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Objectives: To compare reaction time parameters and accuracy rates between

cognitively normal older adults and those with mild cognitive impairment (MCI)

during the Stroop Color-Word Test, and to investigate how cognitive load

modulates performance in MCI.

Methods: Speech audio samples (n = 1,920) were collected from 10 cognitively

normal older adults and 10 MCI patients during Stroop task execution. Accuracy

and reaction time were extracted. Analysis of variance and multiple comparison

were used to analyze the di�erences in reaction time under di�erent task

conditions within the group, while the independent sample t-test was used to

compare the accuracy and reaction time of the two groups under the same

task. Pearson correlation analysis was used to determine the linear relationship

between MOCA scores and the accuracy rate and reaction time of MCI patients

in the interference suppression task.

Results: The accuracy rate of the mild cognitive impairment (MCI) group

was significantly lower than that of the control group (p < 0.05). Tasks A-D

had di�erent e�ects on reaction times, with significant main e�ects observed

in both the NC group (P = 0.000, η2 = 0.637) and the MCI group

(P = 0.000, η2 = 0.721). Reaction times in both groups prolonged with

increasing cognitive load (p < 0.05), but the delay was more pronounced in the

MCI group (p < 0.05). A positive linear correlation was found between the MoCA

score and task accuracy rate (r = 0.758,P = 0.011).

Conclusion: Dominant responses require less processing time, whereas tasks

demanding interference suppression elicit slower reaction times and higher

error rates. MCI patients demonstrate prolonged reaction times and greater

susceptibility to proactive interference compared to controls, highlighting

impaired interference control mechanisms. These findings suggest that MCI

is characterized by early deficits in dominance inhibition, manifesting as

reduced ability to suppress automatic responses and increased vulnerability to

cognitive conflict.

KEYWORDS

mild cognitive impairment, stroop e�ect, cognitive processing, reaction time,

interference control, cognitive assessment, neuropsychological testing
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1 Introduction

Mild cognitive impairment (MCI) represents a critical

transitional stage between normal aging and dementia. It is defined

by mild declines in cognitive function, which may affect single

or multiple domains such as memory, language, and attention

(Farias et al., 2006; Lenzi et al., 2011). Individuals with MCI

often self-report these cognitive abnormalities, and standardized

neuropsychological assessments can objectively validate the

presence of objective cognitive impairment–though its severity

remains below the diagnostic threshold for dementia (Jacova

et al., 2007; Belleville et al., 2017). A core feature of MCI is the

coexistence of subjective and objective cognitive decline. It is also

highly heterogeneous, typically classified into single-domain or

multi-domain subtypes. MCI follows a dynamically reversible

disease course: some cases may stabilize or even reverse with

addressing treatable factors, whereas approximately 10%–15% of

individuals progress to dementia annually, carrying a risk 5–10

times higher than the general population (Solfrizzi et al., 2004;

Davis et al., 2018). At the individual level, MCI is associated

with reduced quality of life, frequent occurrences of anxiety

and depression, and a significantly elevated risk of developing

dementia. 5-year conversion rate of amnestic MCI to dementia

is reported to be around 50% (Mitchell and Shiri-Feshki, 2008;

Rountree et al., 2007). Early identification of MCI enables timely

interventions–such as cognitive training and exercise programs–

that can effectively delay disease progression (Zuo et al., 2024;

Fowler et al., 2025; Zuo et al., 2025b).

MCI detection have been widely explored using machine

learningmodels. Thesemodels are developing along the pathogenic

mechanisms of cognitive functions, such as lesions in the affected

brain regions and abnormal connections between brain regions

(Zuo et al., 2025c; Zhu et al., 2024; Zuo et al., 2025a). The direct

way to explore these pathogenic mechanisms is to assess the

abnormalities of the human body’s perceptual functions, including

memory, language, orientation, praxis, attention, and executive

function (Zhuang et al., 2021). Numerous assessment tools have

been developed to detect global and domain-specific cognitive

impairments, frequently employed in both clinical and research

contexts to aid in the diagnosis of Alzheimer’s disease (AD) and

identification of MCI (Huo et al., 2021; Gutierrez et al., 2021).

