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Introduction: Electrencephalography (EEG)-based brain-computer interfaces

(BCIs) have become popular as EEG is accepted as the simplest and non-

invasive neuroimaging modality to record the brain’s electrical activity. In the

current BCI research context, apart frompredicting extremitymovements, recent

BCI studies have been interested in accurately predicting finger movements

of the same hand using di�erent pattern recognition methods over EEG data

collected based on motor imagery (MI), through which a mental image of the

desired action is generated when a person ideally simulates or imagines carrying

out a certain motor task. Although several pattern recognition methods have

already been recommended in literature, majority of the studies focusing on

classifying five finger movements, were based on study designs that neglected

or excluded the idle state of brain (i.e., no mental task state) during which brain

does not carry out any MI task. This study design may result in an increasing

number of false positives and a significant decrease in the prediction rates and

classification performance. Moreover, recent studies have focused on improving

prediction performance using complex feature extraction and machine learning

algorithmswhile ignoring comprehensive EEGchannels and feature investigation

in the prediction of finger movements from EEGs. Therefore, the objectives

of this study are threefold: (i) to develop a more viable and practical system

to predict the movements of five fingers and the no mental task (NoMT)

state from EEG signals (ii) to analyze the e�ects of the statistical-significance

based feature selection method over four di�erent feature domains (nonlinear

domain, time-domain, frequency-domain and time-frequency domain) and their

combinations, and (iii) to test these feature sets with di�erent and prominent

classifiers.

Methods: In this study, our major goal is not to explore the best

machine algorithm performance, but to investigate the best EEG channels

and features that can be used in the classification of finger movements.

Hence, the comprehensive analysis of the e�ectiveness of EEG channels and

features is performed utilizing a statistically significant feature distribution

over 19 EEG channels for each feature set independently. A bulky dataset

of electroencephalographic MI for EEG-based BCIs is used in this study. A

total of 1102 EEG features supplied from di�erent feature domains have been

investigated. Subsequently, these features were tested with eight well-known

classifiers, comprising Decision tree, Discriminant analysis, Naive Bayes, Support

vector machine, k-nearest neighbor, Ensemble learning, Neural networks, and

Kernel approximation.
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Results: For subject-dependent analysis, the maximum accuracy of 59.17%

was obtained using the EEG features that were selected the most (including

(i) energy and variance of five frequency bands in frequency-domain feature

set, (ii) all feature types in time-domain, time-frequency domain, and nonlinear

domain feature sets) and all EEG channels by the Support vector machine

algorithm. For subject-independent analysis, the maximum accuracy of 39.30%

was obtained using the mostly selected EEG features (which are (i) all feature

types excluding the waveform length, average amplitude change value, absolute

di�erence in standard deviation, and slope-change value feature types in time-

domain feature set, (ii) the energy and variance values of all frequency bands

except gamma frequency band in frequency-domain feature set, (iii) the entropy

value of five frequency bands in time-frequency-domain feature set, and (iv) SD2

and SD1/SD2 values where lag = 1 in nonlinear feature set) and EEG channels

(which are (i) some definite EEG channels including 2nd, 3rd, 7th, 11th, 13th,

14th, and 15th channels in time-frequency-domain feature set and (ii) all EEG

channels in time-domain, frequency-domain, and nonlinear feature sets) by the

Support vector machine classifier.

Discussion: Experimental results demonstrate that despite the high-class

number, the proposed approach obtained a modest yet considerable

advancement in finger movement prediction when the results are compared

to the results of similar studies. Additionally, for almost all feature sets, the

statistical significance-based feature reduction method improves the prediction

performance in the most of classifiers, contributing elaborate EEG channel and

feature analysis. Nonetheless, in this study, we used an EEG dataset recorded

from only 13 healthy subjects; therefore, a dataset covering more subjects is

necessary to reach a more general conclusion.

KEYWORDS

brain-computer interfaces (BCIs), electroencephalogram (EEG), statistical-significance

based feature selection, machine learning, finger movement classification

1 Introduction

Brain-computer interface (BCI) systems, which are roughly a

hardware and software interaction system, convert brain signals

into commands to operate external equipment (Nicolas-Alonso &

Gomez-Gil, 2012). The first operational stage of a BCI system is

data acquisition to capture brain activities (Schalk et al., 2004).

To this purpose, numerous neuroimaging modalities, both invasive

and non-invasive, have been used to capture neural activity.

Among these modalities, many studies adopted non-invasive ones

to reflect brain activity. As one of these non-invasive modalities,

electroencephalography (EEG) is widely used as an effective and

inexpensive method to reflect brain activity (Chen et al., 2015).

BCI applications can be improved using several control signals

(Nicolas-Alonso &Gomez-Gil, 2012). Among these control signals,

Motor imagery (MI), an important paradigm of BCI applications,

occurs as a thought process throughout which a person imagines

a specific action but does not perform it (George et al., 2021).

Thus, MI reflects a person’s intention of movement to control

external devices (Pfurtscheller & Neuper, 2001). To date, in

the prediction of MI tasks, large-scale movements of the limbs,

including movements of the left hand, right hand, left foot, right

foot, both feet and tongue, have been subject of classification

(Al-Saegh et al., 2021). However, there exists limited research study

that aimed to classify refined MI tasks such as finger movements.

Decoding finger movements is considered a difficult task because

of the sophistication and refinement of muscle for human finger

movements and the volume conduction effect of EEG, which

causes a certain degree of aliasing and attenuation (Brunner et al.,

2016; Sultana et al., 2023). Moreover, finger movements generate

signal amplitudes smaller than those that occur with large-scale

movements of the limb (Sultana et al., 2023). To grasp and move

objects that are crucial to the daily activities of people, the fingers

play an important role (Yang et al., 2024). Therefore, decoding

finger movements is vital to provide fine motor control of EEG

signals and enhance the daily activities of people with motor

disabilities.

EEG signals include temporal, spectral (frequency domain-

based and time-frequency domain-based features), spatial, and

nonlinear features that can be utilized for the classification of

finger movements. In BCI design, the feature extraction step,

especially the selection of the feature domain, is one of the

profound steps in research because the extracted features directly

affect the classification performance (Riaz et al., 2015). To date,

many studies have used temporal, spectral, and spatial features

to classify finger movements. Common temporal features include
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mean absolute value, root mean square, standard deviation,

waveform length, zero crossing value, variance, and integrated

EEG value for finger movement analysis (Kaya et al., 2018; Lee

et al., 2021; Mwata-Velu et al., 2022). Several studies have used

information collected from frequency domain of EEG signals

by evaluating statistical features of power spectrum density of

these signals (Kaya et al., 2018). Fourier transform has been

mostly investigated to provide frequency-domain-based spectral

features. Several Fourier transform-based spectral features such

as Fourier transform amplitudes, total power, autoregressive

coefficients, power spectral density, and mean power have been

investigated to classify finger movements (Kato et al., 2020; Kaya

et al., 2018; Khushabe et al., 2011). For spectral feature analysis

based on time-frequency domain, the following time-frequency

representation methods have been used: Wavelet transform (WT),

short-time Fourier transform, and Wavelet packet decomposition

(Azizah et al., 2022; Mwata-Velu et al., 2021; Yahya et al., 2019).

Spatial domain features have been extensively computed in finger

movement classification research (Grosse-Wentrup & Buss, 2008).

For spatial domain analysis of EEG activity in finger movement

classification, common spatial patterns (CSPs) and their variations

such as multiclass common spatial patterns received a great deal of

attention (Anam et al., 2020, 2019; Kato et al., 2020), in addition to

filter-bank common spatial pattern.

Several feature domains and feature types can be extracted from

EEG signals to be utilized for finger movement classification in

the literature (Degirmenci et al., 2022, 2023, 2024a,b). However,

using irrelevant and redundant features is detrimental to classifier

performance (Isler et al., 2015). The irrelevant features increase

the computational complexity and cause poor generalization

capability for the classifier (Blum & Langley, 1997). Consequently,

the selection of a small number of relevant features plays

an critical role in classification performance. In this direction,

numerous feature reduction methods, including recursive feature

reduction (Al Ajrawi et al., 2024), LASSO regression (Huang et al.,

2024; Muthukrishnan & Rohini, 2016), correlation-based feature

reduction (CFS) (Kabir et al., 2023), maximum relevance minimum

redundancy (MRMR) (Kabir et al., 2023), statistical significance-

based feature selection (Degirmenci et al., 2024b; Taghizadeh

et al., 2021), particle swarm optimization (PSO) (Purushothaman

& Vikas, 2018), and genetic algorithm (GA) (Ramos et al., 2016)

have been performed as supplementary tools to choose relevant and

discriminative features for MI-based BCI system designs.

Numerous classifiers such as decision tree (DT) (Degirmenci

et al., 2024a), support vector machines (SVM) (Azizah et al.,

2022; Kato et al., 2020; Kaya et al., 2018), k-nearest neighbor

(kNN) (Degirmenci et al., 2024a; Wang et al., 2009), Naive Bayes

(NB) (Wibawa et al., 2022), Random Forest (RF) (Anam et al.,

2019), ensemble learning (EL) (Degirmenci et al., 2024b; Yang

et al., 2024) and Neural Networks (NN) (Wang et al., 2009;

Wibawa et al., 2022) have been used to classify EEG features for

finger movement classification. In addition to machine learning

techniques, many studies, which focused on classifying finger

movements, presented classification performance of deep learning

techniques. Various deep learning techniques were reported to

have good classification performance through EEG signal analysis

to classify finger movements (Anam et al., 2020; Mwata-Velu

et al., 2022; Zahra et al., 2022). Thanks to hidden layers of deep

learning structures, complex features can automatically be learned

directly from raw EEG signals. Recent studies have concentrated

on providing images from EEG signals to use as input data in deep

learning models (Alazrai et al., 2019; Mwata-Velu et al., 2022).

