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Introduction:Motor Imagery based brain-computer interfaces (MI-BCIs) o�er a

promising avenue for controlling external devices via neural signals generated

through imagined movements. Despite their potential, the performance of MI-

BCIs remains highly variable across users and sessions, presenting a barrier to

broader adoption.

Methods: This study explores the influence of pre-cue parietal alpha power on

the quality of the event-related desynchronization (ERD) responses, a critical

indicator of MI processes. Analyzing data from 102 sessions involving 77

participants.

Results: We identified a robust significant correlation between pre-cue parietal

alpha power and ERD magnitude, indicating that elevated pre-cue parietal

alpha power is associated with enhanced ERD responses. Additionally, we

observed a significant positive relationship between pre-cue parietal alpha power

and MI-BCI classification accuracy, highlighting the potential relevance of this

neurophysiological metric for BCI performance.

Discussion: Our findings suggest that pre-cue parietal alpha power can serve

as a potential marker for optimizing MI-BCI systems. Integrating this marker

into individualized training protocols can potentially enhance MI-BCI systems’

consistency, and overall accuracy.
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1 Introduction

A brain-computer interface (BCI) is a system that enables users to control external

devices using their brain signals, which can be recorded non-invasively using methods

like electroencephalogram (EEG) (Singh et al., 2021). In a MI -based BCI (MI-BCI), the

user imagines performing different body movements in order to control an external device

(Arvaneh et al., 2017). Similar to actual movements, MI modulates sensorimotor rhythms

(SMR), consisting of mu (8–13 Hz) and beta (13–30 Hz). During MI, there are changes in

these rhythms that are known as event-related desynchronization (ERD) and event-related

synchronization (ERS) (Rimbert et al., 2022; Pfurtscheller et al., 2006).

ERD presents a reduction in the SMR amplitudes in the contralateral motor cortex

(Pfurtscheller et al., 1996). In the context of MI, ERD is often associated with the

preparation and mental simulation of motor movements (Pfurtscheller et al., 1996). ERS,
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on the other hand, is seen as an increase in the SMR power. ERS

often occurs in the same hemisphere as the imagined movement

and is typically observed after an ERD (Pfurtscheller et al., 1996;

Neuper et al., 2006; Thomas et al., 2013; Pfurtscheller et al., 2006;

Gwon and Ahn, 2021).

MI-BCIs typically rely on detecting ERD patterns, the primary

neural signature of MI, as the control signal (Thomas et al., 2013).

Pfurtscheller and Da Silva (1999) introduced a method to quantify

ERD as the percentage change in SMR power during MI compared

to the baseline, where the baseline is defined as the time interval

prior to the MI instruction signal (Tangwiriyasakul et al., 2013).

Previous studies showed that stronger ERD can reflect focused

mental effort and better control, while weaker ERD can indicate

less engagement or mental fatigue (Pfurtscheller et al., 1996).

Although MI-BCIs hold great promise, their practical usability

remains limited due to significant challenges users face in achieving

and sustaining effective performance (Khosla et al., 2020). Between

10% to 30% of users are often unable to gain effective control of the

BCI, struggling to reach the threshold performance level of over

70% (Thompson, 2019; Zhang et al., 2020).

Existing literature suggests that the limited reliability ofMI-BCI

control can be attributed to two primary factors (Jeunet et al., 2017):

(1) algorithm inaccuracy, stemming from limitations in machine

learning and signal processing algorithms, and (2) user training

inefficiency. Although substantial efforts have been dedicated

within the BCI community to enhance BCI algorithms, the equally

important factor of user training has often received comparatively

less attention (Roc and Lotte, 2020). Long-term BCI training has

been shown to induce measurable neural adaptations, highlighting

the importance of sustained practice for skill acquisition (Tortora

et al., 2022). The primary goal of user training is to enhance BCI

control abilities by helping users develop effective mental strategies

(Roc et al., 2021). Without the ability to consistently produce

distinguishable and stable EEG patterns during different mental

tasks, even the most advanced machine learning algorithms will

struggle to accurately detect and interpret user intentions (Roc

et al., 2021).

However, suboptimal user training, especially when not tailored

to individual abilities, can lead to substantial variability in MI-BCI

performance (Rimbert et al., 2022). The current training process is

often time-consuming and resource-intensive (Ahn and Jun, 2015).

Leveraging predictions of control ability based on pre-cue brain

states, the neural activity observed before MI initiation, offers the

potential to improving BCI training and may provide insight into

why some users struggle with standard protocols (see Section 4

for further discussion). This approach can inform the selection of

suitable BCI paradigms and the adaptation of training protocols

to better align with individual needs. Adjustments could include

optimizing interface design, refining instructions, modifying event

timing, and customizing feedback types (Bamdadian et al., 2014).

Previous studies have identified two main categories of BCI

performance predictors: neurophysiological and psychological

(Ahn and Jun, 2015). Among psychological factors, Nijboer et al.

(2010) found that motivation and confidence positively correlated

with BCI performance, while fear exhibited a negative correlation.

However, these psychological predictors were primarily assessed

through self-reported measures and involved a limited number of

participants, raising concerns about their objectivity and potential

inaccuracies (Bamdadian et al., 2014).

In addition to the psychological predictors, various

neurophysiological predictors have been investigated by BCI

researchers. Blankertz et al. (2010) proposed a neurophysiological

predictor based on mu and beta rhythms extracted via EEG from

the sensorimotor cortex during a two-minute eyes-open relaxed

state. Their investigation observed a positive significant correlation

between their proposed predictor and MI-BCI classification

accuracy (Blankertz et al., 2010). Maeder et al. (2012) validated

neurophysiological predictors similar to those proposed by

Blankertz et al. (2010), at both the participant and trial levels

(Maeder et al., 2012). Notably, the predictors in this study were

extracted during the pre-cue phase rather than during an eyes-

open resting state. They found that BCI performance predictability

was higher at the trial level than at the participant level, likely

because trial-level predictors were derived immediately before task

initiation during the pre-cue interval, offering a closer temporal

link to subsequent performance.

