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Objective: The purpose of this study was to look into the brain functional 
network changes and their possible correlations with clinical traits, spontaneous 
arm movements, and recovery in middle cerebral artery stroke.
Methods: The study included 34 patients with acute cerebral infarction (CI) 
at middle artery and upper limb dyskinesia, as well as 50 healthy control (HC) 
participants. The spontaneous activity data of both upper limbs were recorded 
using a wrist activity recorder for 24 h. The Modified Rankin Scale (mRS) scales 
were then completed 90 days after the stroke onset. Resting-state EEG was 
acquired from both the CI and HC groups, and brain network features were 
examined using the microstate analysis. The correlations between microstates, 
spontaneous activity and clinical traits were investigated.
Results: Compared with the HC group, the CI group had a higher MsB duration, 
lower MsC coverage and occurrence, and a decrease in both MsA and MsB to 
MsC as well as a decrease in MsC to MsA (p < 0.05); only the transition from MsC 
to MsB was enhanced; Reduced MsD coverage, occurrence, and duration when 
patients had larger FMA scores (p < 0.05); The MsB to MsA and MsD significantly 
correlated with FMA. Moreover, we found increased MsC coverage and duration, 
as well as the transition rates of MsA and MsD to MsC in those patients with mRS 
scores larger than one at 90 days after stroke (p < 0.05). Parts of Ms parameters 
involving MsA significantly correlated with mRS at 90 days after stroke.
Conclusion: The dynamic balance of brain networks is altered when cerebral 
infarction occurs, and microstates offer a portion of the functional brain 
network foundation that allows us to recognize these alterations. These 
changes in temporal dynamic parameters effectively suggest the clinical traits 
and functional recovery in CI.
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1 Introduction

Stroke is a group of cerebrovascular illnesses characterized by 
ischemic or hemorrhagic damage to brain tissue (GBD 2019 Stroke 
Collaborators, 2021). According to the China Stroke High-risk 
Population Screening and Intervention Program, an estimated 17.8 
million adults in China experienced a stroke in 2020, with 3.4 million 
experiencing their first-ever stroke and another 2.3 million dying as a 
result (Tu and Wang, 2023). Ischemic stroke (IS) accounts for 5.2% of 
all deaths worldwide over five years (GBD 2015 Mortality and Causes 
of Death Collaborators, 2016; Fu et al., 2015). In clinical practice, the 
severity of stroke patients is typically assessed using clinical measures 
(Kasner, 2006), such as the National Institutes of Health stroke scale 
(NIHSS) (Yamal and Grotta, 2021), the modified rankin scale (mRS) 
(Haggag and Hodgson, 2022), the Barthel index (Liu et al., 2020), the 
Fugl-Meyer upper extremity exercise scale (FM-UE) (Kerimov et al., 
2021), and others. In recent years, numerous criteria have been 
employed to investigate movement recovery following stroke (Schwarz 
et  al., 2019). According to earlier research, spontaneous arm 
movements (Chen et al., 2022) on the affected side may decrease or 
stop entirely in the presence of dyskinesia before reappearing as a sign 
of recovery (Siekierka-Kleiser et al., 2006; Nakayama et al., 1994). 
Research in this area has received a lot of attention recent years, such 
as Mirror therapy in upper limb motor recovery (Nogueira et al., 
2021), and research on therapies that have an impact on upper limb 
motor function and activities of daily living in the subacute and 
chronic phases of stroke, including virtual reality, robot-assisted 
therapy and telerehabilitation (Everard et al., 2022). In this study, 
we focus on publicly available wearable devices and associated features 
to monitor upper limb activity after stroke (Elgendi and Menon, 
2019). Wearable gadgets, such as smart watches and wristbands, have 
given rise to wearable devices as prominent technologies (Ahmed 
et al., 2023).