Despite the difficulties mentioned above, a few BCI system

design studies have been reported in the literature to classify

finger movements. There is a need to develop these systems by

overcoming these difficulties due to the general structure of finger

movements in processing EEG signals through the formulation of

new approaches. To date, researchers have concentrated on certain

EEG signal analysis methods for finger movement classification.

These methods can be listed as follows: (i) some definite temporal

features as mentioned above, Fourier transform-based spectral

features, and common spatial pattern-based spatial features have

been mostly computed through respective methods for the feature

extraction step, (ii) several feature selection methods that are

complex and are not easy to use have been preferred for

feature selection step, and (iii) SVM-based and deep learning-

based classification methods have been mostly preferred for

classification step. Thus, there is a growing need to analyze

different feature domains and different feature types from these

domains. Considering the computational load on the BCI systems,

it would be better to choose a feature selection method that is

effective and easy to use for the feature selection step. From

another perspective, in the last decade, deep learning methods,

which constantly gain popularity in EEG analysis, have been

used to classify finger movements. However, these models have

some important drawbacks: (i) deep learning methods need a

vast amount of data, (ii) they are not as simple and interpretable

as machine learning algorithms, (iii) these systems are identified

as “closed black boxes” and are deprivation of transparency,

and (iv) training process for deep learning models causes high

computational load in real-time BCI system design (Rashid et al.,

2020). All these obstacles prevent such systems from being

applicable to real life. In addition to SVM-based and deep learning-

based approaches, different machine learning algorithms can be

investigated for finger movement classification since traditional

ML models are simpler and more explicable for humans. Previous

studies have utilized a fixed set of EEG channels to extract features

for finger movement classification (Azizah et al., 2022; Mwata-

Velu et al., 2022). However, existing literature suggests that neural

activation patterns are subject-specific andmay vary across cerebral

hemispheres, even during identical motor imagery (MI) tasks.

A comprehensive analysis of feature distributions across EEG

channels enables a more precise characterization of underlying

neurophysiological processes, thereby underscoring the necessity

of identifying electrodes that yield the most informative and

discriminative signals for accurate finger movement classification.

Recent studies have concentrated on classifying only finger

movements, whereas the brain’s idle state which is the state that

the brain does not perform any mental tasks (NoMT) has been

neglected. This situation could lead to an increase in false positives

and cause a significant decrease in classification performance

(Degirmenci et al., 2024b; Velinchkovsky et al., 1997). Additionally,

EEG studies have proved the effectiveness of patterns of brain

activity for NoMT state (Collura et al., 1993; Rosazza et al.,

2011). The effectiveness of these state networks has been repeated

and approved in several neuroimaging and neurophysiological
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studies (Brookes et al., 2011; Hipp et al., 2012). Therefore, the

implementation of the NoMT case as a class may be investigated

since it may have an impact on the BCI systems’ performance.

This study aims to implement the detailed feature selection

and analysis of channel activity in the field of finger movement

classification research. Toward this aim, several feature domains,

including time domain, frequency domain, time-frequency

domain, and nonlinear domain, are used to extract features

from raw EEG signals. Four different feature sets are created by

extracting different types of features from the relevant feature

domains. The effects of these feature sets are investigated separately.

The statistical significance-based feature selection method is used

to select the most important features. The effect of the feature

selection method on each extracted feature set is investigated

individually. Feature and channel analysis are performed using

statistically significant feature distribution maps, which represent

the selected statistically significant feature distribution among

19 EEG channels for each feature set (time domain, frequency

domain, time-frequency domain, and nonlinear domain). Several

machine learning algorithms are employed for the classification of

finger movements. Hence, this study stands out because it pioneers

the combined use of detailed features and channel activity analysis.

This approach offers a novel perspective in the field of finger

movement classification.

1.1 Contributions

The following are the main contributions of this study:

• Multiple effective feature domains such as time, frequency,

time-frequency, and nonlinear domains were evaluated for the

feature extraction process and the effect of these feature sets

was analyzed for finger movement classification separately,

one by one. In addition, various combinations of these features

were provided and investigated for the classification of finger

movement.

• The impact of the statistical significance-based feature

selection method was analyzed individually for each feature

set in relation to the classification of finger movement.

• Feature analysis and channel analysis were conducted by

examining the distribution of statistically significant features

across 19 EEG channels for both subject-dependent and

subject-independent finger movement classifications.

• Various classifier algorithms were comparatively used to

evaluate the performance of the sets of extracted features.

• To observe the effect of the brain’s resting state, i.e., no mental

task (NoMT) case in EEG signals, it was implemented as a class

to fingermovements’ EEG signals in the experimental analysis.

Finally, it is important to highlight that this is the first study to

implement, for each feature set, a detailed feature analysis and

a channel analysis collectively, alongside investigating the effects

of different feature domains on finger movement classification.

Additionally, Poincaré plot-based nonlinear features are used for

the first time to classify fingermovements, to the best of the authors’

knowledge.

1.2 Organization of the paper

Here is the organization of the remaining sections of this

paper: In the “Material and methods” section, details of the dataset

in use, feature extraction step, statistically significance-based

feature selection process, classification process, and performance

evaluation metrics are given. Experimental results of the methods

used and discussion of these results are reported in the “Results

and Discussion” section. Finally, the main findings of the study are

outlined and described in the “Conclusion” section.

2 Materials and methods

The aim of this study is threefold: to show the advantages

of (i) multidirectional EEG analysis which is performed using

different feature domains, statistically significance-based feature

selection, and various machine learning algorithms, (ii) detailed

feature analysis performed using statistically significant feature

distribution maps, and (iii) effective channel analysis. Hence, this

study was designed and conducted in 4 main sequential stages.

These are (i) EEG dataset acquisition, (ii) extraction of features

from different domains such as time domain, frequency domain,

time-frequency domain, and nonlinear domain, (iii) statistical

significance-based feature selection process, (iv) classification,

and performance evaluation. The flowchart illustrating the

methodology employed in the proposed finger movement

classification study is given in Figure 1.

2.1 EEG dataset description

In this study, EEG signals are provided from a large

electroencephalographic MI dataset for EEG-based BCIs

which are recorded and presented by Kaya et al. (2018). This

dataset can be found here: [https://figshare.com/collections/

A_large_electroencephalographic_motor_imagery_dataset_for_

electroencephalographic_brain_computer_interfaces/3917698].

Several types of MIs in 4 different paradigms are available in this

dataset. EEG signals were recorded from 13 healthy subjects using

the EEG-1200 JE-912A recording system. Using an internationally

determined 10–20 electrode placement system, the EEG signals

were collected from 19 EEG channels at a sampling frequency

of 1,000 Hz. From each subject, EEG signals were recorded for

1 s while the subject implemented the desired MI within this

period. This data set includes MI tasks of 10 different body

limbs and 4 different BCI paradigms are categorized based on

these MI tasks. Among 4 BCI paradigms, Paradigm #3 (5F) and

Paradigm #4 (NoMT) are used for the experimental section of

this study. In 5F, 5-finger MI tasks including MIs of the five

different finger movements on one hand (right or left hand)

are available. Participants performed the designated five-finger

movement imagery task once during the 1-second presentation of

the action signal. Participants imagined flexing the corresponding

fingers either upward or downward, according to their individual

preference. The marker codes of 5-finger MI tasks are categorized

as: (i) Thumb (Class 1), (ii) Index finger (Class 2), (iii) Middle

finger (Class 3), (iv) Ring finger (Class 4), and (v) Pinkie (little)
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FIGURE 1

The schematic representation of the proposed methodology for classifying finger movements. EEG signals are segmented into 1-s intervals for the

feature extraction process, including time, frequency, time-frequency, and nonlinear domain features. Various well-known classifiers are evaluated to

distinguish BCI commands based on the extracted features. The dashed path in the “Feature Selection” block denotes an alternative analysis, where

ANOVA is used to select statistically significant features that replace the full set as inputs to the classifiers.

finger (Class 5). EEG signals of 5-finger MI tasks from Paradigm

#3 (5F) are used in our experimental analysis. In this study,

in addition to the 5F paradigm, EEG signals recorded under

the NoMT (No MI task) paradigm–characterized by a passive

condition in which participants neither engage in motor imagery

tasks nor are exposed to visual stimuli–were incorporated into

the analysis. Consequently, the dataset comprises six distinct

classes of EEG signals, enabling a more comprehensive evaluation

of motor-related and non-motor-related neural activity. As the

pre-processing step during EEG signal recording, a 0.53–100 Hz

band-pass filter is applied. To eliminate the electrical grid interface,

a 50 Hz notch filter is applied. After the acquisition of EEG data,

100 samples for each of six different classes were determined

for the experimental section to provide a balanced distribution

between the classes and to ensure adjusted chance level (Galiotta

et al., 2022).