However, these commonly used cognitive screening instruments

may fail to reliably detect subtle impairments in individuals with

MCI. In contrast, language assessments have demonstrated greater

sensitivity to early cognitive changes (Robin et al., 2021). In mild

cognitive impairment patients, vocabulary deficits oftenmanifest as

increased pronoun usage and reduced noun frequency. Individuals

tend to substitute pronouns for specific target nouns that are

difficult to retrieve, while maintaining relatively fluent spontaneous

speech despite underlying semantic retrieval challenges. Verbal

memory tasks–such as word recall or narrative recall–have shown

superior diagnostic utility in identifying MCI (Mueller et al.,

2022). Although language performance is not the sole criterion for

diagnosing MCI, substantial evidence highlights its significant role

(McCullough et al., 2019; Sanderson-Cimino et al., 2022). Almor

et al. (1999) proposed the workingmemory impairment hypothesis,

suggesting that increased pronoun use in MCI is more closely

linked to working memory deficits than to the severity of semantic

degradation itself. Vuorinen et al. (2000) analyzed discourse from

48 individuals with MCI or mild-to-moderate AD and found that

MCI participants produced fewer semantic units than controls.

Tomoeda and Bayles (1993) further confirmed that reduced

semantic content serves as a sensitive marker of AD progression,

particularly valuable for early MCI screening. Speech fluency–the

ability to produce fluid and coherent speech–is a fundamental

measure of language competence. Themistocleous et al. (2020)

analyzed speech samples from 26 MCI patients and demonstrated

that fluency metrics were highly sensitive in differentiating MCI

from healthy controls. Speech fluency is typically categorized into

two subtypes: phonemic fluency (also termed letter fluency or

verbal fluency), which reflects the ability to generate words starting

with a specific letter or sound, and semantic fluency, which involves

producing words within a specific category. In early-stage AD,

word-finding difficulties and repetitions often compromise fluency.

While both phonemic and semantic fluency are affected in early

AD, semantic fluency is generally more sensitive to MCI detection.

McDonnell et al. (2020) utilized semantic fluency as a screening

tool in a community outpatient cohort of 232 older adults and

found it significantly improved MCI detection sensitivity (81.2%)

and specificity (78.8%) compared to the MMSE alone.

Current research has explored MCI-related language features

across the different domains. Temporal characteristics of

spontaneous speech are recognized as critical acoustic markers

for differentiating individuals with MCI from healthy controls.

Tóth et al. (2018) demonstrated that four temporal parameters–

articulation clarity, speech rate, pause rate, and grammatical

error rate–effectively distinguish MCI patients from cognitively

normal individuals, with these metrics also correlating with the

severity of cognitive impairment. Similarly, Singh et al. (2001)

manually extracted and quantified temporal speech features inMCI

patients but highlighted the limitations of time-consuming manual

methods, which yield only approximate estimates of parameters

such as speech rate and clarity. Working memory or semantic

memory impairments in MCI may constrain the production of

grammatically complex structures. Cross-linguistic studies have

shown that MCI patients exhibit significantly reduced use of

complex syntactic constructions compared to healthy controls

(Sung et al., 2020), suggesting that syntactic simplification emerges

during the early stages of cognitive decline. However, some

researchers contend that syntactic structure remains relatively

preserved during the prodromal phase of AD. Ahmed et al. (2012)

observed group-level differences in global measures such as mean

length of utterance (MLU) and grammatical error rates between

MCI patients and controls, though individual syntactic variables

did not consistently reach statistical significance. Roark et al.

(2011) similarly found stable MLU in MCI but noted marked

declines in syntactic complexity among patients with moderate-

to-severe AD. Despite inconsistent findings, a consensus exists

that syntactic simplification is observable in individuals with

MCI. Researchers have proposed that fluctuations in cognitive

load induce changes in respiratory and phonatory function,

which manifest in the acoustic properties of speech. Özseven and

Düğenci (2018) utilized Praat software to conduct spectral analysis

of speech samples, focusing on temporal and acoustic features.
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Key variables–including percentage of voice breaks, number

of voice periods, interruption frequency, shimmer (amplitude

perturbation), and noise-to-harmonics ratio–were found to reliably

distinguish AD patients from healthy controls. López-de Ipiña et al.

(2015) further refined AD differentiation by incorporating features

from the time domain, spectral domain, and fractal dimension of

voice signals.

The Stroop task has become one of the most widely employed

paradigms in cognitive psychology for eliciting interference

effects. Numerous studies have integrated the Stroop Color-Word

Test (CWT) into clinical research, demonstrating its utility in

identifying individuals with mild dementia (Lin and Lai, 2024;

Rao et al., 2025). Neuroimaging research has deepened our

understanding of the neural mechanisms underlying the Stroop

effect (Herd et al., 2006; Huang et al., 2020). During Stroop

task performance, consistent activation has been observed in

the inferior frontal gyrus (IFG), middle frontal gyrus (MFG),

and dorsolateral prefrontal cortex (DLPFC) of both hemispheres

(Jalalvandi et al., 2020). Evidence suggests the left IFG plays a

particularly critical role in classic Stroop tasks involving written

or spoken language stimuli, owing to its central function in

language processing (Heidlmayr et al., 2020). Liu et al. (2006)

used functional magnetic resonance imaging (fMRI) to show that

distinct prefrontal cortex regions mediate response-related and

non-response-related attentional control during the Stroop Color-

Word Task, indicating functional specialization in executive control

processes within the prefrontal cortex. Specifically, the dorsal left

DLPFCwas linked to supporting non-dominant response selection.