A broadband electroencephalography (EEG) microstate technique 
is being used in an increasing number of clinical and cognitive 
neuroscience investigations to assess the electrical activity of large-
scale cortical networks (Tarailis et al., 2024). EEG microstate analysis 
consists of grouping the spatial topographies of the sensor-space 
electric potentials (often referred to as “maps”) that are captured by 
EEG into a limited number of distinct clusters that, usually account 
for a significant portion of the data variation (Khanna et al., 2015; 
Michel and Koenig, 2018). Large-scale resting-state networks 
established by blood oxygen level-dependent signals are represented 
by microstates A, B, C, and D, which are typically categorized into four 
groups: visual networks, salience networks, auditory and vestibular 
system networks, and dorsal attentional networks (Britz et al., 2010; 
Seitzman et al., 2017). These groups represent various roles, including 
participation in speech processing within the auditory network 
(Damborská et al., 2019), reflection of vision (Vellante et al., 2020), 
involvement in sensory-motor information processing (Chu et al., 
2020), overall cognition and emotion, and maintenance of attentional 
stability (D'Croz-Baron et al., 2021). In certain cases, the lesioned 
brain region can experience functional segregation and reorganization 
through modifications to the connections between other distant brain 
regions and changes in the function of surrounding normal brain 
regions (Hu et al., 2018), which helps to make up for the lost function 
in the damaged cortex (Hu et al., 2018). Because brain networks of 
spontaneous brain activity and microstates are closely related, 

microstate dynamics can partially represent motor abilities (e.g., 
function of the lower and upper limbs) (Spisak et al., 2020; Zhang 
et al., 2022).

In recent years, EEG microstates have gained increasing attention 
as a tool to probe brain network alterations after ischemic stroke in 
diagnosis (Hao et  al., 2022; Lu et  al., 2024; Lima et  al., 2025), 
rehabilitation (Yu et al., 2023; Lv et al., 2025), and outcome prediction 
(Kong et al., 2025). Altered microstate dynamics have been linked to 
the cognitive function (Barzon et al., 2024), regions of lesions (Chen 
et al., 2025), and post-stroke level of consciousness (Wang F. et al., 
2024). These findings suggest a potential role of EEG microstates as 
biomarkers of stroke in various aspects. While current evidence 
remains largely observational, more studies are still required to 
establish the clinical utility of microstates for diagnosis, prognosis, and 
therapy planning in stroke. The wearable Actiwatch is an important 
technology to record the spontaneous movements in stroke 
rehabilitation. It has been used to score the sleep impairments and 
motor recovery in post-stroke patients (Wang J. et al., 2024; Smith 
et al., 2024; Wang J. E. et al., 2024). Few studies combined the EEG 
microstate and actigraphy techniques to investigate the brain brain 
functional dynamics and spontaneous arm movements and their 
correlations with clinical traits after stroke.

In addition to providing a partial basis of the functional brain 
network for our identification of changes in spontaneous bilateral 
upper limb activity and its relationship with the brain network in the 
early recovery of CI patients, the goal of this study aimed to predict 
the early recovery and determine the severity of CI patients by 
combining EEG microstate analysis and spontaneous bilateral upper 
limb activity with clinical scale scores.

2 Materials and methods

2.1 Participants

From January 2022 to October 2023, 34 patients with first-ever 
acute MCA ischemic stroke and upper limb dyskinesia in addition to 
50 healthy elderly volunteers were recruited from the Department of 
Neurology, the Affiliated Hospital of Southwest Medical University. 
This study included a total of 84 participants. This study was approved 
by the Ethics Committee of the Affiliated Hospital of Southwest 
Medical University, and informed consent was obtained from all 
participants and their families.

The inclusion criteria for the stroke patients were as follows: (1) 
patients with acute cerebral infarction hemiplegia diagnosed with 
acute stage ischemic stroke within 7 days of ischemia by a neurologist 
according to the Chinese guidelines for diagnosis and treatment of acute 
ischemic stroke 2018 (Tu and Wang, 2023; Chinese Society of 
Neurology, Chinese Stroke Society, 2018); (2) imaging examination 
after admission suggesting infarction in the blood-supplying area of 
the MCA; (3) Aged 30–80 years old; (4) prior to this stroke, without 
other diseases affecting upper limb function; (5) right-handedness. (6) 
no other neurological or mental illnesses.

The inclusion criteria for the healthy elderly group were: (1) with 
no history of diabetes, hypertension, cardiovascular and 
cerebrovascular diseases, or mental illness; (2) cranial magnetic 
resonance scan showing no definite brain lesions; (3) right-
handedness; (4) Aged 30–80 years old.
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Exclusion criteria included history of other severe neuropsychiatric 
diseases and considerable EEG data interference: (1) cardiogenic or 
other causes of non-primary cerebral infarction; (2) severe heart, kidney, 
severe malnutrition, or immune system disease; (3) hemorrhagic stroke; 
(4) tumor; (5) patients with thrombolytic therapy in the acute phase; (6) 
pregnant patients; and (7) with other neurological or mental illnesses.