2.2 Analysis of EEG signals using various
feature extraction domains

To obtain relevant and significant information about EEG

signals, the types of EEG features, and the domain of these features

are crucial in the feature extraction step. In the literature, spatial

features, especially those that are extracted through CSP, have been

the most adopted and computed features for finger movement

classification. Although, by researchers, spatial features are being

utilized the most, we used temporal, spectral, and nonlinear

features and investigated their effectiveness for finger movement

classification.

2.2.1 Time-domain based feature extraction
At first, using time-domain characteristics of EEG signals,

24 different temporal features were computed separately for all

EEG segments. These features present information related to the

statistical variations of the EEG signals and their amplitude. Section

3 includes information on the pertinent and distinctive MI time-

domain features that we adopted to classify finger movements.

“TDi” abbreviation represents the time-domain features in this

paper.

2.2.2 Frequency-domain based feature extraction
Frequency information embedded in EEG signals was used

and spectral features were evaluated during the feature extraction

process based on the frequency domain for classification of finger

movement. In this direction, the frequency characteristics of theMI
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EEG signals were obtained on the basis of a fast Fourier Transform.

Using these frequency representations, several oscillations that are

included within EEG signals such as delta (δ), theta (θ), alpha

(α), beta (β), and gamma (γ ) waves were obtained. The frequency

ranges of these bands is as follows: (i) δ (0.5–4 Hz), (ii) θ (4–

8 Hz), (iii), α (8–13 Hz), (iv) β (13–30 Hz), and (v) γ (30–100

Hz). The spectral features were obtained by computing the energy,

variance, and spectral entropy values of the extracted frequency

bands. These features offer insights into how energy, variance, and

irregularity (entropy) vary across the respective frequency bands.

These spectral features are evaluated as following Equations 1–3

(Degirmenci et al., 2023; Sayilgan et al., 2021a):

Energyf =
M

∑

i=1

y(i)2 (1)

Variancef =
1

M − 1
·

M
∑

i=1

(yi − y)2 (2)

Entropyf =
1

log(M)
·

M
∑

i=1

P(y(i))log(P(y(i)) (3)

where, f denotes the related frequency band that is used to calculate

energy, variance, and spectral entropy values. "M" represents the

maximum frequency. “y” denotes the Fourier transform of the

related EEG signal and the average value of “y” is denoted as “y”.

The probability that the signal lies within the specified frequency

domain is represented as “P(y(i))”.

Section 3 shows the information about the relevant and

distinctive MI frequency-domain features that we adopted for the

classification of finger movements. "FDi" abbreviation represents

the frequency-domain features in this paper.

2.2.3 Time-frequency-domain-based feature
extraction

Within the scope of time-frequency-domain feature extraction,

the WT is utilized as a time-frequency representation technique

to effectively capture and evaluate the underlying time-frequency

characteristics of the EEG signals. WT provides both time and

frequency information about the EEG signals. Multi-resolution

analysis is carried out using its several filters and bandwidths

(Sayilgan et al., 2021a). Its working principle is similar to that

of a dual Finite-Impulse Response filter (Sayilgan et al., 2021a).

EEG signals are separated into high-frequency and low-frequency

components using these filters. The identical wavelet coefficients

were chosen in both low-pass (LP) and high-pass (HP) filters for

the multi-resolution algorithm ofWT (Gandhi et al., 2011; Sayilgan

et al., 2021a). The scaling parameter, defined by the oscillatory

frequency and the length of the wavelet, is connected to the

coefficients of the LP filter, while the wavelet function is linked

to the coefficients of the HP filter. The outputs of these filters are

denoted as the approximation (a) coefficients, and the detail (d)

coefficients, respectively. The original EEG time series is entirely

decomposed into (a) and (d) coefficients based on the specified

decomposition level (Degirmenci et al., 2023).

Wavelet packet decomposition is used to evaluate five distinct

EEG sub-bands (δ, θ , α, β , and γ ) of each EEG segment. “Haar”

mother wavelet and 9-level sub-band decomposition (i = 1, 2, · · · ,
9) are applied to extract the Wavelet coefficients of EEG signals

sampled at 1000 Hz. According to these parameters, ai and detail di
coefficients are decomposed. Subsequently, the relevant coefficient

subsets from the decomposition levels are classified according to

the frequency domain of EEG sub-bands for the decomposition

of EEG signals. The energy, variance, and entropy values of these

sub-bands are computed as time-frequency features.

Using the following mathematical formulations (Equations 4

and 5), the energy at each decomposition level is computed as

(Gandhi et al., 2011):

Energydi =
N

∑

j=1

|dij|2, i = 1, 2, 3, · · · , l (4)

Energyai =
N

∑

j=1

|aij|2, i = 1, 2, 3, · · · , l (5)

Here, the detail (dij) and approximate (aij) coefficients

represent the respective subsets for each frequency band. The

wavelet decomposition level, is defined in [1, l], is represented as

i = 1,2,3,· · · ,l. "N" refers to the number of d and a coefficients.

The variance value for each decomposition level is computed as

follows: Equation 7 (Gandhi et al., 2011):

Variancei =
1

N − 1
·

N
∑

j=1

(dij − µi)
2, i = 1, 2, 3, · · · , l

µi =
1

N
·

N
∑

j=1

dij, i = 1, 2, 3, · · · , l (6)

Here, µi represents the mean of the decomposition level.

The entropy at each decomposition level is calculated as follows

Equation 6 (Isler, 2009):

Entropyi =
N

∑

j=1

d2ijlog(d
2
ij), i = 1, 2, 3, · · · , l (7)

Section 3 provides information on the pertinent and distinctive

MI time-frequency-domain features that we used for the

classification of finger movements. The abbreviation TFi represents

the time-frequency-domain features in this paper.

2.2.4 Nonlinear domain-based feature extraction
In the nonlinear domain feature extraction process, Poincare

plot measures are used to capture nonlinear characteristics present

in EEG signals. A Poincare plot, a technique derived from nonlinear

dynamics, is constructed by plotting each data on the x-axis against

subsequent data on the y-axis (Isler, 2009; Cancioglu et al., 2021). In

this plot, the overall shape of the distribution is utilized to describe

the dynamics of the time series. The Poincaré plot is generated

using the raw EEG time series data. An ellipse is adjusted to match

the shape of the Poincare plot. The standard deviation of the points’

distances in the plot indicates the width (SD1) and length (SD2) of
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the ellipse. Poincare measurements, SD1 and SD2, are computed by

the following formulas (Equations 8 and 9):

SD1 =
√

1

2
(SDSD)2 = STD(

xi+lag − xi√
2

) (8)

SD2 =
√

2(SD)2 −
1

2
(SDSD)2 = STD(

xi+lag + xi√
2

) (9)

Here, the standard deviation of successive differences is

denoted as SDSD, while the standard deviation of the data is

represented as SD (Brennan et al., 2001; Isler, 2009). Aside from

SD1 and SD2 values, the product SD1SD2 and the ratio SD1
SD2

values

of these components were also computed. Among the studies

in literature that performed Poincare plot measures based on

physiological signal analysis, different lag values ranging from 1

to 10 were selected (Contreras et al., 2007). In this study, the four

different Poincare plot measures are evaluated using conventional

lag = 1 condition (Smith et al., 2007).

Section 3 supplies the information about the relevant and

distinctive MI nonlinear domain features that we used for finger

movement classification. The abbreviation NDi represents the

nonlinear domain features in this paper.

2.3 Feature selection using statistical
significance (ANOVA)

In the feature selection process, the most discriminative and

relevant EEG features were selected using the feature selection

method based on statistical significance. Among the statistical

significance-based feature selection methods, One-way variance

analysis (ANOVA test) was used (Bulut et al., 2022; Degirmenci

et al., 2023). The ANOVA test is utilized to compute whether there

is a difference between the means in situations involving two or

more classes. In total, five (fingers) and one (NoMI) different MI

tasks of finger movements were included in our study. Hence,

the ANOVA test was preferred to indicate statistically significant

features considering the number of classes in this study. The

ANOVA test was conducted independently for each of the extracted

feature sets, including the time domain, frequency-domain,

time-frequency-domain, and nonlinear domain. Performing the

ANOVA test allowed us to resolve the statistical significance of the

EEG features based on the calculation of the p-values (Narin et al.,

2014; Sayilgan et al., 2021b). A statistical significance level (α) of

0.05 was chosen for our analysis (Bulut et al., 2022; Degirmenci

et al., 2023; Narin et al., 2014). The features that met the criteria

for statistical evidence were identified and designated as statistically

significant features. These selected features are fused to create new

feature sets with exclusively statistically significant features for

each feature domain. As a result, to investigate the efficiency of

the recommended feature selection method, two different feature

sets were created for each feature domain, including all features

and features with statistical significance. Classifications were then

performed using these two feature sets in each feature domain.