Likewise, Ahn et al. demonstrated that users with poor BCI

performance exhibited significantly lower alpha and higher theta

power across multiple states (non-task-related state, resting state

before task onset, and during the MI state). Theta differences were

most pronounced in the frontal and central areas, while alpha

differences were significant across much of the scalp. Based on

their findings, a predictor of BCI classification accuracy using the

relative power levels of alpha, beta, theta, and gamma bands was

proposed. Their predictor slightly outperformed the previously

proposed model (r = 0.59). Similarly, Grosse et al. proposed

neurophysiological predictors calculated during the pre-cue phase,

focusing on the relationship between gamma oscillations and SMR

power. Their study observed a positive correlation between frontal

and occipital gamma oscillations and SMR power while noting a

negative correlation between central parietal gamma oscillations

and SMR power (Grosse-Wentrup and Schölkopf, 2012).

In contrast, Bamdadian et al. conducted a trial-level analysis,

investigating the relationship between BCI classification accuracy

and a novel pre-cue predictor, i.e. the ratio of frontal theta power to

the sum of central beta and parietal alpha powers. Their findings

showed a positive correlation between this predictor and BCI

performance (Bamdadian et al., 2014). More recently, Marissens

Cueva et al. introduced an approach using ERD induced by brief

post-median nerve stimulation as a predictor of MI-BCI expertise.

Their results showed that post-median nerve stimulation-induced

ERD could classify users into low and high performer groups with

up to 74% accuracy, offering a potential neurophysiological marker

for early user stratification (Cueva et al., 2025).

Despite these efforts, some of the aforementioned

neurophysiological predictors have often yielded inconsistent

results across studies and have struggled to replicate reliably

(Jeunet et al., 2015). This inconsistency may be due in part to

the use of classification accuracy as the primary performance

metric—a measure influenced by factors such as the number of

training trials, task complexity, and feature extraction methods

or averaging steps (e.g., averaging ERD or spectral power values

across sessions) (Lotte and Jeunet, 2017; Rimbert et al., 2022). As

a result, understanding the neurophysiological underpinnings of

BCI control remains a complex challenge, underscoring the need

for alternative approaches that account for temporal dynamics and

individual variability.
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Rather than refining existing participant-level or resting-state

predictors, the present study adopts a trial-by-trial perspective,

focusing on neural activity immediately preceding MI. Specifically,

we investigate fluctuations in parietal alpha power during the

pre-cue interval—a temporally aligned and cognitively meaningful

marker that may reflect a user’s attentional readiness and mental

state prior to task execution (Sharma and Singh, 2015). Distinct

from earlier approaches that primarily focused on predicting

classification accuracy, our study examines the direct relationship

between pre-cue neural activity and the strength of ERD, the core

signal used in MI-BCI control.

Focusing on pre-cue parietal alpha power offers new

opportunities for developing real-time, user-adaptive BCI systems.

MI trials could be dynamically initiated when users are in a

cognitively receptive state, thereby reducing low-quality attempts

and enhancing training efficiency. Feedback strategies and training

protocols could also be tailored based on momentary mental

readiness, such as signs of fatigue or disengagement. Substantial

evidence links parietal alpha activity to attentional focus, cognitive

workload, and readiness to perform tasks (Sauseng et al., 200;

Klimesch, 2000; Sharma and Singh, 2015); however, these findings

have largely remained theoretical or limited to offline analyses.

There is a growing need to translate this knowledge into practical

BCI applications that proactively respond to users’ cognitive states

prior to task execution. This shift toward cognitively aware, flexible

BCIs emphasizes not only performance outcomes but also the

brain’s preparatory state.

Within this context, our study investigates the relationship

between parietal alpha power during the pre-cue interval and the

strength of ERD in the motor cortex during MI. Consistent and

robust ERD features are essential for effective MI-BCI performance

(Rimbert et al., 2022; Ahn and Jun, 2015), and are known to be

influenced by attentional and cognitive states prior to task onset

(Bamdadian et al., 2014; Wang et al., 2023). Parietal alpha power,

in particular, has been identified as a neural correlate of these

states, including sustained attention, mental effort, and relaxation

(Sauseng et al., 200; Klimesch, 2000; Sharma and Singh, 2015), all

of which support optimal ERD generation.

Although our investigation is not yet integrated into real-

time BCI systems, it represents a foundational step toward

operationalizing pre-cue parietal alpha power as a reliable neural

marker for BCI readiness. By analyzing this relationship at the trial

level, we aim to inform the design of adaptive BCI protocols that

can respond proactively to users’ mental states.

To test this hypothesis, we analyzed three MI datasets

comprising 102 sessions from 77 participants. One of these datasets,

which was previously analyzed in Bamdadian et al. (2014)’s study.

By evaluating how variations in pre-cue parietal alpha power relate

to the strength of ERD duringMI, this study contributes to a deeper

understanding of ERD variability and supports ongoing efforts to

improve the consistency and reliability of MI-BCI performance.

2 Methodology

2.1 Datasets

This research combined three datasets that adhered to a

similar MI-BCI protocol, selected based on specific criteria to

ensure the comparability of EEG data after processing. The key

selection criteria were as follows: (1) Among the many MI-EEG

datasets available online, only those using the standard Graz

protocol were included. This protocol is widely adopted in MI-

BCI research and features predefined MI tasks, such as hand or

foot movements, designed to elicit distinct ERD/ERS pattern. (2)

Each MI task needed to last at least 3 seconds to provide enough

data samples for reliable ERD analysis. (3) All participants were

required to be healthy to minimize potential confounding effects

from neurological or neuromuscular disorders on brain signals.