The criteria for participant deletion or discontinuation were as 
follows: (1) Patients who had obvious head movement during EEG 
acquisition and did not cooperate with clinical scale assessments; (2) 
Patients who requested automatic withdrawal; (3) Patients who were 
lost to outpatient follow-up; (4) Patients who experienced new stroke 
during early rehabilitation.

The patients were followed up after a 90-day recovery period, and 
the review process was performed by a specialized neurological 
physician to refine the mRS scores.

2.2 Clinical trait assessments

The participants’ demographic data were collected. Fugl-Meyer 
Assessment (FMA) for upper extremity, NIHSS, mRS, Montreal 
Cognitive Assessment (MoCA) (Carson et al., 2018), and Mini-Mental 
State Examination (MMSE) (Wang G. et al., 2022) scores were assessed 
by experienced neurologists within 7 days of stroke (acute phase) in 
patients with MCA infarction using a uniform assessment process. 
After about 90 days later, patients were followed up in an outpatient 
clinic, where the modified rankin scale (mRS) scores were refined by 
a specialized neurologist.

2.3 Actiwatch

The ware, a small light-weight gadget the size of wrist-watch, 
synchronously recorded movements in all three dimensions with 
movement-sensitive sensors (0.01 gravity to 8 gravity). The patients 
were introduced to wear the Actiwatch (MotionWatch, MW 8, 
CamNtech Inc. UK) on both wrists of the upper limbs for 24 h. The data 
were loaded and binned into minutes with Motionware software (v1.2.1, 
CamNtech Inc. UK). Then, we  calculated the spontaneous activity 
parameters of upper limb activity in patients, including the bilateral 
upper extremity activity coordination index (r), the upper limb activity 
ratio (ULAR, %), and duration of moderate activity level (minutes). The 
moderate activity level was defined as the counts per minute above than 
500. The ULAR were defined as the movement counts of affected arm 
divided by the contralateral healthy side (Equation 1).

	
= ∗. 100%.
MaffecULAR Mcontra 	

(1)

The ULAR indicated the percentage of upper limb activity ratio, 
Maffec. indicated the movements of the affected arm, and Mcontra. 
indicated the movements of the contralateral unaffected arm.

2.4 EEG recording

All patients completed EEG recordings for approximately 
20 min. All participants were asked to remove scalp dirt and 

degrease with 75% alcohol before the examination; sit in a semi-
isolated, temperature-appropriate room; stay awake; close their 
eyes; relax; and minimize their muscle activity during EEG 
collection. The acquisition instrument was an Italian EB Neuro 
EEG instrument, with a sampling rate of 500 Hz., and an 
impedance controlled below 10 kΩ. Scalp electrodes were installed 
according to the international 10–20 system developed by the 
International Federation of Clinical Neurophysiology. The scalp 
electrodes were placed in bilateral prefrontal pole (Fp1, Fp2), 
frontal pole (F3, F4), anterior temporal (F7, F8), middle temporal 
(T3, T4), posterior temporal (T5, T6), central region (C3, C4), 
parietal pole (P3, P4), occipital pole (O1, O2), parietal scalp (Cz), 
and ear electrodes A1 and A2 were used as reference electrodes.

2.5 EEG preprocessing

The EEG data were pre-processed with the Matlab based toolbox 
EEGlab (v13.6.5, http://sccn.ucsd.edu). The steps of pre-processing 
was similar with our previous studies (Zhou et al., 2023; Tan et al., 
2024). Briefly, the original data were exported into the European Data 
Format and imported into EEGlab. Then the locations of the electrodes 
were assigned. The EEG data were notch-filtered at 50 Hz to decline 
the possible current noise. Subsequently, the EEGLAB plug-in 
Automatic Artifacts Removal (AAR)1 was employed to automatically 
correct ocular and myogenic artifacts. The AAR algorithm leverages 
blind source separation (BSS) combined with fast ICA algorithm 
method to isolate and remove electrooculogram components, which 
were identified based on their low fractal dimension. A similar 
algorithm was applied to suppress muscle artifacts. Channels 
exhibiting excessive noise were labelled as “bad” if their standard 
deviation (SD) exceeded a threshold of 4. Datasets with more than two 
bad channels were excluded from further analysis. Identified bad 
channels were then reconstructed via spherical interpolation. After 
that, the data were bandpass-filtered (1–45 Hz) using a zero-phase 
Butterworth filter implemented in MATLAB (functions filtfilt and 
butter). All EEG signals were re-referenced to the average reference. 
Finally, we selected five 10-s-epochs of EEG in the resting state with 
eyes closed for each participant for subsequent analysis. All 
preprocessing steps were executed using a custom MATLAB-based 
pipeline (R2016a, The MathWorks Inc.).