2.4 Classification and performance
evaluation

Following the extraction and selection of the different MI EEG

features, various machine learning algorithms, including Decision

Tree (DT) (Tzallas et al., 2009), Discriminant Analysis (DA)

(Hart et al., 2000; Lotte et al., 2018), Naive Bayes (NB) (Hart

et al., 2000; Miao et al., 2017), Support Vector Machine (SVM)

(Altnkaynak et al., 2020; Chen et al., 2021; Hart et al., 2000), k-

Nearest Neighbor (kNN) (Altnkaynak et al., 2020; Hart et al., 2000;

Isler, 2009), Ensemble Learning (EL) (Degirmenci et al., 2023;

Sayilgan et al., 2019, 2020, 2022), Neural Networks (NN) (Narin

& Isler, 2021; Ozdemir et al., 2021; Richard et al., 1991), and

Kernel Approximation (KA) (Lei et al., 2019; Maji et al., 2008)

were utilized to evaluate the performance of the used methods in

relation with classifying five finger movements. The DT separates

the data into several subgroups based on its characteristic tree-

like structure consisting of branches and nodes, hence, giving the

name of the algorithm. In this algorithm, classification is handled

based on learning a set of decision rules (Tzallas et al., 2009). As

one of the supervised machine learning algorithms, DA aims to

accurately separate the independent variables in the feature set into

homogeneous groups (Hart et al., 2000; Lotte et al., 2018). NB,

as one of the probabilistic classifiers, relies on the Bayes theorem

that runs through by examining the membership probability of

a sample to all classes in the feature set (Hart et al., 2000; Miao

et al., 2017). The main purpose of the SVM algorithm is to

achieve the maximum margin between the different data groups

to provide a multidimensional hyperplane that best distinguishes

between the two or more classes (Altnkaynak et al., 2020; Chen

et al., 2021; Hart et al., 2000). kNN is a traditional machine

learning algorithm, based on a majority vote among neighbors of

a sample to classify it. The highest prevalence of a sample among

its k nearest neighbors is examined by this algorithm (Altnkaynak

et al., 2020; Hart et al., 2000; Isler, 2009). EL brings together

multiple machine learning techniques as a single classifier that

provides highly accurate classification (Degirmenci et al., 2023;

Sayilgan et al., 2019, 2020, 2022). NNs, in their basic architecture,

include three main structures: an input layer, fully connected layers,

and an output layer. More advanced NN architectures consist of

many layers and each subsequent layer has a connection from

the previous layer (Narin & Isler, 2021; Ozdemir et al., 2021;

Richard et al., 1991). KA classifier can be used to perform nonlinear

classification of data containingmany samples (Lei et al., 2019; Maji

et al., 2008). A list of the classifiers and corresponding algorithms

that were implemented in this study is as follows: (i) Decision

Tree: fine, medium, and coarse, (ii) Discriminant Analysis: linear

and quadratic, (iii) Naive Bayes: Gaussian and kernel, (iv)

Support Vector Machine (SVM): linear, quadratic, cubic, fine

Gaussian, medium Gaussian, and coarse Gaussian, (v) k-Nearest

Neighbor (kNN): cubic and cosine, (vi) Ensemble Learning:

Boosted, Bagged, Subspace Discriminant, Subspace k-NN, and

RUSBoosted Trees, (vii) Neural Networks: narrow, medium, wide,

bi-layered, and tri-layered, and (viii) Kernel Approximation:

support vector machine and logistic regression. Each of these

algorithms was adopted using the Classification Learner Toolbox,

a component of the Statistics andMachine Learning Toolbox in the
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TABLE 1 The sizes of all feature sets, along with the number of features selected using the statistical significance-based feature selection method for

finger movement classification, are presented.

Feature sets Number of all features Number of ANOVA-selected features

S1 S2 S3 S4 S5 S6 S7 S8 SI

TD 456 251 262 377 383 233 264 286 192 313

FD 285 117 98 154 157 119 107 116 67 153

TF 285 10 88 39 136 25 26 135 20 28

ND 76 42 45 53 63 31 33 60 32 38

TD+FD+TF 1,026 378 448 570 676 377 397 537 279 494

TD+FD+TF+ND 1,102 420 493 623 739 408 430 597 311 532

The feature sets under consideration include TD (time-domain feature set), FD (frequency-domain feature set), TF (time-frequency-domain feature set), and ND (nonlinear domain feature

set).

Matlab software package version 2023b. As a validationmechanism,

to derive a more accurate estimate of the prediction performance

of the model, the k-fold cross-validation (CV) method was

performed in our simulations. The average classification accuracy

is computed after completing k iterations. In our simulations, k

is set to 5. In addition, the accuracy performance metric (ACC)

is employed to assess the performance of classifiers (Hart et al.,

2000). The mathematical expression for the ACC metric is given

by Equation 10 (Hart et al., 2000; Isler, 2009):

ACC =
TP + TN

TP + FN + TN + FP
(10)

Here, the number of correctly predicted EEG segments of finger

movements is denoted as TP and TN. On the other hand, the

number of EEG segments of finger movements that are incorrectly

predicted is denoted as FP and FN.

3 Results and discussion

In this study, the classification performance was evaluated for

both subject-dependent and subject-independent scenarios across

six different feature sets. Feature selection based on statistical

significance was applied to enhance model performance. A

comparative analysis was conducted using eight machine learning

algorithms. Using 19-channel EEG signals, four distinct feature sets

were extracted. These feature sets encompass information from

four distinct feature domains: time-domain, frequency-domain,

time-frequency-domain, and nonlinear domain. In addition to the

four primary feature sets, combinations of feature sets derived from

different feature domains were also constructed and examined to

enhance the classification of finger movements. The impact of each

feature set was examined individually. Furthermore, the impact

of the ANOVA-based feature selection method was evaluated

independently for each feature set. The relevant and discriminative

features of all feature sets were selected using ANOVA and the

reduced versions of all feature sets were generated to analyze

the effectiveness of the ANOVA-based feature selection method.

For six different feature sets, all EEG features in their original

form, without undergoing any feature selection procedure and the

relevant and discriminative EEG features selected from all features

were evaluated using different classification algorithms.

The number of all extracted features and ANOVA-selected

features for both subject-dependent and subject-independent finger

movement classifications is presented in Table 1.

All classifiers’ performance was tested using both the time-

domain features and the ANOVA-selected time-domain features

considered in this study, with the results provided in Table 2.

In subject-dependent time domain analysis, the SVM algorithm

resulted in a maximum of 57.50% accuracy using ANOVA-

selected time-domain features which are provided from Subject

C (S3). This success within the subject-dependent analysis is also

the highest performance result in the time domain. In subject-

independent analysis, the highest classification accuracy of 36.20%

was yielded using the complete set of time-domain features and

SVM algorithm. The impact of applying the ANOVA-based feature

selection method to the time-domain features was evaluated,

revealing its effect on classification performance. In addition,

the spatial distribution of statistically significant time-domain

features, identified via ANOVA, across the 19 EEG channels

was analyzed. In fact, the channel-wise distribution of features

identified as statistically significant and how this distribution

influences the classifiers’ performance in cases where statistically

significant features are used are examined. The distributions

of ANOVA-selected, statistically significant time-domain features

across the 19 EEG channels for both subject-independent and

subject-dependent finger movement classifications are presented

in Tables 3 and 4, respectively. In subject-independent analysis,

all time domain features, excluding (TD10, TD11, TD12, and

TD24), were predominantly identified as statistically significant

by the ANOVA test across the majority of EEG channels. The

impact of the individual EEG channels was examined, and it

was recognized that statistically significant features were chosen

from all channels, without any particular focus on specific ones.

For subject-independent analysis, this distribution of statistically

significant time-domain features did not improved performance

in most classifiers. The time-domain features, determined to

be statistically significant through a balanced selection process

across all feature types and channels for the subject-dependent

analysis, are presented in Table 4. This balanced feature distribution

improves the classifiers’ performance in most of the subjects.

All classification results obtained using frequency-domain

analysis are presented in Table 5. In the subject-dependent

analysis, ANOVA-selected frequency-domain features obtained
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TABLE 2 All classifiers’ performances were evaluated in this study using time-domain feature set.

Components Feature set S1 S2 S3 S4 S5 S6 S7 S8 SI

Decision tree TD 24.20 37.50 38.30 40.00 28.30 35.80 29.20 32.50 28.60

TD+ANOVA 35.00 38.30 36.00 45.00 24.20 39.20 30.80 31.70 28.50

Discriminant analysis TD 15.00 26.70 34.20 32.50 20.00 29.20 25.00 26.70 32.10

TD+ANOVA 34.20 41.70 43.30 46.70 36.70 37.50 20.80 31.70 29.90

Naive Bayes TD 30.00 40.00 33.30 41.00 26.70 33.30 30.80 38.30 27.90

TD+ANOVA 25.00 42.50 45.00 48.30 30.00 39.20 30.80 37.50 28.50

Support vector machine TD 28.30 50.00 56.00 48.30 40.00 45.80 28.30 40.80 36.20

TD+ANOVA 35.00 49.20 57.50 54.20 39.20 55.00 33.30 41.70 35.90

k-Nearest Neighbors TD 35.80 44.20 45.00 42.00 34.20 45.00 27.50 38.30 33.50

TD+ANOVA 29.20 45.00 47.00 50.00 35.00 48.30 30.80 39.20 32.70

Ensemble learning TD 30.00 44.20 48.30 50.00 38.40 46.70 30.00 37.50 32.60

TD+ANOVA 33.30 43.30 53.30 55.80 43.30 50.00 34.20 40.80 33.60

Neural networks TD 29.20 45.00 51.50 47.50 35.80 45.80 31.70 38.30 34.90

TD+ANOVA 35.80 46.70 57.00 50.80 40.80 48.30 34.20 40.00 34.70

Kernel approximation TD 28.33 25.83 34.17 32.50 28.33 24.17 24.17 21.67 25.20

TD+ANOVA 28.30 27.50 31.00 38.30 23.30 30.00 23.30 30.80 24.70

The maximum accuracy values for each subject-dependent and subject-independent case are highlighted in bold. SI is “Subject-independent”.