(4) The datasets had to include recordings from EEG channels Pz,

C3, and C4. The Pz channel was used to calculate pre-cue parietal

alpha power, whereas C3 and C4, key electrodes positioned over the

brain’s sensorimotor area, were essential for analyzing ERD changes

during MI tasks.

A total of 102 sessions that met the criteria were identified,

with around 70% coming from publicly available data to ensure

the study’s replicability. These sessions were denoted as Ai,j for

dataset 1, Bi,j for dataset 2, and Ci,j for dataset 3 where i and

j represent the participant and session numbers, respectively. A

detailed description of these datasets is provided in Section 2.1.1.

2.1.1 Description of datasets
Dataset A (Cho et al., 2017): In this dataset, EEG data were

collected from 52 participants (19 females and 33 males, average

age± SD = 24.8± 3.86 years). Among the participants, two (A20

and A30) were left-handed, while the remaining 50 were right-

handed. EEG recordings were obtained using 64 Ag/AgCl active

electrodes arranged according to the international 10-10 system,

with a sampling rate of 512 Hz. Before the MI experiment,

participants practiced moving their fingers, starting from the index

finger to the little finger and touching each to their thumb within

three seconds after onset. Following this practice, participants

were instructed to imagine hand movements as per the given

instructions. Each MI experiment consisted of five or six runs.

During these runs, participants completed either 100 or 120 trials

of left-hand MI and 100 or 120 trials of right-hand MI. All EEG

trials were high-pass filtered above 0.5 Hz to remove drifts.

Dataset B (Bamdadian et al., 2014): In this dataset, 16 healthy

participants, including two left-handed individuals, were recruited.

EEG data were recorded using 27 channels arranged according

to the international 10-10 system across two separate sessions

conducted on different days, sampled at a rate of 250 Hz. The

first session served as a calibration session, while the second was

a non-feedback session. Participants were explicitly instructed to

minimize physical movements and eye blinking during the EEG

recording to reduce potential artifacts. During the experiment,

a visual cue on the computer screen directed participants to

either engage in MI or remain idle. In the MI trials, participants

were instructed to imagine kinaesthetic hand movements

corresponding to their handedness (left or right). During idle trials,

participants performed mental counting to ensure consistency

and minimize variability. Each MI trial lasted 10 seconds, and

the experimental design included two runs per session. Each

run consisted of 80 trials, equally divided between MI and

idle conditions.

Dataset C: The last dataset utilized in this paper was sourced

from the BCI Competition IV (Brunner et al., 2008). This
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FIGURE 1

Overview of the EEG data processing and analysis pipeline used in this study.

dataset includes EEG recordings from nine healthy participants,

captured using 22 Ag/AgCl electrodes positioned according to the

international 10–20 system and sampled at a rate of 250 Hz. During

the MI sessions, participants performed four specific MI tasks:

imagining movements of the right hand, left hand, feet, and tongue.

TheseMI sessions were held on different days, with each participant

undergoing two sessions, each consisting of six runs with short

breaks in between. Each run included 12 trials for each MI task,

totaling 288 trials per session. The EEG signals were recorded

monopolarly, with the left mastoid as the reference and the right

mastoid as the ground. The signals were bandpass-filtered between

0.5 and 100 Hz, and a 50 Hz notch filter was applied to eliminate

line noise.

To reduce differences between the datasets, this study

concentrated exclusively on MI-EEG datasets obtained through

the established MI-BCI paradigm detailed by Pfurscheller and

Neuper (Neuper et al., 2006). Referred to as the Graz protocol, this

paradigm entails a binaryMI task where participants are directed to

imagine movements.

This study included only MI tasks related to imagining left

and right-hand movements. Each trial began with a fixation

cross displayed on the screen for 2 s, accompanied by a

beep sound to prepare the participant for the upcoming task.

Following the fixation cross, a cue was presented, indicating

which hand (left or right) the participant should imagine

moving. This cue was displayed for 1 second. After the cue,

the participant engaged in the MI task for 3 seconds (from 1

to 4 s). During this period, the participant focused on mentally

simulating the movement of the indicated hand. Following the

MI task, the participant was allowed to relax for approximately

6 seconds, allowing the participant to rest before the next

trial began.

2.2 EEG processing

All data analysis, including signal preprocessing, artifact

rejection, epoch segmentation, statistical analysis, and

topographical scalp plots, was performed in MATLAB 2023b

and EEGLAB toolbox. A detailed pipeline was established to

standardize the data processing workflow (see Figure 1). The

process included all steps necessary to prepare and analyze EEG

data.

The pipeline began with bandpass filtering the raw EEG signals

using zero-phase elliptic bandpass filters within a frequency range

of 1 to 40Hz. After filtering, the common average reference (CAR)

was applied due to its proven effectiveness and low computational

complexity, as outlined by Tsuchimoto et al. (2021). The continuous

EEG data from each session were then segmented into epochs

spanning from -2.5 s to 3.5 s relative to the cue onset. This time

window was specifically selected to encompass both the baseline

and MI periods, aligning with the experimental design described

in detail in later sections. Next, artifact rejection was performed

by identifying and excluding trials in which the signal amplitude

exceeded ±120µV at any electrode, as recommended by Wang

et al. (2023).
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2.2.1 Calculation of pre-cue parietal alpha power
Our study aimed to examine how variations in pre-cue parietal

alpha (α) power influence the quality of ERD responses observed

duringMI tasks. Specifically, we calculated the average alpha power

during the pre-cue interval at channel Pz for each trial l, denoted as

α
l
i,j, where i and j represent the session and participant identifiers,

respectively.