2.6 Microstate analysis

The preprocessed data were imported through the LORETA-Key 
tool (v20190617, Bain-heart: KEY Institute in Zurich, Switzerland, 
www.uzh.ch/keyinst/loreta) and then subjected to microstate analysis. 
First the Global Field Potential (GFP) of each time sample point were 
calculated (Lehmann et al., 1987) with the following Equation 2:

	
( ) ( ) ( )=  Σ − =

2
1

n
i vi t v t

GFP t
n 	

(2)

1  http://germangh.com
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where n represents the total number of electrodes, ( )vi t  is the 
potential of the i-th electrode at time t. ( )vi t  is the mean of the 
instantaneous potentials across the electrodes. Because of the 
stability of the topography, the topography at the instantaneous 
maximum point of GFP were employed to present the surrounding 
topography for analysis (Cao et al., 2023). Then, the main primary 
topographic maps were classified by k-means clustering method 
(Pascual-Marqui et al., 1995). The polarity of the topographical 
map was ignored. According to our previous studies (Zhang et al., 
2023; Zhou et al., 2023), We selected four canonical microstates 
due to their well-established neurophysiological relevance to 
human mental state and reliability. The individual maps for each 
participant were extracted and the mean Ms maps were calculated 
for each group. After that, the recognized individual maps were 
back-fitted across groups using their group mean maps. The labels 
corresponding to the original topographic map and Ms. were 
labeled as A, B, C, D in accordance with their tomographic 
distributions. Finally, the subsequent parameters were derived for 
each microstate at various time intervals (Khanna et al., 2015): (1) 
Coverage: percentage of the analyzed time occupied by a specific 
microstate (Ms); (2) Duration: the average duration of each 
microstate; (3) Occurrence: i.e., the average number of times per 
second that the Ms. occurs; and (4) Transition: the probability that 
one type of Ms. transfers to another.

2.7 Subgroup and correlation analyses

To further explore the changes of spontaneous activity and 
microstates after CI, we  defined several subgroups, such as 
FMA ≤ 55 and FMA > 55, moderate activity time above >150 min 
and ≤150 min, bilateral upper limb coordination coefficients 
r > 0.62 and ≤0.62, mRS after 90 days ≤1 and >1, and ULAR >30% 
and ≤30%. In addition, correlations between clinical trait metrics 
including spontaneous upper-limb activity, clinically relevant 
scales such as NIHSS, FMA, mRS, MoCA, MMSE and Ms 
parameters were examined.

2.8 Statistical methods

A generalized linear model (GLM) with age and sex as covariates 
were used to decline the possible influences on results. Group and 
subgroup differences in the microstate parameters and parameters of 
arm spontaneous activity movements were explored using a 
two-sample t-test. The statistical significance level was set to p < 0.05. 
False discovery rate (FDR) correction was applied to correct for 
multiple comparisons. All the tests were carried out using MATLAB 
(R2016a, The MathWorks Inc.). The effect size between the two groups 
was described by calculating Cohen’s d value.

3 Results

Thirty-four stroke patients who met the inclusion and exclusion 
criteria were included in the acute CI group, while 50 individuals were 
included in the HC group. There were no significant differences in sex 
and age between the two groups (Table 1).

The CI group had a higher duration of MsB (t = 2.193, d = 0.555, 
p = 0.031) and lower coverage and occurrence of MsC (t = −2.015, 
d = −0.448, p = 0.047; t = −2.317, d = −0.515, p = 0.031) in 
comparison to the healthy group. In terms of microstate transition, the 
CI group saw a decrease in both MsA and MsB to MsC as well as a 
decrease in MsC to MsA; only the transition from MsC to MsB was 
enhanced (Figure 1).

