions influence motor imagery classification performance.

In scenarios where data remains limited, data augmentation 
techniques may offer a viable solution to enhance model 
generalization. Future research should explore various augmentation 
methods tailored specifically to unilateral upper-limb motor 
imagery paradigms, as no gold standard currently exists (Rommel 
et al., 2022). Moreover, the incorporation of attention mechanisms 
into classifier architectures may enhance performance. For instance, 
Shi et al. (2024) demonstrated that integrating SE-attention into an 
EEGNet-based model improved classification accuracy. Beyond 
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performance gains, attention mechanisms could also aid in 
identifying meaningful patterns in EEG data, contributing to a 
deeper understanding of the neural correlates of motor imagery.

5 Conclusion

Notwithstanding these limitations, this work provides 
valuable insights into the prediction and usability of deep 
learning and machine learning approaches for BCIs based on 
neurophysiological parameters. This study highlights a 
difference between deep learning and machine learning 
approaches in terms of the number of feasible electrodes and 
frequency bands for predicting BCI illiteracy. All deep learning 
approaches used for unilateral upper-limb motor imagery 
classification demonstrated a linear relationship between the 
relative/absolute PSD of one frontal electrode’s frequency band 
and classifier accuracy. In contrast, machine learning approaches 
showed that multiple electrodes from the frontal, fronto-central, 
and central cortex could serve as predictors for classifier 
accuracy. In addition, the significant correlations observed from 
the eyes-open RS across all classifiers highlight the importance 
of this state compared to the eyes-closed RS, although the latter 
might also serve as a source of predictors.

This study investigated neurophysiological predictors of two 
RSs to identify linear relationships with motor imagery classifier 
accuracies. The results revealed a negative linear relationship 
between relative alpha band power and classifier accuracy. In 
addition, positive correlations were found for absolute and 
relative beta band power, particularly in frontal, fronto-central, 
and central areas during the eyes-open RS. Interestingly, 
ipsilateral electrode frequency bands were more likely to 
be correlated with classifier accuracies than contralateral ones, 
potentially due to the inhibition of conflicting movements and 
their motor plans and during motor imagery (Brinkman et al., 
2014; Picazio et al., 2014; Stolk et al., 2019; Rogala et al., 2020). 
These findings oppose the typical patterns reported in previous 
studies, where alpha power is positively correlated with accuracy 
in similar regions and beta power shows negative correlations 
(e.g., Kwon et al., 2020; Kang et al., 2021; Wang et al., 2022; Zhou 
et al., 2022). This inversion may be attributed to the unilateral 
motor imagery paradigm used in the present study, compared to 
the multi-body-part imagery paradigms commonly used in the 
literature. In regard to the classifiers employed, CSP-based SVM 
or LDA classifiers showed multiple linear relationships, whereas 
deep learning-based approaches (EEGNet, FBCNet, NFEEG) only 
yielded significant results for one electrode in the frontal regions. 
Comparing deep learning and machine learning classifiers, deep 
learning classifiers yielded (non-significant) higher accuracies 
compared to machine learning classifiers, which had more 
ipsilateral correlations.
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