As described in the preprocessing step, the baseline pre-cue

interval was established as −2 to 0 s relative to cue onset. To

compute α
l
i,j, a zero-phase elliptic bandpass filter (8–12Hz) was first

applied to the interval −2.5 to 0.5 s relative to the cue onset for

each trial l at channel Pz. To avoid potential distortions caused by

the filtering process, the first and last 0.5 s of the filtered interval

were excluded from further analysis. This step ensured that any

edge effects introduced by the filter do not affect the subsequent

estimation of alpha power. Finally, the average power of the filtered

signal within the baseline interval −2 to 0 s (relative to the cue

onset) was calculated and recorded as α
l
i,j.

2.2.2 ERD estimation
To estimate ERD, we first applied a zero-phase elliptic bandpass

filter from 8 to 30Hz to the extracted time interval, as described

in the preprocessing section. To reduce signal distortion effects

due to filtering, we excluded the initial and final 0.5 s of the

epochs. Thereafter, the baseline interval was selected from −2

to 0 s (referred to as BL), and the MI interval from 0.5 to

2.5 s (referred to as X), where 0 marks the cue onset for

imagined movement.

For each trial l, time instance s, and channel ch, the ERD

percentage was computed as:

ERDl
i,j(s, ch) =

[Xl
i,j(s, ch)]

2
− [BLli,j(ch)]

2

[BLli,j(ch)]
2

× 100, (1)

Where Xl
i,j(s, ch) represents the bandpass-filtered EEG

amplitude at time sample s and channel ch during the MI interval,

with ch corresponding to C3 for right-hand and C4 for left-hand.

The term
[

Xl
i,j(s, ch)

]2
corresponds to the instantaneous power of

the bandpass-filtered EEG signal during the MI interval. Finally,
[

BLli,j(ch)
]2

denotes the average power of the bandpass-filtered

EEG signal during the baseline interval.

Equation 1 defines the percentage change in sensorimotor

oscillatory power, where negative values represent ERD and

positive values represent ERS. As highlighted in prior research

(Pfurtscheller and Da Silva, 1999; Rimbert et al., 2022), it is

well-established that participants typically exhibit an ERD phase

following the cue, which is then followed by a recovery phase

characterized by ERS (up to approximately 1 s after the conclusion

of MI). In this study, we concentrated on the MI interval,

specifically 0.5 to 2.5 s after the cue, a time window commonly

employed in BCI classification (Ang et al., 2012).

Since this interval directly follows the cue and coincides with

the MI phase, its average power change serves as a representation

of ERD strength. The average ERD was calculated as shown in

Equation 2:

ERD
l
i,j(ch) =

1

N

N
∑

s=1

ERDl
i,j(s, ch), (2)

Where ERD
l
i,j(ch) denotes the average ERD percentage

computed over N time samples within the selected interval (0.5 to

2.5 s). These computations provide an estimate of the ERD strength

for each trial, forming the basis for our subsequent analysis.

2.3 BCI classification accuracy

In this study, we followed a commonly used BCI classification

methodology for motor imagery tasks (Ramoser et al., 2000; Wang

et al., 2006; Ang et al., 2008). After EEG preprocessing and 8–

30 Hz bandpass filtering, EEG data from the 0.5 to 2.5-s interval

following cue onset were extracted for feature computation. Spatial

filtering was applied using the Common Spatial Patterns (CSP)

algorithm (Ramoser et al., 2000). From the resulting spatial filters,

the six most discriminative components were selected. The spatially

filtered EEG signals were used to compute the variance for each

trial segment, and the log-transformed variance values were then

used as features. These features were input to a Linear Discriminant

Analysis (LDA) classifier. Classification performance was evaluated

using 10-fold cross-validation, with 90% of the data used for

training and 10% for testing in each fold.

2.4 Statistical analysis

To investigate the relationship between pre-cue parietal alpha

power and the strength of ERD at the trial level, we performed a

series of statistical analyses.

First, normality was assessed using the Shapiro–Wilk test,

and the assumption was violated for both ERD and alpha power

distributions. Therefore, Spearman correlation coefficient was used

to assess the association. For each session, Spearman correlation

coefficient (r) was calculated to assess the association between

the single-trial averaged ERD, ERD
l
i,j(ch) from Equation 2, and

its corresponding pre-cue parietal alpha power, α
l
i,j(Pz), across

all trials. This analysis evaluated whether variations in pre-cue

parietal alpha power were linked to changes in ERD strength on

a trial-by-trial basis.

In addition to trial-level analyses, a group-level correlation

analysis was performed by computing the median pre-cue parietal

alpha power and corresponding median ERD for each participant.

For participants with multiple sessions, values were averaged prior

to aggregation to maintain statistical independence. A Spearman

correlation was then applied to assess the association between these

subject-level median values.

Next, for each session, trials were categorized into two groups

based on whether their pre-cue parietal alpha power values were

above or below the median value across all trials. The non-

parametric Mann-Whitney U-test was then used to compare ERD

strength between these high- and low-alpha power groups . This
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FIGURE 2

Distribution of the non-parametric Spearman correlation coe�cients (r-values) between ERD
l

i,j(at C3 for right-hand MI and C4 for left-hand MI) and

pre-cue parietal alpha power α
l
i,j(Pz) for datasets A, B, and C across di�erent sessions and MI conditions. Each boxplot represents a session-hand

condition. These results indicate a consistent negative relationship between pre-cue alpha power and ERD strength across conditions. The asterisk

(*) represents an outlier in the data distribution.

analysis aimed to identify significant differences in ERD strength

associated with differing levels of pre-cue alpha activity.

Thereafter, the non-parametric Spearman correlation

coefficient was used to evaluate the relationship between

classification accuracy and pre-cue parietal alpha power across 77

participants. For participants with multiple sessions, alpha power

and accuracy were first averaged to ensure statistical independence

across observations. Classification accuracy for each participant

was determined using 10-fold cross-validation, computed as the

average accuracy across the 10 testing folds. Pre-cue parietal alpha

power for each participant was derived from the training partitions

of the 10 folds. Specifically, within each fold, the median pre-cue

parietal alpha power was calculated, and these median values were

averaged across all folds to obtain a single participant-level metric.