Compared to CI patients with FMA scores ≤55, those with 
FMA > 55 exhibited reduced coverage and occurrence of MsD 
(t = −2.393, d = −0.844, p = 0.023; t = −2.646, d = −0.0.934, 
p = 0.013), as well as decreased coverage and duration of MsA 
(t = 2.189, d = 0.773, p = 0.036; t = 2.334, d = 0.824, p = 0.026). 
Additionally, the FMA > 55 subgroup exhibited higher transition 
probabilities between MsA and MsB (t = 2.053, d = 0.725, p = 0.048; 
t = 2.728, d = 0.963, p = 0.010), but a significantly lower transition 
probability from MsB to MsD (t = −2.578, d = −0.910, p = 0.015). For 
the spontaneous arm movement parameters, the CI patients with 
FMA > 55 exhibited increased night r (t = 2.105, d = 0.743, p = 0.043) 

TABLE 1  Demographics of CI group and HC group included in this study.

Items CI n = 34 HC n = 50 2x t p

Sex (male/female) 21/13 25/25 0.706 0.401a

Age (mean ±SD) 62.44 ± 9.76 59.58 ± 9.15 1.369 0.175b

Right hand paralysis cases [case (%)] 20 (58.8%) \ \ \

NIHSS (mean ±SD) 6.53 ± 3.40 \ \ \

Onset time (hours, mean ±SD) 94.24 ± 69.75 \ \ \

FMA of affected arm (mean ±SD) 50.12 ± 20.30 \ \ \

MoCA (mean ±SD) 19.60 ± 5.54 \ \ \

MMSE (mean ±SD) 21.44 ± 4.38 \ \ \

LUA-MS (mean ±SD) 3.59 ± 1.69 \ \ \

RUA-MS (mean ±SD) 4.18 ± 1.29 \ \ \

mRS at 90 days (mean ±SD) 1.68 ± 1.00 \ \ \

CI, acute cerebral infarction group. HC, healthy control group; SD, standard deviation. NIHSS, National Institutes of Health stroke scale; mRS, modified Rankin scale; FMA, Fugl-Meyer 
Assessment; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination; LUA-MS, left upper arm muscle strength; RUA-MS, right upper arm muscle strength.
aChi-square test.
btwo sample t-test.
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and ULAR in both daytime (t = 2.425, d = 0.856, p = 0.021) and night 
(t = 2.185, d = 0.871, p = 0.019) (Figure 2). Moreover, we divided the 
subgroups by the night ULAR. Compared to those CI patients with 
ULAR≤30%, those with night ULAR>30% showed a reduced 

transition ratio from MsA to MsC (t = −3.246, d = −1.131, p = 0.003) 
while an increased transition ratio from MsC to MsB (t = 2.053, 
d = 0.715, p = 0.048) (Figure  2). Moreover, the duration of MsA 
decreased in the CI patients with left arm muscle strength 

FIGURE 1

Comparisons of temporal dynamic parameters between the CI and HC groups. (A) EEG topographic maps for the four microstates of CI and HC 
groups; (B–D) coverage, occurrence, duration of microstates; (E–H) transition ratios between individual microstates. A generalized linear model (GLM) 
with age and sex as covariates were used to decline their possible impacts on the results. Two sample t-test with FDR corrections were used in these 
comparisons. CI, cerebral infraction; HC, healthy control; d, the effect size Cohen’s d. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 2

Comparisons of microstate parameters and actigraphy parameters between subgroups. (A) Comparison of microstate parameters between subgroups 
divided by FMA; (B) Comparison of microstate parameters between subgroups divided by ULAR in the night; (C) Comparison of actigraphy parameters 
between subgroups divided by FMA; In these comparisons, the age, sex, lesion hemisphere, NIHSS, Onset time and MoCA were included as covariates 
to exclude their possible effects on the results. FMA, the Fugl-Meyer upper extremity exercise scale; mRS, the Modified Rankin Scale; ULAR, the upper 
limb activity ratio; t, t values of two sample t-test; d, the effect size Cohen’s d. *p < 0.05; **p < 0.01.
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(LAMS) ≤ right arm muscle strength (RAMS) than those patients 
with LAMS>RAMS (t = 2.062, d = 0.708, p = 0.047). In the subgroup 
with mRS scores >1 after 90 days of stroke onset, there was an increase 
in MsC coverage (t = 2.478, d = 0.850, p = 0.041) and duration 
(t = 2.394, d = 0.821, p = 0.041), as well as an increase in the transition 
rates from MsA and MsD to MsC transition (t = 2.242, d = 0.796, 
p = 0.041; t = 2.131, d = 0.731, p = 0.041) (Figure 3).