from Subject E (S4) yielded the highest classification accuracy

of 55.00% when evaluated using the EL classifier. Within

the subject-independent analysis, the SVM classifier achieved

the highest accuracy of 30.45% based on frequency-domain

features selected through ANOVA. The distribution of statistically

significant frequency-domain features, selected via ANOVA, across

19 EEG channels and how this distribution influences classifier

performance in cases where statistically significant features are used

was investigated. The distribution of frequency-domain features,

selected as statistically significant through channel-based ANOVA,

across 19 EEG channels for both subject-independent and subject-

dependent finger movement classifications is provided in Tables 6

and 7, respectively. For subject-independent analysis, the values

of energy and variance across all frequency bands except gamma

frequency band are mostly chosen features from frequency-domain

feature set as given in Table 6. It is important to note that alpha

and beta frequency bands are among the frequency bands where

energy and variance values are frequently selected, since the alpha

and beta frequency bands are indicated as effective frequency bands

providing information about motor activities in literature (Nicolas-

Alonso & Gomez-Gil, 2012). However, statistically significant

features were distributed in balance among 19 EEG channels. The

results indicate that selecting statistically significant features from

the frequency-domain feature set contributed to an enhancement

in classification performance across nearly all classifiers, except for

DA and NN, in the subject-independent classification. For subject-

dependent analysis, statistically significant features were intensely

chosen, in balance, from all EEG channels, frequency bands, and

feature types (especially the values of energy and variance of the

frequency bands). When we investigate the performance of feature

selection based on ANOVA using the frequency-domain feature

set for subject-dependent analysis, the results demonstrate that the

superiority of ANOVA-selected frequency domain features over the

entire set of frequency-domain features for all subjects as reported

in Table 5.

Classification results performed using time-frequency-domain

features are presented in Table 8. In subject-independent analysis,

the highest accuracy of 26.60% was obtained by employing

all time-frequency-domain features in conjunction with the

EL classifier. In the subject-dependent analysis, the highest

classification accuracy 37.50% was achieved for Subject B (S2)

using the SVM classifier with the complete set of time-frequency-

domain features. It is observed that the classification results

provided using time-frequency-domain features are worse than

the classification results provided using other feature domains in

this study. Tables 9 and 10 present the channel-based distributions

of statistically significant features, selected via ANOVA, from

the time-frequency-domain feature set for subject-independent

and subject-dependent classification, respectively. Based on the

experiments conducted, the ANOVA-based feature selection

method focused exclusively and predominantly on entropy values

across five distinct frequency bands for subject-independent

analysis. On the other hand, a quick investigation of channel

activity revealed that from some channels, not even a single

statistically significant feature was selected. It has been noted

that such feature reduction from certain channels and feature

types does not increase the classifier performance for subject-

independent analysis in any classifier. In subject-dependent

analysis, the statistically significant time-frequency-omain features

were selected in a comprehensive and balanced manner across

all 19 EEG channels and feature types, rather than being focused

on specific channels or particular types of features. The effect

of this type of statistically significant feature distribution among

EEG channels does not improve the classifier performances for

subject-dependent analysis in almost all classification models

excluding NB, and SVM.
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TABLE 3 The distribution of statistical significant features, selected via ANOVA, across 19 EEG channels for subject-independent finger movement

classification using the time-domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

TD1 X X X X X X X X X X X X X X X X X X 18

TD2 X X X X X X X X X X X X X X 14

TD3 X X X X X X X X X X X X X X X X X 17

TD4 X X X X X X X X X X X X X X X X X 17

TD5 X X X X X X X X X X X X X X X 15

TD6 X X X X X X X X X X X X X X X 15

TD7 X X X X X X X X X X 10

TD8 X X X X X X X X X X X X X X 14

TD9 X X X X X X X X X X X X X X X 15

TD10 0

TD11 0

TD12 X 1

TD13 X X X X X X X X X X X X 12

TD14 X X X X X X X X X X X X X X X X X X X 19

TD15 X X X X X X X X X X X X X X 14

TD16 X X X X X X X X X X X X X X X X 16

TD17 X X X X X X X X X X X X X X X X 16

TD18 X X X X X X X X X X X X X X X X X 17

TD19 X X X X X X X X X X X X X X X X X X X 19

TD20 X X X X X X X X X X X X X X X X 16

TD21 X X X X X X X X X X X X X 13

TD22 X X X X X X X X X X X X X X X X X 17

TD23 X X X X X X X X X X X X X X X X X 17

TD24 X 1

Total 20 20 19 20 8 8 20 19 13 14 20 20 18 14 15 16 20 12 17 313

Abbreviations of time-domain features are TD1 (Minumum value), TD2 (Maximum value), TD3 (Mean), TD4 (Standard deviation value), TD5 (Integrated EEG value), TD6 (Mean absolute

value), TD7 (Simple square integral), TD8 (Variance), TD9 (Root mean square), TD10 (Waveform length), TD11 (Average amplitude change value), TD12 (Absolute difference in standard

deviation), TD13 (Kurtosis), TD14 (Skewness), TD15 (Hjorth parameters (Activity)), TD16 (Hjorth parameters (Mobility)), TD17 (Hjorth parameters (Complexity)), TD18 (Signal range), TD19

(First inter-quartile value (Q1)), TD20 (Second inter-quartile value (Q2)), TD21 (Third inter-quartile value (Q3)), TD22 (Mode value), TD23 (Zero-crossing value), and TD24 (Slope-change

value).

The test classification accuracies obtained based on the

nonlinear feature set are presented in Table 11. In subject-

independent classification, the highest accuracy of 31.76% was

obtained using nonlinear features selected via ANOVA in

conjunction with the SVM algorithm. Consistent with the

subject-independent analysis, the highest classification accuracy

of 50.00% in the subject-dependent classification was attained

for Subject E (S4) through the application of ANOVA-selected

nonlinear features in combination with the SVM classifier.

The distributions of statistically significant features selected via

ANOVA across the 19 EEG channels for subject-independent and

subject-dependent analyses are presented in Tables 12 and 13,

respectively. Considering the channel-based statistical significant

feature distribution in nonlinear feature set, the role of ANOVA-

driven feature selection is explored for nonlinear domain.

According to the feature distribution in nonlinear domain for

the subject-independent analysis, the features SD2 and SD1/SD2,

computed with a lag of 1, were prominently selected through

ANOVA. In addition, the statistical significant features were

chosen balencedly across all EEG channels with ANOVA. This

type selections performed for subject-independent analysis did

not improve classification performance in most of the classifiers.

Consequently, nonlinear features outperformed the statistical

significant nonlinear features in terms of classification accuracy

for subject-independent case. The distribution of statistically

significant features chosen via ANOVA for subject-dependent

analysis is presented in Table 13. The statistical significant

features were determined and selected balencedly from all feature

types and 19 EEG channels. To demonstrate the impact of

nonlinear features, all features were re-examined using the
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TABLE 4 The distribution of statistically significant features, selected via ANOVA, across 19 EEG channels for subject-dependent finger movement

classification using the time-domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

TD1 7 7 6 7 5 4 5 6 4 6 7 7 6 5 5 5 4 2 5 103

TD2 7 8 7 7 3 5 4 4 4 5 7 6 5 4 3 5 8 2 4 98

TD3 7 6 5 6 7 8 5 6 6 2 7 6 6 6 4 5 8 3 5 108

TD4 8 8 7 8 3 2 4 6 5 7 7 7 3 4 4 6 8 1 4 102

TD5 8 8 6 7 3 3 4 6 5 3 6 6 4 2 4 7 8 2 5 97

TD6 8 8 6 7 3 3 4 6 5 3 6 6 4 2 4 7 8 2 5 97

TD7 8 8 6 7 2 2 2 5 3 4 6 6 4 3 3 3 8 2 3 85

TD8 8 8 7 7 2 2 2 5 3 4 7 6 4 3 3 3 8 2 3 87

TD9 8 8 6 7 3 3 4 6 5 5 6 6 4 3 4 6 8 2 5 99

TD10 2 2 5 4 4 4 3 3 2 3 4 4 6 4 3 4 2 3 3 65

TD11 2 2 5 4 4 4 3 3 2 3 4 4 6 4 3 4 2 3 3 65

TD12 2 3 5 4 4 4 3 3 2 3 4 4 6 3 3 4 2 3 3 65

TD13 6 6 5 6 2 2 2 2 1 2 6 3 5 2 1 2 6 2 6 67

TD14 7 7 6 7 2 3 5 5 5 5 4 7 4 3 5 6 7 1 5 94

TD15 8 8 7 7 2 2 2 5 3 4 7 6 4 3 3 3 8 2 3 87

TD16 7 7 7 7 6 6 7 6 6 7 8 8 5 6 4 5 7 5 8 122

TD17 8 8 6 6 5 6 6 6 6 7 7 7 6 7 5 6 7 4 8 121

TD18 8 8 7 7 2 2 3 5 2 5 7 7 4 4 4 4 8 1 4 92

TD19 6 6 6 7 8 8 4 5 4 3 7 8 6 6 5 3 6 3 4 105

TD20 7 5 5 5 8 8 5 3 6 2 6 6 7 6 6 4 5 3 4 101

TD21 6 7 5 5 8 8 5 2 5 4 7 5 6 6 5 4 7 3 4 102

TD22 6 6 3 7 4 5 5 2 3 3 5 6 3 6 3 4 5 3 3 82

TD23 7 6 6 5 4 4 5 6 6 6 6 5 6 5 4 5 5 3 7 101

TD24 6 6 4 6 5 6 5 5 4 5 4 6 6 7 4 7 5 7 6 104

Total 1- 1- 1- 1- 99 1- 97 1- 97 1- 1- 1- 1- 1- 92 1- 1- 64 1- 2,249

57 56 38 50 04 11 01 45 42 20 04 12 50 10

Abbreviations of time-domain features are TD1 (Minumum value), TD2 (Maximum value), TD3 (Mean), TD4 (Standard deviation), TD5 (Integrated EEG value), TD6 (Mean absolute value),