Descriptive statistics, includingmeans and standard deviations,

were computed for all key variables. Statistical significance was

determined at p < 0.05. To control for multiple comparisons,

the Benjamini–Hochberg false discovery rate (FDR) correction was

applied at q = 0.05.

Finally, topographic maps were created to visually show how

ERD patterns differ between trials with higher and lower pre-cue

parietal alpha power. These visualizations were included to help

explore whether different levels of pre-cue alpha power are linked

to noticeable differences in ERD patterns across the scalp.

3 Results

3.1 Correlation analysis between MI -ERD
and pre-cue parietal alpha power

Spearman correlation analysis was conducted to assess the

relationship between average pre-cue parietal alpha power and

averaged ERD values across sessions and MI tasks. The results are

visualized in Figures 2, 3, which summarize the distribution and

significance of correlation coefficients across different datasets and

conditions.

As shown in Figure 2 and summarized in Table 1, each session-

hand condition exhibited a predominantly negative correlation

between pre-cue alpha power and ERD. Values are reported in the

format of median(mean ± standard deviation). In Dataset C2, the

strongest and most consistent inverse associations were observed,

with median r-values of −0.437 (−0.451 ± 0.110) for right-hand

MI and −0.488 (−0.468 ± 0.181) for left-hand MI. Dataset A

showed similarly strong effects, with medians of−0.510 (−0.466±

0.151) and −0.508 (−0.477 ± 0.122) for right- and left-hand MI,

respectively. Greater variability was observed in Dataset B, where

the median r-values were −0.281 (−0.258 ± 0.092) in Session B1

and −0.293 (−0.293 ± 0.184) in Session B2. Dataset C1 showed

moderate effects with median values of −0.272 (−0.214 ± 0.157)

and−0.338 (−0.327± 0.091) for right- and left-hand MI.

Figure 3 presents scatter plots, highlighting the proportion

of sessions that yielded statistically significant correlations (p <

0.05, blue diamonds) vs. non-significant results (p > 0.05, red

diamonds). High rates of significance were observed in most

datasets. Specifically, in Dataset A, 88% of right-hand and 90% of

left-hand MI sessions showed significant correlations. In Dataset

B, Session 1 and Session 2 showed 69% and 56% of sessions with

significant correlations, respectively. In Dataset C, 56% of right-

hand and 78% of left-hand sessions were significant in Session 1,

while Session 2 showed 100% significance for right-hand MI and

89% for left-hand MI.

To further examine group-level effects, Figure 4 presents

participant-level median correlations. Here, the median pre-cue

parietal alpha power (at Pz) and the corresponding median ERD

(at C3 for right-hand MI, and C4 for left-hand MI) were computed
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FIGURE 3

Scatter plots illustrating the non-parametric Spearman correlation coe�cients (r-values) between single-trial ERD
l

i,j (at C3 for right-hand and C4 for

left-hand tasks) and pre-cue parietal alpha power α
l
i,j(at Pz) across Datasets A, B, and C. Blue diamonds represent sessions with statistically significant

correlations after FDR correction (q < 0.05), while red diamonds indicate sessions with non-significant correlations (p > 0.05). Overall, consistent

negative correlations were found across datasets, suggesting that higher pre-cue parietal alpha power is associated with stronger (i.e., more

negative) ERD responses.

TABLE 1 Median, mean, and standard deviation of spearman correlation

coe�cients between single-trial pre-cue parietal alpha power and the

corresponding ERD, averaged across all participants and sessions for each

motor imagery task in Datasets A, B, and C.

Dataset Task condition Median r r (Mean ± SD)

A Right-hand MI −0.510 −0.466± 0.151

Left-hand MI −0.508 −0.477± 0.122

B1 Right/left MI (session 1) −0.281 −0.258± 0.092

B2 Right/left MI (session 2) −0.293 −0.293± 0.184

C1 Right-hand MI −0.272 −0.214± 0.157

Left-hand MI −0.338 −0.327± 0.091

C2 Right-hand MI −0.437 −0.451± 0.110

Left-hand MI −0.488 −0.468± 0.181

Fisher’s Z-transformation was applied prior to averaging.

per participant. A non-parametric Spearman’s rank correlation

revealed a statistically significant negative relationship for both

tasks. For right-hand MI, the correlation was r = −0.47, p <

0.001, and for left-hand MI, r = −0.35, p = 0.0069. These

findings confirm that, at the participant level, higher median pre-

cue alpha power is associated with stronger ERD responses, further

reinforcing the trial-level results and suggesting that preparatory

brain states exert consistent influence across individuals.

3.2 Comparing ERD strengths between
trials with high and low pre-cue parietal
alpha power

To further explore the relationship between pre-cue parietal

alpha power and ERD strength, we divided the trials for each

session into two subgroups: those with higher and lower pre-cue

parietal alpha power, based on the median alpha power value across

the session. Given the observed negative correlation between ERD

and alpha power, we hypothesized that trials with higher pre-cue

parietal alpha power would exhibit a stronger ERD response. To

test this hypothesis, we used the non-parametric Mann-Whitney

U-test to compare ERD responses between the two subgroups, as

the assumption of normality was violated, as described in Section

2.1.

Tables 2–4 present the outcomes of the Mann-Whitney U-tests.