Pearson’s coefficient of bilateral upper extremity coordination, 
night r, was positively correlated with MMSE (r = 0.439, p = 0.019) 
and MoCA (r = 0.395, p = 0.026). In both the daytime and the night, 
the ULAR had a positive correlation with FMA (r = 0.442, p = 0.019; 

r = 0.473, p = 0.019) and an inverse correlation with NIHSS 
(r = −0.395, p = 0.026; r = −0.362, p = 0.035). And the night r was 
negatively correlated with NIHSS (r = −0.389, p = 0.026). In addition, 
the rates of MsA to MsC conversion were positively linked with time 
spent above moderate levels of activity (r = 0.356, p = 0.043) 
(Figure  4). The conversion rate of MsB to MsA was favorably 
correlated with FMA (r = 0.361, p = 0.045), while the transition of 
MsB to MsD was adversely correlated (r = −0.391, p = 0.037) 
(Figure 5).

Spearman’s correlation analyses found that mRS after 90 days were 
negatively correlated with the coverage (rs = −0.365, p = 0.034) and 

FIGURE 4

Correlation analyses between arm spontaneous activity and clinical scales and microstates. correlations between NIHSS and arm spontaneous activity 
parameters including r in the night (A), ULAR at daytime (B), and ULAR in the night (C); (D,E) correlation between FMA and ULAR at Daytime (D), and 
ULAR in the night (E); correlations between bimanual activity correlation coefficients in the night and MoCA (F), and MMSE (G); Correlations between 
the transition of MsA to MsC and time spent with limbs above a moderate level of activity (H). NIHSS, National Institutes of Health Stroke Scale; FMA, 
Fugl-Meyer Assessment; ULAR, Upper Limb Activity Ratio of the Affected Side to the Healthy Side; MoCA, Montreal Cognitive Assessment; MMSE, Mini-
Mental State Examination; Ms, microstate; r, Pearson’s correlation coefficient. CI, confidence interval; *p < 0.05.

FIGURE 3

Comparison of microstate parameters between subgroups divided by arm muscle strength and mRS after 90 days of stroke onset. (A) Comparison of 
microstate parameters between subgroups with LAMS ≤RAMS and LAMS>RAMS. (B) Comparison of microstate parameters between subgroups divided 
by mRS after 90 days of stroke onset. Note: LAMS, left arm muscle strength; RAMS, right arm muscle strength; Ms, microstates; t, t values of two 
sample t-test; d, the effect size Cohen’s d. *p < 0.05.
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duration (rs = −0.397, p = 0.020) of MsA, and the transition 
probabilities from MsD to MsA (rs = −0.420, p = 0.013). However, 
mRS after 90 days were positively related to the coverage (rs = 0.462, 
p = 0.006) and duration of MsC (rs = 0.498, p = 0.003), the transition 
probabilities from MsA to MsC (rs = 0.454, p = 0.007) and MsD to 
MsC (rs = 0.355, p = 0.039).

4 Discussion

Using microstate analysis, we  were able to extract the brain 
network from the EEG recordings of the healthy group and the case 
group. Meanwhile, we  used Actiwatch to collect 24-h continuous 
bilateral upper limb activity data of CI patients, combined with clinical 
scales commonly used to assess the severity of the stroke, to evaluate 
the characteristics and efficacy of spontaneous activity in early 
recovery of CI patients. The current study was committed to 
comprehending the alterations in the functional brain network in 
patients with middle cerebral artery strokes and their potential 
correlation with clinical features, spontaneous arm movements, and 
recovery, even though many research hotspots in the last 2 years have 
focused on changes in brain dynamics following brain injury (Comsa 
et al., 2019; Bonkhoff et al., 2020; Bai et al., 2021).

