AUTHOR=Si Yueguang , Sun Yu , Wu Kuijun , Gao Lingyun , Wang Sujie , Xu Mengru , Qi Xuchen TITLE=Effects of ASMR on mental fatigue recovery revealed by EEG power and brain network analysis JOURNAL=Frontiers in Human Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2025.1619424 DOI=10.3389/fnhum.2025.1619424 ISSN=1662-5161 ABSTRACT=IntroductionMental fatigue, resulting from prolonged cognitive tasks or sleep deprivation, significantly impacts safety and performance, particularly in high-risk environments. However, effective intervention methods are limited, highlighting the urgent need for new approaches to alleviate mental fatigue. This study explores the effectiveness of Autonomous Sensory Meridian Response (ASMR) as a novel intervention for alleviating mental fatigue.MethodsA within-subject design was employed in this work, where 28 healthy young subjects (M/F = 17/11, age = 21.82 ± 0.37 years) were requested to perform a continuous 30 min sustained attention task (named No-Break session) and a 30 min task with a 4-min mid-task ASMR break (named ASMR-Break session) at a counterbalanced order. The immediate effect and general effect of ASMR were quantitatively assessed on behavioral performance and EEG characteristics.ResultsBehaviorally, only significant immediate effect was revealed as showing in reduced reaction time. Further interrogation of brain dynamics showed complex patterns of spatio-spectrum alterations and an interaction in small-world metric in theta band. Specifically, the ASMR intervention prevented an increase in small-worldness, and the correlation between changes in small-worldness and reaction times diminished after the intervention.DiscussionIn sum, this preliminary investigation provides insight into ASMR's neural mechanisms and suggests it may help attenuate fatigue. Further research in larger, more diverse samples will be necessary to confirm its utility for mental fatigue management in real-world settings.