The results show that the majority of participants demonstrated

a significant difference (p < 0.05) in ERD values between the

two groups. Specifically, in Dataset A, 95% of the sessions showed

significant differences in right-hand MI tasks, and 94% in left-hand

MI tasks. For Dataset B, 75% of the sessions showed significant

differences in Session 1, and 68% in Session 2. Similarly, in Dataset

C, 67% of the sessions showed significant differences in right-hand

MI tasks and 88% in left-hand MI tasks in Session 1, while 77% of

the sessions showed significant differences in both right-hand and

left-hand MI tasks in Session 2.
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FIGURE 4

Group-level correlation analysis between pre-cue parietal alpha power and ERD strength across participants. To assess the overall participant-level

trend, we computed the median pre-cue parietal alpha power (at Pz) and the median ERD values (at C3 for right-hand MI and C4 for left-hand MI)

across all participants. For participants with multiple sessions, values were averaged prior to inclusion to ensure statistical independence. A

non-parametric Spearman’s rank correlation was applied to evaluate the association between these aggregated medians. Each yellow diamond

represents one participant, and the red line denotes the fitted correlation trend. The results reveal a negative correlation, indicating that participants

with higher pre-cue parietal alpha power tend to exhibit stronger ERD responses during MI.

The statistical results are reflected in the visual data. Figure 5

provides an example from participant B13,1. The figure begins by

showing the strength of the Spearman correlation between single-

trial ERD values and their corresponding pre-cue parietal alpha

powers, as depicted in the scatter plot in Figure 5a. A significant

negative correlation (r = −0.50, p < 0.001) between pre-cue

parietal alpha power and ERD in the C3 channel for right-hand MI

tasks is observed. Figure 5b displays the trials split by the median

pre-cue parietal alpha power into upper and lower groups, showing

the temporal evolution of the ERD response over the MI period.

The subplot indicates that trials in the upper group (higher pre-

cue alpha power) resulted in stronger ERD (more negative values),

while the lower group showed no considerable ERD during the

MI task.

Similarly, Figure 6 presents another example of the ERD

response between the two median split groups for the Participant

A3. The topographic maps of ERD for both right- and left-

hand MI trials cover time points from 250 ms to 2500 ms

after the cue. These maps reveal that trials with higher pre-

cue alpha power show more pronounced ERD prominent in the

contralateral motor cortex, indicating greater neural engagement

and desynchronization compared to trials with lower pre-cue

alpha power.

3.3 Localization of alpha, ERD association
across EEG channels

To investigate whether the observed relationship between

pre-cue parietal alpha power and motor imagery-related ERD

was spatially localized or diffusely distributed, we performed a

channel-wise Spearman correlation analysis. For each participant,

we computed the correlation between alpha power (8-12 Hz)

at each EEG channel and the corresponding ERD in the

contralateral sensorimotor cortex (C3 for right-hand MI, C4

for left-hand MI). For participants who completed two sessions,

correlations were averaged within participant to preserve statistical

independence.

Group-level patterns were then visualized using scalp maps

(Figure 7), which depict (1) the median Spearman’s r across

participants at each channel, and (2) the percentage of participants

with statistically significant correlations at each location, following

FDR correction (q = 0.05). For both right- and left-hand MI tasks,

the strongest correlations were consistently observed at parietal site

Pz (median r = −0.45 and −0.46, respectively), where a large

proportion of participants also showed significant effects (86% and

89%). The next strongest correlations were found at C3 and C4,

the contralateral sensorimotor sites, with slightly weaker median

r values and lower proportions of significance. The corresponding

summary of participant-level significance percentages is reported

in Table 5.

These findings support the presence of a distinct parietal

alpha source driving the observed relationship, rather than a

diffuse or volume-conducted effect from the sensorimotor cortex.

The parietal focus is consistent with the role of posterior alpha

in anticipatory attention and preparatory states. Meanwhile,

the secondary effects observed over C3/C4 likely reflect local

contributions from baseline µ rhythms in M1/S1, in line with their

expected involvement in contralateral motor planning and control.

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1625127
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Mohamed et al. 10.3389/fnhum.2025.1625127

TABLE 2 Comparison of the ERD strength between two subgroups of

trials for each participant and MI task in Dataset A, using the

non-parametric Mann–Whitney U-test.

Part RH LH Part RH LH

A1 0.313 0.008 A27 <0.001 <0.001

A2 <0.001 <0.001 A28 0.064 0.002

A3 <0.001 <0.001 A29 0.642 0.258

A4 <0.001 <0.001 A30 0.002 <0.001

A5 <0.001 <0.001 A31 <0.001 <0.001

A6 <0.001 <0.001 A32 <0.001 <0.001

A7 <0.001 <0.001 A33 <0.001 <0.001

A8 <0.001 <0.001 A34 0.003 <0.001

A9 <0.001 <0.001 A35 <0.001 <0.001

A10 <0.001 <0.001 A36 <0.001 <0.001

A11 <0.001 <0.001 A37 <0.001 <0.001

A12 <0.001 <0.001 A38 <0.001 <0.001

A13 <0.001 <0.001 A39 <0.001 <0.001

A14 <0.001 <0.001 A40 <0.001 <0.001

A15 <0.001 0.021 A41 <0.001 <0.001

A16 <0.001 <0.001 A42 <0.001 <0.001

A17 0.034 0.046 A43 0.702 0.012

A18 <0.001 0.003 A44 <0.001 <0.001

A19 0.055 0.088 A45 <0.001 <0.001

A20 0.028 <0.001 A46 <0.001 <0.001

A21 <0.001 <0.001 A47 <0.001 <0.001

A22 0.013 0.011 A48 <0.001 <0.001

A23 <0.001 <0.001 A49 <0.001 <0.001

A24 0.001 0.054 A50 <0.001 <0.001

A25 <0.001 <0.001 A51 <0.001 <0.001

A26 <0.001 <0.001 A52 <0.001 <0.001

Trials were divided into two subgroups based on their pre-cue parietal alpha power: the upper

alpha power group includes trials with pre-cue parietal alpha power above the median, while

the lower alpha power group includes trials below the median. The calculation of the median

for the pre-cue parietal alpha powers was session and task specific.

3.4 Association between pre-cue parietal
alpha power and BCI classification
accuracy

In this subsection, we examined whether the median pre-cue

parietal alpha power extracted from training data was associated

with BCI classification accuracy on testing data. As outlined in

Section 2.4, the median pre-cue parietal alpha powers from the 10

training folds of each session were averaged and compared with the

corresponding average 10-fold BCI classification accuracy.