TD7 (Simple square integral), TD8 (Variance), TD9 (Root mean square), TD10 (Waveform length), TD11 (Average amplitude change value), TD12 (Absolute difference in standard deviation),

TD13 (Kurtosis), TD14 (Skewness), TD15 (Hjorth parameters (Activity)), TD16 (Hjorth parameters (Mobility)), TD17 (Hjorth parameters (Complexity)), TD18 (Signal range), TD19 (First

inter-quartile value (Q1)), TD20 (Second inter-quartile value (Q2)), TD21 (Third inter-quartile value (Q3)), TD22 (Mode value), TD23 (Zero-crossing value), and TD24 (Slope-change value).

same classifiers, both excluding (TD+FD+TF) and including

(TD+FD+TF+ND) nonlinear features. The classifier results are

presented in Tables 14 and 15, respectively. Notably, the second

combination, which employed the selected features with ANOVA,

yielded higher classifier performances. ANOVA-selected nonlinear

features provided better classification performance than nonlinear

features for subject-dependent analysis in most classifiers (except

for DT, SVM, and EL classifiers).

The primary findings and distinctional aspects of our study on

finger movement classification are summarized below:

• We extracted and investigated the different MI EEG features

using time-domain, frequency-domain, time-frequency

domain, and nonlinear domain of EEG signals.

• This work represents, to the authors’ knowledge, the first

attempt to apply nonlinear features extracted from Poincare

plots in the context of finger movement classification.

• Of all the feature sets analyzed, the second combination

(TD+FD+TF+ND), when used with ANOVA, yielded the

highest classification performance across both subject-

independent and subject-dependent evaluations. Also, the

lowest classification performances were mostly provided using

Wavelet Transform-based time-frequency features in both

cases (Figures 2, 3).

• Several machine learning algorithms were deployed to classify

EEG features. Among all algorithms, the highest classification

accuracies were generally obtained with SVM algorithm in all

feature sets.
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TABLE 5 All classifiers’ performances were evaluated in this study using frequency-domain feature set.

Components Feature set S1 S2 S3 S4 S5 S6 S7 S8 SI

Decision tree FD 29.17 30.83 35.83 35.83 34.17 34.17 34.67 23.33 24.10

2-11 FD+ANOVA 29.17 32.50 33.33 33.33 36.67 25.83 34.17 30.00 25.90

Discriminant analysis FD 25.00 30.00 40.00 39.17 28.33 35.83 24.17 23.33 28.14

2-11 FD+ANOVA 25.83 35.00 48.33 51.67 41.67 32.50 26.67 31.67 26.60

Naive Bayes FD 25.00 29.17 35.83 37.50 25.00 36.67 25.00 27.50 23.91

2-11 FD+ANOVA 28.33 30.83 40.83 47.50 31.67 27.50 25.83 24.17 25.00

Support vector machine FD 28.33 39.17 40.83 40.00 34.17 35.00 29.17 30.83 29.42

2-11 FD+ANOVA 30.00 45.00 50.00 54.17 40.83 40.83 29.17 31.67 30.45

k-Nearest Neighbors FD 26.67 30.83 38.33 36.67 30.83 32.50 29.17 28.33 24.62

2-11 FD+ANOVA 34.17 34.17 37.50 45.00 35.83 32.50 29.17 29.17 26.09

Ensemble learning FD 30.83 38.33 49.17 41.67 40.00 41.67 36.67 28.33 28.21

2-11 FD+ANOVA 31.67 45.83 51.67 55.00 47.50 37.50 33.33 29.17 28.85

Neural networks FD 28.33 34.17 43.33 44.17 33.33 37.50 29.17 30.00 27.69

2-11 FD+ANOVA 29.17 40.00 50.00 51.67 38.33 38.33 30.00 35.83 27.63

Kernel approximation FD 25.00 20.00 37.50 40.00 24.17 25.83 22.50 33.33 25.71

2-11 FD+ANOVA 26.67 28.33 37.50 40.83 27.50 23.33 25.83 26.67 27.05

The maximum accuracy values for each subject-dependent and subject-independent case are highlighted in bold. SI is “Subject-independent”.

TABLE 6 The distribution of statistical significant features, selected via ANOVA, across 19 EEG channels for subject-independent finger movement

classification using the frequency-domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

FD1 X X X X X X X X X X X X X X 14

FD2 X X X X X X X X X X X X X X X X X 17

FD3 X X X X X X X X X X X X X X X X X X 18

FD4 X X X X X X X X X X X X X X X X 16

FD5 X X X X X X X X X X 10

FD6 X X 2

FD7 X X X X X X X X X X X X X X 14

FD8 X X X X X X X X X X X X X 13

FD9 X X X 3

FD10 X X X X X X X X X X X X X X X X 16

FD11 X X X X X X X X X X X X 12

FD12 X X X 3

FD13 X X X 3

FD14 X X X 3

FD15 X X X X X X X X X 9

Total 7 9 11 7 7 7 8 9 6 7 11 7 10 9 4 8 9 10 7 153

Abbreviations of frequency-domain features are FD1 (Energy of delta band), FD2 (Variance of delta band), FD3 (Entropy of delta band), FD4 (Energy of theta band), FD5 (Variance of theta

band), FD6 (Entropy of theta band), FD7 (Energy of alpha band), FD8 (Variance of alpha band), FD9 (Entropy of alpha band), FD10 (Energy of beta band), FD11 (Variance of beta band), FD12

(Entropy of beta band), FD13 (Energy of gamma band), FD14 (Variance of gamma band), and FD15 (Entropy of gamma band).

• According to experimental results in all feature sets, the

ANOVA-based feature selection method mostly improved

prediction performance in the majority of machine learning

algorithms (Figures 2, 3).

• Contrary to previous studies in the literature that neglect the

brain’s no mental task condition, we carried out a 6-class

classification of finger movements by including the NoMT

case instead of excluding the brain’s idle state because we
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TABLE 7 The distribution of statistical significant features, selected via ANOVA, across 19 EEG channels for subject-dependent finger movement

classification using the frequency-domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

FD1 8 8 8 7 3 3 4 5 4 3 5 8 4 2 5 4 8 3 6 98

FD2 8 8 8 7 3 3 3 5 4 2 4 7 3 3 5 4 8 4 5 94

FD3 6 4 5 4 2 2 4 3 3 2 4 4 2 3 5 3 3 4 4 67

FD4 6 7 3 5 3 2 4 5 3 3 2 6 3 5 5 4 4 7 6 83

FD5 6 6 2 5 0 0 2 3 0 1 1 5 0 4 2 1 3 5 0 46

FD6 2 2 0 2 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 13

FD7 3 3 1 2 6 5 4 4 2 6 3 4 4 4 4 5 2 4 5 71

FD8 5 5 2 1 5 5 4 4 2 3 2 5 3 4 5 4 2 2 3 66

FD9 1 2 0 0 1 3 2 1 0 0 0 1 1 2 0 2 0 0 0 16

FD10 5 4 6 5 4 4 3 3 3 4 6 6 7 7 2 4 4 3 3 83

FD11 6 5 3 4 3 3 3 3 5 5 5 3 5 6 2 3 3 3 3 73

FD12 4 4 0 1 0 0 2 3 1 2 2 3 1 2 1 3 2 3 2 36

FD13 5 5 5 1 2 2 0 4 2 4 4 5 6 5 2 3 3 1 1 60

FD14 5 5 4 2 2 3 0 4 2 3 4 5 6 5 1 3 6 2 2 64

FD15 3 4 3 4 4 4 4 4 3 3 3 0 0 4 2 3 6 4 5 63

Total 73 72 50 50 38 39 39 51 35 42 45 63 46 57 41 46 55 45 46 933

Abbreviations of frequency-domain features are FD1 (Energy of delta band), FD2 (Variance of delta band), FD3 (Entropy of delta band), FD4 (Energy of theta band), FD5 (Variance of theta

band), FD6 (Entropy of theta band), FD7 (Energy of alpha band), FD8 (Variance of alpha band), FD9 (Entropy of alpha band), FD10 (Energy of beta band), FD11 (Variance of beta band), FD12

(Entropy of beta band), FD13 (Energy of gamma band), FD14 (Variance of gamma band), and FD15 (Entropy of gamma band).