Yeung et al. employed functional near-infrared spectroscopy

(fNIRS) to demonstrate developmental variations in prefrontal

activation during Stroop interference inhibition (Yeung et al.,

2020). Similarly, Xiang et al. used fNIRS in a cross-sectional study

and found that attentional conflict during Stroop tasks significantly

modulated prefrontal activation (Xiang et al., 2023). These findings

collectively enhance our understanding of the relationship between

cognitive control and localized brain activity. Informed by these

observations, the present study aims to investigate differences

in reaction times and accuracy rates during cognitive processing

between cognitively normal older adults and those with cognitive

impairment. Using the Stroop Color-Word Test, we examine how

cognitive load influences response performance in individuals with

cognitive dysfunction. By analyzing dynamic changes in cognitive

reaction times, this research seeks to provide novel insights for the

detection and treatment of MCI.

2 Method

2.1 Study data

Participants were recruited from the First Affiliated Hospital

of Jinan University and the university’s community health service

via public outreach campaigns raising awareness of cognitive

impairment and the study’s objectives. Initially, 23 older adults were

enrolled. After excluding two individuals due to dialect-related

interference and one due to voluntary withdrawal, valid data were

obtained from 20 participants: 10 with normal cognitive function

and 10 with cognitive impairment.

Inclusion criteria:

(1) Aged between 60 and 85 years (inclusive), regardless of gender;

(2) At least primary school education level, with the cognitive ability

to complete all required assessments;

(3) Mandarin is the first or dominant language;

(4) Normal verbal communication, with pure-tone hearing

thresholds ≤ 25 dB HL at 500, 1000, and 2000 Hz in at least

one ear.

Exclusion criteria:

(1) Poor physical condition, including auditory or visual

impairments, that would hinder the completion of cognitive or

other study-related tests;

(2) Inability to complete all study assessments;

(3) Red-green color blindness (daltonism);

(4) Presence of other conditions potentially affecting speech

articulation, such as cerebrovascular accidents, multiple

sclerosis, stuttering, or vocal cord nodules.

All participants underwent cognitive screening using the
Montreal Cognitive Assessment (MoCA), administered one-
on-one in a quiet, controlled environment to minimize

external interference. Prior to assessment, the study’s

purpose and procedures were thoroughly explained to each
participant, including written assurances of personal information
confidentiality. Participants were encouraged to ask questions,

and efforts were made to reduce anxiety and ensure a testing

environment conducive to optimal cognitive performance. MoCA

administrators were trained to follow standardized scoring
protocols with consistency and patience. Following cognitive
evaluation, participants were stratified into groups based on their
MoCA scores. Participants diagnosed with cognitive impairment
met the 2011 National Institute on Aging and Alzheimer’s

Association (NIA-AA) diagnostic criteria. MoCA scores were

used to classify cognitive impairment severity: mild cognitive
impairment (scores 18–26). Cognitively normal participants met

general eligibility criteria and achieved MoCA scores ≥ 26. The

experimental procedure is outlined in Figure 1, and detailed

participant demographics with MoCA scores are presented in

Table 1.

2.2 Recording equipment

All participants in the MCI and NC (cognitively normal)

groups completed the Stroop Color-Word Test, during which

their verbal responses were digitally recorded for subsequent

analysis of reaction time and accuracy. Speech samples were

collected from 10 older adults with mild cognitive impairment

(MCI) and 10 cognitively normal older adults using E-Prime

software while performing the Stroop task. Extracted data included

audio recordings, accuracy rates, and reaction time measurements

triggered by Stroop stimuli. Speech samples were acquired in

a controlled quiet environment (ambient noise ≤ 20 dB HL)

following standardized recording protocols. Participants were

seated upright, with their lips positioned 5-10 cm from the

microphone, and instructed to provide natural speech responses.

Verbal responses were recorded using E-Prime 3.0 experimental
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software, and audio signals were processed with Cool Edit Pro 2.1

for subsequent acoustic analysis.

(1) E-Prime: E-Prime, a comprehensive software suite for

computerized behavioral experimentation, is jointly developed

by Carnegie Mellon University, the University of Pittsburgh’s

Learning Research and Development Center, and Psychology

FIGURE 1

Experimental procedure diagram of determining MCI and NC based

on MoCA scores.