Figure 8 shows the results of the non-parametric Spearman

correlation analysis, evaluating the relationship between the

median parietal alpha power, α
l
i,j(Pz), and the 10-fold cross-

validation BCI classification accuracy across 77 participants. Since

TABLE 3 Comparison of the ERD strength between two subgroups of

trials for each participant, and session in Dataset B, using the

non-parametric Mann–Whitney U-test.

Part P-value session 1 P-value session 2

B1 0.059 <0.001

B2 0.005 0.228

B3 0.145 0.005

B4 0.002 0.045

B5 0.004 0.145

B6 0.418 0.520

B7 <0.001 0.002

B8 0.016 0.005

B9 0.059 0.004

B10 0.005 0.005

B11 0.145 0.418

B12 0.002 0.012

B13 0.004 <0.001

B14 0.418 0.020

B15 <0.001 0.016

B16 0.016 0.566

Please note that participants in Dataset B performed only one MI task. Trials were divided

into two subgroups based on their pre-cue parietal alpha power: the upper alpha power group

includes trials with pre-cue parietal alpha power above the median, while the lower alpha

power group includes trials below the median. The calculation of the median for the pre-cue

parietal alpha powers was session and task specific.

TABLE 4 Comparison of the ERD strength between two subgroups of

trials for each participant, session and task in Dataset C, using the

non-parametric Mann–Whitney U-test.

Part Session 1 Session 2

RH LH RH LH

C1 0.025 0.002 0.009 <0.001

C2 0.126 0.060 0.006 0.001

C3 0.115 0.002 0.561 0.210

C4 0.019 0.030 0.265 0.037

C5 0.083 0.020 0.002 0.121

C6 <0.001 <0.001 0.005 <0.001

C7 0.009 <0.001 <0.001 0.004

C8 <0.001 <0.001 <0.001 <0.001

C9 0.002 <0.001 <0.001 0.051

Trials were divided into two subgroups based on their pre-cue parietal alpha power: the upper

alpha power group includes trials with pre-cue parietal alpha power above the median, while

the lower alpha power group includes trials below the median. The calculation of the median

for the pre-cue parietal alpha powers was session and task specific.

the analysis was conducted at the group level rather than the

participant level, pre-cue alpha power for each trial was normalized

by dividing it by the total power. This normalization ensured

that data from all three datasets were comparable, accounting for
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FIGURE 5

Exemplary results from a single participant (B13,1) illustrating the relationship between pre-cue parietal alpha power and ERD. Trials were divided into

two subgroups based on the median pre-cue parietal alpha power: the upper subgroup (trials with pre-cue alpha power above the median) and the

lower subgroup (trials with pre-cue alpha power below the median). (a) A significant negative correlation (r = −0.50, p < 0.001) is shown between

single-trial pre-cue alpha power (at Pz) and ERD during the right-hand MI task (at C3), with individual trials represented by blue circles and the linear

regression line in red. (b) Temporal evolution of ERD at C3 for the two subgroups, with shaded regions indicating the standard deviation across trials.

The results demonstrate that higher pre-cue alpha power is associated with stronger ERD.

FIGURE 6

Exemplary results for topographic maps of ERD over time for right- and left-hand MI trials for Participant A1,3. Each column represents a di�erent

time point, ranging from 250 ms to 2500 ms post-cue. The trials are divided into two subgroups based on the median of the averaged pre-cue

parietal alpha power. ERD is notably stronger (indicated by more pronounced blue) in the upper-half group for both hands, suggesting greater neural

engagement and desynchronization compared to the lower-half group.
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FIGURE 7

Localization of the association between pre-cue parietal alpha power and MI-related ERD across EEG channels. (a) Right hand MI. (b) Left hand MI.

Each electrode is color-coded by the median Spearman correlation coe�cient (r) across participants between pre-cue alpha power (8–13 Hz) cross

all channels and ERD strength at the contralateral motor cortex (C3 for right hand, C4 for left hand). Red text indicates the percentage of participants

showing statistically significant correlations at each electrode after FDR correction (q = 0.05). The results show maximum negative correlations were

observed at Pz (r = −0.45 for right hand, r = −0.46 for left hand) and at contralateral motor electrodes C3 (r = −0.42) and C4 (r = −0.42),

respectively.

TABLE 5 Summary of median correlation coe�cients and percentage of participants with significant correlations between pre-cue alpha power and

ERD across EEG channels.

Task Peak channel Median r % Sig. parti Next-strongest channel Median r % Sig. parti

Right hand MI Pz -0.45 86% C3 -0.42 70%

Left hand MI Pz -0.46 89% C4 -0.42 82%

differences in baseline alpha power levels caused by factors such as

variations in amplifiers and recording equipment.

The results, presented in Figure 8, revealed a significant positive

association between the normalized average pre-cue parietal alpha

power and classification accuracy (Spearman’s r = 0.344, p <

0.0027). A corresponding linear regression indicated that pre-

cue alpha power explained approximately 12% of the variance in

classification accuracy (R2 ≈ 0.12).

4 Discussion and conclusion

In summary, this study investigated how variations in pre-cue

parietal alpha power influence the magnitude of ERD during MI

tasks, as well as how they relate to the overall MI-BCI classification

accuracy.

By analyzing 102 sessions from 77 participants across three

datasets, we consistently observed a negative correlation, indicating

that higher pre-cue parietal alpha power is linked to stronger

ERD. This suggests that a more relaxed preparatory brain state,

reflected by elevated pre-cue parietal alpha activity, may facilitate

the generation of more robust MI-related desynchronization.