Numerous recent investigations (Gan et al., 2023; Li et al., 2022; 
Schiller et al., 2021) have established that the brain network change is 
a sophisticated process, which is transformed and regulated in each 
of the four microstates in various situations. We noted the coverage 
and occurrence of MsC in patients with cerebral infarction are 
decreased, while the duration of MsB is elevated, which is behind the 
final presentation of the results due to the decrease in the transition 
of MsA and MsB to MsC, MsC to MsA, and the increase in the 
transition of MsC to MsB. These four network systems: auditory 
network, visual network, salience network, dorsal attention network, 
correspond to microstate A, B, C, and D, which are large-scale resting-
state networks established by blood oxygen level-dependent signals 
(Seitzman et  al., 2017; Schulz et  al., 2021). These clusters in turn 
represent roles that: participate in the auditory network related to 
speech processing and reflect vision (Schulz et al., 2021), participate 
in sensory-motor information processing and overall cognition and 
emotion (Seeley et  al., 2007), and maintain attentional stability 

(Katayama et al., 2007). Ultimately the result of the increase of the 
salient network and the decrease of the visual network in the CI group 
occurs due to the loss of compensation, which would indicate that the 
patients with acute cerebral infarction have a decrease in the visual 
processing function but a compensatory increase in the involvement 
of sensory-motor information processing and the overall cognitive 
and affective abilities. This differs somewhat from the findings of 
Zappasodi et al. (2017). Normally we think that patients with CI may 
be at risk for vascular cognitive dysfunction (Rost et al., 2022; Rundek 
et al., 2022).

Interestingly, the mRS score after 90 days was positively correlated 
with the duration and coverage of MsC, as well as with the transition 
from MsA to MsC and MsD to MsC. Yet, it was negatively correlated 
with the transition of MsA to MsB and the occurrence of MsB. MsC 
is positively linked with activation in the bilateral temporal gyrus, 
posterior cingulate cortex, and insula segments, and it represents 
alterations in the activity of salient network. Brain damage, such as a 
stroke, results in extensive structural and functional network failure 
in addition to behavioral abnormalities (Sebastian-Romagosa et al., 
2020). The mRS is a global scale of disability or dependence in daily 
activities (Rankin, 1957). Prior research has demonstrated a 
correlation between motor scores and EEG characteristics of 
spontaneous brain activity such as functional connectivity (Salvalaggio 
et al., 2020; Hoshino et al., 2021). The present study may suggest the 
presence of a compensatory elevation of the salience network in 
patients with a higher mRS, i.e., the more severe the paralysis and the 
worse the prognosis, which is achieved by an increase in the transition 
of the auditory network and the dorsal attentional network towards it. 
MsC and MsD are in a condition of dynamic equilibrium 
(Santarnecchi et al., 2017). The degree to which equilibrium is upset 
following a stroke varies based on how severe the stroke motor 
dysfunction (Wang Z. et al., 2022).

The duration, coverage, and occurrence of MsD were decreased 
in the subgroup with FMA > 55 compared to patients with FMA ≤ 55 
and this loss of compensation was the result of a significant decrease 
in transition from the MsB to MsD and an increase in the MsB to 
MsA, but ultimately no significant change in MsB and MsA. Patients 
with more severe hemiparesis showed improved ability to maintain 
attentional stability. Although attention was improved in patients with 
more severe hemiplegia, the auditory network related to speech 
processing was still significantly reduced. The mechanism behind this 
may be  explained by the compensatory theory of increased and 
decreased functional connectivity (FC) between brain networks in 
post-stroke patients (Baldassarre et al., 2016).

The patients with higher mRS scores at 90 days, with a higher 
ability to engage in sensorimotor information processing and overall 
cognition and emotion, which is consistent with the findings of our 
line correlation analyses described above. Patients with a night ULAR 
(activity ratio of the affected healthy side at night) ≤ 30% were more 
severely paralyzed, with an increased rate of MsA-to-MsC transition 
and an elevated rate of MsC-to-MsB transition, but ultimately there 
was no functional imbalance of the four attentional networks. Based 
on functional compensation, if some of the patient’s functions can 
be preserved and maintained at a steady state, perhaps as a result of 
compensating for the reduced performance of the original function 
through other functions (Hall et al., 2021).