Software Tools, Inc. Built on the E-Basic scripting language–

syntactically similar to Visual Basic–it integrates experiment

design, millisecond-precise stimulus presentation, and data

collection within a unified graphical interface. Widely used

across disciplines such as perception, memory, attention,

psychophysiology, psycholinguistics, engineering psychology,

developmental psychology, social psychology, and cognitive

neuroscience, E-Prime (Kim et al., 2019) is optimized for

behavioral experiments requiring high stimulus timing accuracy

and flexibility. The platform supports multi-modal stimulus

presentation (textual, visual, auditory, and combined modalities)

and accommodates diverse response inputs, including keyboards,

mice, response boxes (RBox), voice recording, and external devices.

In this study, E-Prime was utilized to administer the Stroop Color-

Word Task, present stimuli, record vocal responses, and save

audio data in .wav format. The E-Prime program flowchart for

the Stroop Color-Word Test procedure is depicted in Figure 2.

The experimental design was implemented in E-Prime with

standardized protocols for stimulus delivery, response capture, and

timing measurements.

(2) Cool Edit Pro 2.1: Cool Edit Pro 2.1, a multi-track audio

recording and editing software developed by Adobe Systems (El-

Hadad and Brodie, 2019), provides powerful yet user-friendly tools

for audio file processing. In this study, the software was used to

isolate and edit single-channel speech signals meeting experimental

criteria, storing them as .wav files with a 44.1 kHz sampling rate

and 24-bit resolution. The software visualizes raw audio signals

as time-domain waveforms, enabling highly accurate measurement

of temporal parameters. Reaction times were quantified with

millisecond precision, ensuring the reliability of timing data

for subsequent analysis. Cool Edit Pro was employed to verify

basic audio metadata, including sampling rate and number of

channels. During the cropping stage, trial-specific audio segments

were extracted using two methods: 1) manual segmentation via

start/end markers based on E-Prime’s behavioral data timestamps,

or 2) automated batch processing for efficient segmentation. In

the audio processing phase, noise reduction was achieved by

capturing ambient noise samples, vocal clarity was enhanced

using a parametric equalizer, volume consistency was standardized

TABLE 1 Participant information.

NC group MCI group

MoCA Education level Age Sex MoCA Education level Age Sex

27 Senior secondary 74 Male 19 Junior secondary 83 Male

27 Senior secondary 71 Female 24 Junior college 65 Female

27 Undergraduate 85 Male 21 Senior secondary 61 Male

30 Undergraduate 72 Male 20 Senior secondary 67 Male

28 Undergraduate 69 Female 20 Junior secondary 81 Female

27 Technical secondary 71 Female 25 Undergraduate 73 Female

28 Postgraduate 66 Male 22 Junior secondary 71 Male

28 Undergraduate 80 Male 25 Primary 80 Male

27 Junior college 61 Male 24 Undergraduate 74 Male

27 Undergraduate 75 Female 24 Senior secondary 69 Female
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FIGURE 2

Flowchart of the E-Prime program design for the Stroop

Color-Word Test.

via normalization, and speech endpoints were detected precisely

through spectrogram analysis. Post-processing, single-trial audio

files were exported following uniform naming conventions to

ensure accurate alignment with trial numbers, stimulus types, and

other E-Prime behavioral data parameters.

2.3 Experimental procedure

Cognition refers to the mental processes of acquiring, storing,

and applying knowledge or processing information, encompassing

fundamental functions such as sensation, perception, memory,

reasoning, imagination, and language. The Stroop test, a widely

used cognitive assessment paradigm, exists in multiple variants.

This study employed the commonly used color-word version, as

visual interference typically outweighs auditory interference, with

visual inputs often dominating cognitive processing–key reasons

for selecting a visually based Stroop paradigm. In the Stroop

paradigm, stimuli concurrently convey two types of information:

the semantic meaning of a word and the color in which the word

is printed. These dimensions are processed via distinct cognitive

pathways, creating inherent conflict. When incongruent stimuli

(e.g., the word “red” printed in blue ink) are presented, participants

face challenges in selectively attending to one dimension while

suppressing the other. Generally, response latency is shorter for

word reading (a dominant automatic process) than for color

naming (a non-dominant controlled process). Incongruent trials

consistently elicit slower reaction times and higher error rates,

reflecting the cognitive demand of interference suppression.

The present study employed the classic Stroop Color-Word

Test paradigm (Scarpina and Tagini, 2017), consisting of four task

types (A, B, C, D). Each task set included 24 trials across four color

conditions (red, yellow, blue, green), with each color presented six

times in randomized order. All tasks were administered via E-Prime

software, which recorded participants’ vocal responses as .wav files.

Examples of the four task types are illustrated in Figure 3.