Previous studies have linked high parietal alpha power to the

suppression of distracting information and improved allocation

of attentional resources (Klimesch, 2012; Sokoliuk et al., 2019;

Pfurtscheller and Da Silva, 1999; Jensen and Mazaheri, 2010),

potentially supporting readiness for task execution (Foxe and

Snyder, 2011). In our study, this preparatory alpha state

was consistently associated with stronger ERD, implying that

the attentional or inhibitory functions of alpha power may

support more pronounced sensorimotor engagement during

motor imagery.

Building on this, we also found a statistically significant—

though moderate—positive association between pre-cue parietal

alpha power and MI-BCI classification accuracy. At first glance,

this may appear to contrast with findings from Bamdadian et al.

(2014), who reported that a combination of lower parietal alpha,

lower central beta, and higher frontal theta was associated with

better classification performance. Their interpretation suggested

that reduced alpha reflects heightened attentional engagement,

which in turn supports improved MI-BCI control. However,

it is important to note that their analysis used a composite

predictor, and did not assess the independent contribution

of parietal alpha power in isolation from beta and theta

activity.

Even though our correlation with classification accuracy was

moderate and explained around 12% of the variance, most

previously proposed neurophysiological predictors, including those
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FIGURE 8

Correlation between the median pre-cue parietal alpha power from

the training data and the corresponding BCI classification accuracy

from the testing data, analyzed across 77 participants. For

participants with multiple sessions, results were averaged prior to

the correlation analysis to ensure statistical independence. Pre-cue

alpha power was normalized by dividing each trial’s alpha power by

the total power in the 8–40 Hz band to account for inter-dataset

variability. For each participant, classification accuracy was

computed using 10-fold cross-validation and averaged across folds.

Each participant is represented as a black circle, with the yellow

dashed line indicating the linear regression fit. The non-parametric

Spearman correlation analysis revealed a significant association

(r = 0.344,p < 0.0027).

by Bamdadian et al. (2014); Ahn and Jun (2015), have failed to

replicate reliably, as highlighted by Jeunet et al. (2015). These

studies relied on classification accuracy as a performance metric,

which is complex and affected by many external factors (Lotte

and Jeunet, 2017), as discussed earlier. Our study interprets

that shifts in attention could influence the generation of ERD

and may not be accurately captured by a single averaged

classification. Attention needs to be a measurable and dynamic

marker that reflects moment-to-moment brain state changes.

This helps explain when strong ERD is produced and when it

is not, arguably offering a stronger and more direct indicator

of user performance with fewer confounding parameters than

classification accuracy.

In addition to neurophysiological factors, previous studies

have indeed identified psychological traits—such as motivation,

confidence, anxiety, and cognitive control—as significant

predictors of MI-BCI performance (Jeunet et al., 2015; Nijboer

et al., 2010). Importantly, several of these psychological factors

have also been linked to parietal alpha power in the broader

neuroscience literature. For example, increased parietal alpha

is associated with internalized attention, reduced anxiety,

and greater cognitive readiness (Klimesch, 1999; Angelakis

et al., 2004; Sauseng et al., 200; Foxe and Snyder, 2011). These

psychological states are conducive to better MI-BCI control

and align with the preparatory role we propose for pre-cue

alpha. Notably, non-neurophysiological predictors have been

shown to explain substantial variance in BCI performance,up to

30% for concentration and motor skills (Hammer et al., 2012),

and approximately 35% for locus of control when dealing with

technology (Burde and Blankertz, 2006). Jeunet et al. (2015)

reported that a combination of cognitive and personality traits

could account for over 80% of performance variability. While

we did not assess psychological traits directly in our dataset,

our finding that higher pre-cue parietal alpha predicts stronger

motor-related desynchronization is consistent with this literature

and suggests that pre-cue alpha may serve as an objective,

neurophysiological proxy for a broader set of psychological

readiness factors.

Building on this distinction, the observed association between

pre-cue parietal alpha power and MI-BCI performance also

underscores the potential for more personalized MI-BCI training

programs. Traditional approaches often overlook individual

neurophysiological differences, leading to inconsistent outcomes.

Incorporating pre-cue alpha power into training protocols allows

for customized strategies, such as adjusting cue timing, modifying

feedback, or scaling task difficulty to match each user’s mental

state. While human observers typically rely on indirect behavioral

cues (e.g., reaction times, posture, or facial expressions) to

gauge user engagement, alpha-based metrics provide a direct and

continuous neural readout of cognitive readiness. In principle,

such real-time neural indicators could inform more consistent

and objective adjustments during training–such as when to pause

a trial, adapt feedback, or recalibrate task demands based on

the user’s fluctuating attentional state. For example, users with

lower pre-cue parietal alpha power may benefit from extended

preparation time, relaxation activities before the session, or

more frequent feedback, whereas those with higher alpha power

may thrive with increased task difficulty and greater cognitive

challenges.

While the observed correlations between pre-cue parietal

alpha power, ERD strength, and classification accuracy are

robust and consistent, further work is needed to better

understand the nature of these relationships. As alpha power

was not experimentally manipulated in this study, the findings

cannot yet confirm whether increased pre-cue alpha actively

facilitates stronger ERD responses or simply reflects a favorable

underlying cognitive state. Future studies using interventional

approaches–such as neurofeedback to enhance alpha activity

or closed-loop BCI systems that adjust task timing based on

real-time alpha fluctuations–could help establish directionality

and provide stronger evidence for the role of pre-cue parietal

alpha as a modifiable factor in MI-BCI performance. In

addition, while pre-cue parietal alpha power was moderately

associated with classification accuracy at the group level, in

some cases participants with multiple sessions (e.g. dataset

B), the session with the highest alpha power also yielded the

highest classification accuracy. In several cases (e.g., B8, B9,

B13), the difference in alpha power across sessions was small,

whereas accuracy varied more substantially. Future work could

further investigate this dissociation using larger datasets to better

characterize the relationship between stable neurophysiological

traits and session-specific performance fluctuations in

MI-BCI tasks.
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