ULAR was higher at both daytime and night in patients with 
FMA > 55 scores, The FMA scale developed as an evaluative measure of 

FIGURE 5

Correlation analysis of the microstates and clinical traits. FMA is 
significantly correlated with the transition ratios from MsB to MsA 
(A) and MsB to MsD (B). The other scales showed no significant 
correlations were not shown in the figure. r, Pearson’s correlation 
coefficient. CI, confidence interval; *p < 0.05.
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recovery from hemiplegic stroke, It is divided into 5 domains: motor 
function, sensory function, balance, joint range of motion, and joint pain 
(Gladstone et  al., 2002). The Actiwatch is a motion sensor that uses 
electronics to detect changes in velocity or acceleration. It is wearable on 
the wrist to track movement of the body (Lee and Tse, 2019). To some 
extent, both FMA and ULAR extracted via Actiwatch can reflect the 
process of dynamic motor recovery in stroke patients, unlike the 
evaluation of motor recovery by Reynolds et al. (1958), Brunnstrom 
(1966) which exists only qualitatively. Another interesting finding is that 
the duration of the MsA is trending downward in patients with left-
handed paralysis, i.e., patients with left-handed paralysis are involved in 
a spontaneous decline in the auditory network that can be associated with 
speech processing. Previous research comparing stroke patients to 
controls revealed varying times for microstates C and D following left- 
and right-sided lesions (C lower than D in left-sided lesions, and D lower 
than C in right-sided lesions) (Zappasodi et al., 2017).

Last, in the correlation analysis, we found that ULAR during the 
day and at night was inversely proportional to the NIHSS score and 
positively proportional to the FMA, it represents that ULAR has the 
same cue significance as the clinical scales. The higher the ULAR 
was, the lower the NIHSS score was, and the higher the FMA score 
was, the less severe the paralysis was in the patients. The NIHSS uses 
basic objective binary outcomes, which are insufficient to reflect the 
dynamic process of motor recovery and are less likely to detect 
changes in response to specific treatments (Gladstone et al., 2002). 
More objective methods of assessing stroke have been a hot topic in 
recent years, and Bezuidenhout et  al. (2022) have shown that 
accelerometers, for example, can assess stroke severity in patients, 
which is consistent with our study. The r-night index of bilateral 
upper extremity coordination showed a similar pattern, with r-night 
being inversely proportional to the NIHSS score and positively 
proportional to the MoCA and MMSE scores. Shih et al. (2023) have 
demonstrated the impact of stroke on limb coordination. This may 
suggest that the more coordinated the bilateral upper extremity 
activities, the less paralyzed and less cognitively impaired. Szameitat 
et al. (2012) revealed the first demonstration of the neuroanatomical 
correlates of imagined bimanual coordination skills. Building on the 
earlier work of Puttemans et al. (2005), they predicted and provided 
evidence that connection would alter rather than selectively 
increasing neuronal activity in a particular cortical region 
of interest.

The study of brain network characteristics and bilateral upper 
extremity spontaneous activity in early recovery of CI patients is 
very novel, suggesting the mechanism of brain network 
compensation in acute ischemic stroke and how the degree of 
paralysis affects the strength of brain network compensation, and 
verifying that the bilateral upper extremity spontaneous activity 
can be used as an indicator for observing early prognosis of the 
patients, which provides a new diagnostic and therapeutic idea 
for the patients with CI.

There are some limitations in this study: The small sample size, 
along with the exclusion of patients treated with thrombolysis or 
thrombectomy, limits the generalizability of the findings to the 
broader stroke population. The current findings are exploratory and 
warrant validation in larger and more diverse cohorts. In addition, 
although microstate features have been proposed as candidate 
biomarkers, our analyses were not designed to test predictive 
performance, and clinical utility remains to be determined. In future, 

it is necessary to expand the sample size and the scope of patient data 
collection in longitudinal studies to provide a better and more 
objective assessment index for the prediction of acute cerebral 
infarction at the early clinical stage.

5 Conclusion

In this study, we  collected resting-state EEG from patients 
with acute middle cerebral artery infarction and healthy elderly 
group and extracted brain network parameters by microstate 
analysis, which showed that the occurrence of CI is accompanied 
by changes in the dynamic balance of brain networks, and 
microstates provide a part of the functional brain network basis 
for us to identify these changes. These changes in temporal 
dynamic parameters in the early stages may suggest the clinical 
traits and functional recovery in these patients. In addition, 
we also measured the spontaneous activities of the upper limbs of 
the two upper limbs of the patients with CI by using actiwatches, 
which validates our perspective on cerebral infarction patient 
identification and assessment that choosing appropriate 
evaluation tools can provide multidimensional and 
interrelationship information.
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