Task A (word reading–neutral condition): as depicted in

Figure 3, participants were instructed to sit upright and maintain

visual focus on the screen. When a Chinese character (black text

on a white background) appeared, they were directed to read it

aloud into the microphone with maximum speed and accuracy. A

trained examiner positioned nearby verified response correctness

in real time: pressing “1” for accurate pronunciations and “2” for

errors. Regardless of accuracy, the system automatically advanced

to the next stimulus either upon response confirmation or after

a 6-second timeout. Trials exceeding the 6-second threshold were

automatically coded as incorrect. All verbal responses were fully

recorded by E-Prime for subsequent analysis.

Task B (word reading—incongruent color background):

participants were instructed to read aloud the Chinese character

presented in color (incongruent combinations of word meaning

and font color, presented randomly). All other procedures mirrored

those of Task A.

Task C (color naming—neutral condition): participants were

required to name the color displayed on the screen (not in the form

of a character) as quickly and accurately as possible. The operation

procedure was identical to that of Task A.

Task D (color naming—incongruent word stimulus):

participants were asked to name the color of the font in which a

Chinese character was presented, where the character’s semantic

meaning and its font color were intentionally mismatched and

randomized. All operational procedures followed those of Task A.

All statistical analyses were conducted using Statistical Package

for the Social Sciences (SPSS) version 13.0. It is a professional

statistical analysis software. The basic principle is based on

statistical theory and data modeling, and its core goal is to

reveal the patterns, relationships and trends in the data through

quantitative methods. Levene method homogeneity test and

multiple comparisons were performed to examine within-group

differences in reaction times under various task conditions for

both NC group and MCI group. A significance level of p < 0.05

was considered statistically significant. Independent-samples t-tests

were used to compare between-group differences (NC vs. MCI) in

reaction times and accuracy rates under the same task conditions.

Statistical significance was defined as p < 0.05.

3 Results

3.1 Response accuracy in the Stroop
Color-Word Task

The accuracy scores and number of correct responses for the

Stroop color-word tasks were compared between NC group and

Frontiers inHumanNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1623252
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fnhum.2025.1623252

FIGURE 3

four tasks of Stroop Color-Word Test.

TABLE 2 Response number of Stroop Color-Word Test Task for the NC group and MCI group.

NC group MCI group

A B C D Accuracy A B C D Accuracy

24.00 24.00 24.00 24.00 100.00% 24.00 24.00 24.00 24.00 100.00%

24.00 24.00 24.00 24.00 100.00% 24.00 24.00 24.00 23.00 98.96%

24.00 24.00 24.00 24.00 100.00% 24.00 24.00 24.00 23.00 98.96%

24.00 24.00 24.00 24.00 100.00% 24.00 24.00 24.00 22.00 97.92%

24.00 24.00 24.00 23.00 98.96% 24.00 24.00 22.00 21.00 94.79%

24.00 24.00 24.00 24.00 100.00% 24.00 24.00 24.00 23.00 98.96%

24.00 24.00 24.00 24.00 100.00% 24.00 24.00 24.00 22.00 97.92%

24.00 24.00 24.00 21.00 96.88% 24.00 24.00 24.00 22.00 97.92%

24.00 24.00 24.00 22.00 97.92% 24.00 24.00 24.00 21.00 95.83%

24.00 24.00 24.00 24.00 100.00% 24.00 24.00 24.00 23.00 98.96%

MCI group. The results are summarized in Table 2. For each task

(i.e., A, B, C, and D), each subject underwent 24 experiments, and

the number of correct responses taken within the prescribed time

was recorded. Statistical analysis using SPSS indicated that there

were no significant differences between the NC and MCI groups

in terms of the number of correct responses for Task Types A, B,

and C (p ≥ 0.05). However, for Task D and the overall accuracy

rate, the differences between groups were statistically significant

(p < 0.05). Detailed results of the statistical analysis are presented

in Table 3.

3.2 Reaction times comparison in the
Stroop Color-Word Test Task

The reaction time data for Task A, B, C, and D in the Stroop

color-word test for both the NC and MCI groups are presented in

Tables 4 and 5, respectively.

TABLE 3 Response accuracy of Stroop Color-Word Test Task for the NC

group and MCI group.

NC MCI t value p value

Task A 24.00± 0.00 24.00± 0.00 - -

Task B 24.00± 0.00 24.00± 0.00 - -

Task C 24.00± 0.00 23.80± 0.63 1.000 0.331

Task D 23.40± 1.07 22.40± 0.97 2.188 0.042∗

Accuracy(%) 99.38± 1.12 98.02± 1.59 2.204 0.041∗

∗p < 0.05.

The variance analysis and effect size estimation of the reaction

time under different task states in the NC group and the MCI

group were conducted respectively using SPSS software. The results

showed that the influence of different task states on the reaction

time was statistically significant, in the NC group (P = 0.000, η2 =

0.637) and the MCI group (P = 0.000, η2 = 0.721). The
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TABLE 4 Reaction times (ms) of Task A and B for the NC group and MCI group.