TABLE 8 All classifiers’ performances were evaluated in this study using time-frequency-domain feature set.

Components Feature set S1 S2 S3 S4 S5 S6 S7 S8 SI

Decision tree TF 29.17 30.83 26.67 35.00 22.50 31.67 26.67 20.83 22.44

TF+ANOVA 20.83 24.17 27.50 33.33 24.17 22.50 29.17 25.00 19.68

Discriminant analysis TF 17.50 19.17 31.67 30.83 15.83 30.83 17.50 23.33 22.12

TF+ANOVA 24.17 17.50 30.83 32.50 25.00 30.00 24.17 22.50 20.77

Naive Bayes TF 29.17 34.17 25.00 31.67 24.17 29.17 24.17 21.67 21.54

TF+ANOVA 26.67 30.00 31.67 33.33 24.17 31.67 25.00 25.00 19.81

Support vector machine TF 32.50 37.50 30.83 29.17 25.83 30.83 26.67 30.00 22.00

TF+ANOVA 25.83 31.67 33.33 36.67 25.83 32.50 27.50 26.67 21.28

k-nearest Neighbors TF 26.67 34.17 27.50 27.50 24.17 33.33 29.17 30.83 22.12

TF+ANOVA 24.17 31.67 33.33 32.50 25.00 30.83 28.33 29.17 20.71

Ensemble learning TF 35.00 33.33 28.33 35.83 27.50 31.67 33.33 25.83 26.60

TF+ANOVA 25.83 30.83 30.83 36.67 25.83 31.67 29.17 24.17 20.77

Neural networks TF 28.33 30.83 30.83 30.00 18.33 31.67 25.83 25.83 21.22

TF+ANOVA 22.50 24.17 26.67 31.67 21.67 25.83 23.33 27.50 20.71

Kernel approximation TF 27.50 28.33 31.67 29.17 32.50 29.17 33.33 21.67 26.54

TF+ANOVA 18.33 23.33 26.67 23.33 16.67 31.67 33.33 22.50 19.55

The maximum accuracy values for each subject-dependent and subject-independent case are highlighted in bold. SI is “Subject-independent”.

aim to propose a more realastic BCI system design. The

classification performance of our 6-class finger movement

classification study, which we conducted especially for the

subject-dependent condition, is superior to the 5-class finger

movement classification studies in the literature that eliminate

the NoMT condition.
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TABLE 9 The distribution of statistical significant features, selected via ANOVA, across 19 EEG channels for subject-independent finger movement

classification using the time-frequency-domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

TF1 0

TF2 0

TF3 X X X X X X X X 8

TF4 0

TF5 0

TF6 X X X X X X X 7

TF7 0

TF8 0

TF9 X X X X X X 6

TF10 0

TF11 0

TF12 X X X X X X 6

TF13 0

TF14 0

TF15 X 1

Total 0 4 3 0 0 0 3 0 1 0 3 1 4 4 5 0 0 0 0 28

Abbreviations of time-frequency-domain features are TF1 (Energy of delta band), TF2 (Variance of delta band), TF3 (Entropy of delta band), TF4 (Energy of theta band), TF5 (Variance of theta

band), TF6 (Entropy of theta band), TF7 (Energy of alpha band), TF8 (Variance of alpha band), TF9 (Entropy of alpha band), TF10 (Energy of beta band), TF11 (Variance of beta band), TF12

(Entropy of beta band), TF13 (Energy of gamma band), TF14 (Variance of gamma band), and TF15 (Entropy of gamma band).

TABLE 10 The distribution of statistical significant features, selected via ANOVA, across 19 EEG channels for subject-dependent finger movement

classification using the time-frequency-domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

TF1 3 1 1 1 2 2 1 2 3 3 1 0 4 1 1 2 3 1 3 35

TF2 3 1 1 1 2 2 1 2 3 3 1 0 4 1 1 2 3 1 3 35

TF3 1 5 2 0 2 1 3 1 1 1 2 1 6 3 2 1 3 0 2 37

TF4 3 1 1 1 2 2 1 2 3 3 1 0 4 1 1 2 3 1 3 35

TF5 3 0 1 1 2 2 1 2 3 2 1 0 4 1 1 2 3 1 3 33

TF6 3 4 1 0 3 2 3 2 3 3 2 2 6 4 3 1 4 0 1 47

TF7 3 2 0 1 2 2 0 2 3 3 1 1 4 2 0 2 3 1 2 34

TF8 3 2 0 1 2 2 0 2 3 3 1 1 3 2 0 2 3 1 2 33

TF9 1 5 0 2 0 2 1 4 2 3 1 2 3 4 2 2 4 2 2 42

TF10 3 1 0 1 2 1 0 2 2 2 1 1 4 2 1 3 3 1 2 32

TF11 3 1 0 1 2 1 0 2 2 2 1 1 4 2 0 3 3 1 2 31

TF12 0 0 2 1 1 0 1 0 1 0 1 2 2 2 2 0 3 0 0 18

TF13 3 1 0 2 1 1 0 2 1 1 2 1 3 2 1 2 3 2 2 30

TF14 3 1 0 2 1 1 0 2 1 1 1 1 2 2 1 2 3 2 2 28

TF15 2 1 1 0 0 0 0 0 0 1 0 1 1 1 2 0 1 0 0 11

Total 37 26 10 15 24 21 12 27 31 31 17 14 54 30 18 26 45 14 29 481

Abbreviations of time-frequency-domain features are TF1 (Energy of delta band), TF2 (Variance of delta band), TF3 (Entropy of delta band), TF4 (Energy of theta band), TF5 (Variance of theta

band), TF6 (Entropy of theta band), TF7 (Energy of alpha band), TF8 (Variance of alpha band), TF9 (Entropy of alpha band), TF10 (Energy of beta band), TF11 (Variance of beta band), TF12

(Entropy of beta band), TF13 (Energy of gamma band), TF14 (Variance of gamma band), and TF15 (Entropy of gamma band).
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TABLE 11 All classifiers’ performances were evaluated in this study using nonlinear domain feature set.

Components Feature set S1 S2 S3 S4 S5 S6 S7 S8 SI

Decision tree ND 29.17 30.83 29.17 34.17 28.33 34.17 33.33 24.17 25.26

ND+ANOVA 34.17 25.83 29.17 41.67 23.33 30.83 33.33 28.33 24.42

Discriminant analysis ND 25.00 33.33 41.67 39.17 30.83 35.00 26.67 34.17 27.24

ND+ANOVA 30.00 37.50 45.00 46.67 32.50 33.33 23.33 30.00 27.05

Naive Bayes ND 30.83 32.50 30.83 33.33 25.83 31.67 30.00 27.50 23.14

ND+ANOVA 28.33 33.33 30.83 42.50 29.17 35.00 33.33 28.33 21.73

Support vector machine ND 32.50 39.17 40.00 43.33 37.50 35.83 30.00 35.83 30.90

ND+ANOVA 34.17 38.33 43.33 50.00 35.00 34.17 29.17 33.33 31.79

k-Nearest Neighbors ND 28.33 32.50 36.67 36.67 32.50 35.00 28.33 33.33 30.64

ND+ANOVA 31.67 35.83 33.33 43.33 30.83 32.50 30.83 28.33 28.27

Ensemble learning ND 30.83 36.67 44.17 38.33 37.50 35.83 30.00 33.33 29.81

ND+ANOVA 30.00 36.67 39.17 45.83 40.83 35.83 30.83 30.83 27.69

Neural networks ND 31.67 35.00 45.00 35.83 30.83 36.67 26.67 30.83 29.36

ND+ANOVA 30.83 37.50 40.00 42.50 31.67 38.33 30.83 35.00 29.62

Kernel approximation ND 26.67 28.33 32.50 31.67 24.17 28.33 28.33 24.17 26.09

ND+ANOVA 24.17 30.00 33.33 38.33 17.50 28.33 29.17 27.50 26.54

The maximum accuracy values for each subject-dependent and subject-independent case are highlighted in bold. SI is “Subject-independent”.

TABLE 12 The distribution of statistical significant features, selected via ANOVA, across 19 EEG channels for subject-independent finger movement

classification using the nonlinear domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

ND1 X 1

ND2 X X X X X X X X X X X X X X X X X 17

ND3 X X X X 4

ND4 X X X X X X X X X X X X X X X X 16

Total 3 3 2 3 0 0 2 2 2 2 2 2 2 1 3 2 3 2 2 38

Abbreviations of nonlinear domain features are ND1 (SD1 where lag = 1), ND2 (SD2 where lag = 1), ND3 (SD1SD2 where lag = 1), and ND4 (SD1/SD2 where lag = 1).

TABLE 13 The distribution of statistically significant features, selected via ANOVA, across 19 EEG channels for subject-dependent finger movement

classification using the nonlinear domain feature set.

EEG channels

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

ND1 3 3 5 3 3 3 2 4 3 4 4 3 6 4 3 4 3 2 4 66

ND2 8 8 7 8 1 1 3 5 4 6 6 7 4 4 4 5 8 2 5 96

ND3 6 6 5 5 1 1 3 3 2 4 6 4 4 3 2 2 6 3 4 70

ND4 7 7 6 6 6 6 8 7 6 7 8 8 6 7 5 6 7 6 8 127

Total 24 24 23 22 11 11 16 19 15 21 24 22 20 18 14 17 24 13 21 359

Abbreviations of nonlinear domain features are ND1 (SD1 where lag = 1), ND2 (SD2 where lag = 1), ND3 (SD1SD2 where lag = 1), and ND4 (SD1/SD2 where lag = 1).