Task A Task B

Mean Median Maximum Minimum Mean Median Maximum Minimum

NC 624.71 618.50 810.00 554.00 688.75 681.00 835.00 583.00

563.25 528.50 876.00 421.00 604.83 580.00 848.00 414.00

604.21 604.50 742.00 530.00 746.88 740.00 1,045.00 600.00

497.54 490.00 614.00 413.00 538.92 541.00 648.00 430.00

407.26 405.00 477.00 365.00 432.67 421.50 537.00 359.00

523.13 513.00 670.00 454.00 552.17 529.00 748.00 463.00

566.17 556.00 741.00 459.00 720.83 725.00 960.00 499.00

663.25 650.00 1,119.00 495.00 720.46 695.00 1,080.00 505.00

780.88 727.00 1,396.00 605.00 721.13 707.00 958.00 553.00

479.43 478.00 551.00 411.00 601.67 604.00 855.00 461.00

MCI 732.00 679.50 1,127.00 543.00 778.23 708.00 1,129.00 597.00

782.91 718.00 1,782.00 566.00 987.63 903.50 1,825.00 580.00

890.63 709.00 1,947.00 586.00 667.96 649.50 852.00 533.00

679.54 665.00 961.00 527.00 966.88 923.50 1,518.00 687.00

762.29 747.50 961.00 591.00 701.48 691.00 795.00 607.00

773.70 774.00 947.00 649.00 886.08 847.00 1,158.00 670.00

550.04 539.00 743.00 430.00 733.83 619.00 1,284.00 426.00

733.00 737.00 867.00 517.00 847.42 740.50 1,408.00 666.00

572.54 527.50 1,082.00 399.00 577.17 566.50 825.00 394.00

656.83 622.50 879.00 527.00 698.91 666.00 964.00 479.00

Levene method homogeneity test showed that the reaction times

of each task in the NC group were homogeneous in variance (F =

2.124, P = 0.114), while the reaction times of each task in the MCI

group were not homogeneous in variance (F = 3.781, P = 0.019).

The NC group used the least significant difference (LSD) test for

multiple comparisons among various tasks, while the MCI group

used the Tamhane’s T2 test formultiple comparisons among various

tasks. The results all showed that there were differences in the

reaction time between Task A and task C (P < 0.05). There was A

significant difference in the reaction time between task D and tasks

A, B, and C (P < 0.01). Detailed results of the group comparison

are provided in Table 6.

Independent-samples t-tests were conducted using SPSS 13.0 to

compare the reaction times of the NC and MCI groups under each

of the four Stroop task conditions (Tasks A, B, C, andD). Significant

differences were found between the two groups in both the mean

reaction times across all task types (p < 0.05), indicating that the

MCI group generally required longer processing time than the NC

group (as shown in Table 7).

3.3 Correlation analysis of MoCA scores
with accuracy rate and reaction time

In cognitive neuroscience, investigating the associations

between cognitive function metrics in mild cognitive impairment

(MCI) patients is critical for early disease diagnosis and

intervention. This section employs Pearson correlation analysis

to determine whether linear relationships exist between Montreal

Cognitive Assessment (MoCA) scores and both accuracy rates

and reaction times during the interference suppression task (Task

D) in MCI patients. As illustrated in Figure 4, the scatter plot

demonstrates a distinct positive trend in data point distribution,

visually supporting a close relationship between MoCA scores

and reaction accuracy. Statistical analysis revealed a significant

positive linear correlation between MoCA scores and accuracy

rates in the MCI group (r = 0.758, p = 0.011), indicating that

higherMoCA scores are associated with significantly improved task

accuracy. This reflects a strong co-directional trend with robust

statistical significance. Conversely, correlation analysis between

MoCA scores and Task D reaction times showed no evidence

of a linear relationship (r = 0.144, p = 0.691). Although no

evidence of a correlation between the two was found, the scatter

plot shows a trend that the higher the MoCA score, the less time

required for the reaction. This situationmay occur for the following

reasons: (1) The overall sample size is relatively small, which cannot

accurately reflect the overall trend. (2) There were situations such

as inattentiveness or fatigue during the testing process, which led to

excessive deviations in some samples.

4 Discussion

The Stroop Color-Word Test, a classic paradigm in cognitive

psychology, is widely used in clinical research to assess cognitive
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TABLE 5 Reaction times (ms) of Task C and D for the NC group and MCI group.

Task C Task D

Mean Median Maximum Minimum Mean Median Maximum Minimum

NC 737.22 727.00 892.00 594.00 752.58 720.50 1273.00 594.00

683.43 672.00 989.00 501.00 810.63 785.00 1,268.00 550.00

741.50 733.00 1,282.00 514.00 1,109.20 1,024.50 2,089.00 604.00

574.58 568.00 717.00 426.00 1,088.26 1,052.00 2,411.00 764.00

574.41 553.50 947.00 366.00 1,099.23 906.50 2,373.00 617.00

643.92 612.00 1,078.00 496.00 978.09 935.00 1,528.00 697.00

755.30 760.00 1,068.00 510.00 898.92 850.00 1,452.00 583.00

897.25 680.50 2,647.00 490.00 768.21 808.00 1,600.00 672.00

1,051.46 915.00 3,260.00 739.00 651.13 638.50 964.00 503.00

582.52 594.00 773.00 437.00 1,024.88 774.00 2,229.00 618.00

MCI 992.79 985.00 1,285.00 747.00 1,156.45 1,086.50 2,394.00 855.00

975.92 928.00 1,761.00 649.00 1,240.45 1,193.50 1,809.00 837.00

891.42 889.50 1,265.00 711.00 1,951.83 1,932.50 3,839.00 1,014.00

838.17 843.00 1,037.00 551.00 1,307.80 1,321.00 2254.00 818.00

860.79 798.50 1,700.00 507.00 1,653.50 1,444.50 2,754.00 897.00

1,224.71 1,130.00 2,660.00 761.00 1,401.88 1,189.00 2,250.00 836.00

1,235.57 1,195.00 2,120.00 598.00 1,297.25 1,145.50 2,381.00 1,617.00

1,191.70 1,169.00 2,243.00 477.00 1,765.33 1,618.00 3,206.00 991.00

1,187.33 1,129.00 2,080.00 836.00 1,083.83 909.00 2,717.00 633.00

804.52 806.00 974.00 617.00 1,405.85 1,327.00 2,874.00 889.00

TABLE 6 Comparisons of mean reaction time di�erences between

di�erent task conditions.

NC group MCI group

Reaction
time

di�erence

p value Reaction
time

di�erence

p value

A and B −61.848 0.320 −71.211 0.737

A and C −153.176 0.017∗ −204.765 0.027∗

A and D −449.304 0.000∗∗ −713.069 0.000∗∗

B and C −91.328 0.145 −133.554 0.326

B and D −387.461 0.000∗∗ −641.858 0.000∗∗

C and D −296.133 0.000∗∗ −508.304 0.001∗∗

∗p < 0.05, ∗∗p < 0.01.

function. In this study, the Stroop test served as the experimental

model to investigate cognitive differences between MCI patients

and cognitively normal older adults, with a focus on reaction

accuracy and reaction times. Data were collected from 10

cognitively normal older adults and 10 MCI patients recruited

from the First Affiliated Hospital and community of Jinan

University. The experiment comprised four task types (A, B, C, D),

each containing 24 trials (4 colors × 6 repetitions). Tasks A and C

represented single-task conditions (word reading or color naming),

whereas Tasks B and D involved dual-task conditions presenting

TABLE 7 Comparison of mean reaction time between the NC group and

MCI group (mean ± std).

NC(ms) MCI(ms) t
value

p value

Task A 570.983± 105.153 713.348± 102.129 −3.07 0.007∗∗

Task B 632.831± 103.547 784.559± 134.244 −2.830 0.011∗

Task C 724.159± 153.291 918.113± 165.441 −2.719 0.014∗

Task D 1020.292± 173.177 1426.417± 278.707 −3.914 0.001∗∗

∗p < 0.05, ∗∗p < 0.01.

concurrent semantic and color information, necessitating selective

attention. Processing incongruent information imposes significant

cognitive load: word reading reflects a dominant automatic

response, while color naming constitutes a non-dominant

controlled response. In Task D, participants were required to

suppress the dominant semantic response in favor of color

naming–a process termed interference inhibition.

Our findings revealed no significant between-group differences

in accuracy for Tasks A, B, and C (p ≥ 0.05), but a statistically

significant difference emerged for Task D and overall accuracy (p

< 0.05). These results suggest that MCI patients exhibit higher

error rates during tasks requiring robust cognitive control and

interference suppression. In contrast, both groups demonstrated

comparable performance on simpler tasks, aligning with the
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FIGURE 4

The relationship between the MoCA score and the reaction accuracy and reaction time.

hypothesis that early-stage MCI spares basic cognitive processing

while impairing performance under elevated cognitive load. MCI

is typically characterized by early deficits in recent memory, with

remote memory impairment emerging as the condition progresses.

The Stroop task stimuli (e.g., Chinese characters for red, yellow,

blue, green) represented highly familiar, everyday vocabulary, and

participants–recruited from a relatively well-educated community–

exhibited strong baseline recognition, minimizing errors in basic

stimulus identification. This contextual familiarity likely explains

the equivalent accuracy observed in Tasks A, B, and C across

groups. Conversely, Task D, which demanded inhibition of the

dominant semantic response, imposed a significant cognitive

workload, leading to pronounced declines in processing speed

and accuracy, particularly among MCI patients. This pattern

underscores the vulnerability of interference control mechanisms

in individuals with MCI, highlighting their reduced capacity to

resolve cognitive conflict during dual-task demands.

These findings are supported by the theory of dominant

vs. non-dominant response hierarchies. When presented with

color-word stimuli, participants automatically process semantic

content–a core feature of automatic semantic activation. Even

when instructed to disregard word meaning, this information

is involuntarily encoded, as evidenced by participants’ tendency

to mistakenly read the character instead of naming the font

color in Task D, reflecting the dominance of automatic semantic

processing. To characterize the speed disparity between dominant

and non-dominant responses, Tasks A (word reading) and C

(color naming) were compared. Both NC and MCI groups

exhibited significant differences in mean and median reaction

times (p < 0.05), with word reading (dominant response) reliably

faster than color naming (non-dominant response). This aligns

with the theoretical framework of automatic semantic priority,

where familiar linguistic processing occurs with minimal cognitive

effort. Comparing Task A (word reading) and Task B (reading

words with incongruent font colors) revealed no between-group

differences in mean reaction times (p ≥ 0.05), indicating that color

FIGURE 5

Mean reaction times of NC and MCI groups across various tasks.

interference did not prolong response latency for either group. This

suggests that non-dominant color processing cannot effectively

compete with dominant semantic processing, consistent with the

brain’s prioritization of automatic semantic pathways. These results

reinforce the principle of automaticity in semantic dominance.

Contrasting Tasks A and D highlighted a striking processing cost

for interference suppression: both groups exhibited nearly double

the reaction time in Task D compared to Task A. While Tasks B and

D both involve dual information input, only Task D requires active

suppression of the dominant response.

The primary objective of this study was to investigate

information processing differences between MCI patients and

cognitively normal older adults, with a focus on early diagnostic

markers and intervention targets. Independent-samples t-tests
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revealed statistically significant group differences between NC and

MCI participants across all Stroop task types (A-D) (p < 0.05),

demonstrating that MCI patients exhibit globally slower processing

speeds (Figure 5). A positive linear correlation was observed

between MoCA scores and task accuracy (r = 0.758, P = 0.011).

This indicates that declining cognitive impairment is associated

with both slower information processing and increased error rates

during complex tasks. These findings align with prior research,

such as Borella et al. (2017), which documented reduced resistance

to proactive interference and impaired executive control in MCI.

The observed deficits in interference suppression may serve as an

early detectable marker of MCI. For example, Chehrehnegar et al.

(2019) used eye-tracking to show that MCI and AD patients exhibit

prolonged saccadic movements, with MCI individuals relying

on extended processing time to maintain accuracy–a strategy

that becomes increasingly inefficient as task difficulty escalates.

This study was carried out based on the dual-process theoretical

framework of “automatic semantic activation–inhibition control”,

but functional neuroimaging data (such as fMRI) were not

integrated to explore the neural mechanisms of the prefrontal

limbic system, resulting in difficulties in precisely locating the brain

regions corresponding to cognitive behavioral deficits. Subsequent

studies will combine functional imaging data to construct a

“behavioral index - neural matrix” correlation model to deepen the

understanding of the relationship between cognitive behavior and

neural basis.

5 Conclusion

This study demonstrates that dominant cognitive responses

require less processing time, whereas tasks involving interference

suppression elicit significantly longer reaction times and higher

error rates. Compared to cognitively normal older adults, those

with mild cognitive impairment (MCI) exhibited slower response

speeds and heightened susceptibility to proactive interference.

The MCI group showed more pronounced deficits in interference

suppression, as evidenced by both prolonged reaction times and

increased error rates. These findings suggest that compromised

interference control mechanisms in MCI may serve as potential

biomarkers for early detection of cognitive decline. The differential

performance on Stroop tasks illuminates the nature of cognitive

processing deficits in MCI, offering actionable insights for

developing targeted interventions in early-stage impairment. The

significant positive correlation between MoCA scores and task

accuracy provides a foundation for using the MoCA to evaluate

and predict cognitive task performance. Conversely, the lack of

linear correlation between MoCA scores and Task D reaction

times highlights potential limitations of the MoCA in assessing

interference inhibition abilities in MCI, underscoring the need

for comprehensive evaluation using targeted assessment metrics

alongside traditional cognitive scales.
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