• A comprehensive evaluation of features and EEG channels

was performed based on distribution maps highlighting

statistically significant features - this approach, proposed for

the first time in the context of finger movement classification -

is employed to determine efficient and distinctive features and

EEG channels.

• Our EEG feature and channel investigation has shown that

the ANOVA test selected statistically significant features

from some certain EEG frequency bands, and feature

types whose effectiveness has been demonstrated in the

BCI research field. These feature selections improved the

classification performances in some of the analyzed feature
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FIGURE 2

Comparison of classification accuracies obtained using all features vs. ANOVA-selected features across all feature sets with the Support Vector

Machine (SVM) classifier for Subject E (S4).

FIGURE 3

Comparison of classification accuracies obtained using all features vs. ANOVA-selected features across all feature sets with the Support Vector

Machine (SVM) classifier in subject-independent analysis.

sets (especially in frequency domain feature set). Also,

in some feature sets (especially in time-domain, time-

frequency domain, and nonlinear domain feature sets, used

for subject-independent analysis), ANOVA did not prioritize

specific EEG channels, frequency bands, and feature types

during the feature reduction process. It was concluded

that classification performance could be increased with this

balanced distribution in some feature sets (especially in

nonlinear feature set for subject-dependent analysis). Further

analysis of the results revealed that classification performance

can improve when using EEG channels and features that have

not yet been established as effective in the literature. These

findings highlight the critical role of effective feature and

channel analysis in enhancing classifier performance.

Beyond these findings, it is important to consider the

broader context in which finger movement classification

operates, particularly in relation to functional brain networks and

neurological disorders. Recent advances in EEG-based BCIs have

demonstrated that motor imagery can be effectively used to decode

intended movements without any physical action (Pfurtscheller

& Neuper, 2001; Wolpaw et. al., 2002). In this context, finger
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TABLE 14 All classifiers’ performances were evaluated in this study using the first combination (TD+FD+TF) feature set.

Components Feature set S1 S2 S3 S4 S5 S6 S7 S8 SI

Decision tree TD+FD+TF 30.00 36.67 35.00 43.33 32.50 33.33 29.17 34.17 31.20

TD+FD+TF+ 29.17 35.00 35.00 44.17 28.33 33.33 25.00 30.00 30.30

ANOVA

Discriminant analysis TD+FD+TF 26.67 28.33 44.17 42.50 27.50 32.50 24.17 24.17 32.40

TD+FD+TF+ 29.17 18.33 25.83 38.33 32.50 35.83 15.00 31.67 34.20

ANOVA

Naive Bayes TD+FD+TF 28.33 33.33 38.33 42.50 29.17 29.17 20.83 32.50 26.20

TD+FD+TF+ 27.50 34.17 36.67 40.83 31.67 31.67 30.00 30.83 27.10

ANOVA

Support vector machine TD+FD+TF 33.33 50.00 57.50 51.67 39.17 45.00 28.33 42.50 37.00

TD+FD+TF+ 35.83 55.83 55.00 50.00 39.17 48.33 33.33 37.50 38.70

ANOVA

k-Nearest Neighbors TD+FD+TF 36.67 38.33 49.17 40.83 34.17 39.17 31.67 34.17 32.30

TD+FD+TF+ 29.17 45.00 45.00 41.67 35.83 41.67 33.33 31.67 32.90

ANOVA

Ensemble learning TD+FD+TF 31.67 41.67 44.17 53.33 33.33 43.33 28.33 35.83 34.70

TD+FD+TF+ 31.67 53.33 51.67 50.83 42.50 46.67 29.17 45.83 35.50

ANOVA

Neural networks TD+FD+TF 32.50 44.17 53.33 55.00 39.17 50.00 32.50 39.17 34.70

TD+FD+TF+ 37.50 54.17 55.83 54.17 43.33 47.50 30.83 35.00 36.10

ANOVA

Kernel approximation TD+FD+TF 30.00 24.17 28.33 43.33 28.33 33.33 25.83 25.00 25.40

TD+FD+TF+ 26.67 29.17 26.67 31.67 26.67 25.83 20.00 20.83 26.10

ANOVA

The maximum accuracy values for each subject-dependent and subject-independent case are highlighted in bold. SI is “Subject-independent”.

motor imagery classification plays a critical role in enabling control

of assistive devices for individuals with motor impairments. By

bypassing damaged motor pathways, BCI systems interpret neural

activity associated with imagined finger movements and convert

it into real-time control commands for devices such as robotic

hands or prosthetic fingers (Leeb et al., 2007). This brain-driven

control allows voluntary interaction with external systems solely

through EEG signals, offering a non-invasive alternative for

users with neuromuscular disorders. Therefore, the proposed

classification framework not only contributes to improving motor

imagery recognition performance but also holds potential as a core

component in closed-loop BCI systems aimed at restoring motor

function in clinical rehabilitation settings.

We compare the performance of the proposed fingermovement

classification with that of recent studies that use same EEG dataset

with different feature extraction and classification algorithms. The

details of these studies are shown in Table 16. In presented studies,

BCI systems have proposed with high computational load in

terms of feature extraction (Azizah et al., 2022; Yang et al., 2024),

and classification (Zahra et al., 2022; Anam et al., 2020; Mwata-

Velu et al., 2021, 2022) methods. Despite these computational

loads in the system, very high classification performances could

not be obtained in both subject-independent (Zahra et al., 2022;

Yang et al., 2024) and subject-dependent (Azizah et al., 2022;

Mwata-Velu et al., 2021) classifications. In the feature extraction

stage, some feature types and categories such as temporal features

(Zahra et al., 2022; Alsuradi et al., 2024; Mwata-Velu et al.,

2022), Fourier transform amplitudes (Kaya et al., 2018; Yang et al.,

2024), and common spatial patterm-based features (Anam et al.,

2019, 2020; Kato et al., 2020) have been mainly investigated.

Nonlinear features and time-frequency representation methods

have been eliminated in this area and their effectiveness should be

examined. At the same time, different features should be included

in frequently used feature domain categories. In general, SVM

(Kaya et al., 2018; Kato et al., 2020; Azizah et al., 2022) and EL

(Yang et al., 2024) classifiers have been used to classify finger

movements in majority of studies which used machine learning

algorithms. Different algorithm approaches can be computed

to classify finger movements. On the other hand, literature

studies classifying finger movements were only focused on finger

movements by eliminating brain’s idle case which is the state that

the brain is not carrying out any task. NoMT condition can be
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TABLE 15 All classifiers’ performances were evaluated in this study using the second combination (TD+FD+TF+ND) feature set.

Components Feature set S1 S2 S3 S4 S5 S6 S7 S8 SI

Decision tree TD+FD+TF+ND 28.33 33.33 35.00 36.67 36.67 37.50 30.83 35.83 30.30

TD+FD+TF+ 30.00 41.67 36.67 40.00 30.83 36.67 30.83 35.00 30.40

ND+ANOVA

Discriminant analysis TD+FD+TF+ND 25.83 31.67 43.33 38.33 20.00 37.50 24.17 24.17 32.50

TD+FD+TF+ 25.00 15.83 35.83 35.00 36.67 24.17 21.67 31.67 34.40

ND+ANOVA

Naive Bayes TD+FD+TF+ND 26.67 34.17 36.67 35.83 27.50 35.00 31.67 33.33 27.10

TD+FD+TF+ 28.33 39.17 35.00 43.33 31.67 31.67 31.67 35.00 26.90

ND+ANOVA

Support vector machine TD+FD+TF+ND 30.00 48.33 55.00 50.00 38.33 42.50 26.67 41.67 37.60

TD+FD+TF+ 36.67 46.67 56.67 59.17 41.67 51.67 32.50 37.50 39.30

ND+ANOVA

k-Nearest Neighbors TD+FD+TF+ND 29.17 43.33 47.50 45.00 30.83 39.17 29.17 32.50 32.10

TD+FD+TF+ 31.67 41.67 43.33 45.00 29.17 45.83 31.67 34.17 33.30

ND+ANOVA

Ensemble learning TD+FD+TF+ND 27.50 40.83 41.67 55.00 36.67 42.50 28.33 40.83 36.20

TD+FD+TF+ N/A 45.00 50.00 52.50 42.50 44.17 34.17 40.83 35.80

ND+ANOVA

Neural networks TD+FD+TF+ND 31.67 42.50 55.83 55.83 35.83 44.17 27.50 40.83 34.40

TD+FD+TF+ N/A 46.67 55.83 57.50 45.00 49.17 30.00 40.83 37.20

ND+ANOVA

Kernel approximation TD+FD+TF+ND 28.33 29.17 28.33 36.67 30.00 23.33 20.83 25.83 26.00

TD+FD+TF+ N/A 25.00 24.17 38.33 23.33 27.50 22.50 20.83 26.00

ND+ANOVA

The maximum accuracy values for each subject-dependent and subject-independent case are highlighted in bold. SI is “Subject-independent”.

implemented finger movements because the elimination of the

brain’s idle case may increase false positive numbers and decrease

classication accuracies (Degirmenci et al., 2024b). Among subject-

dependent and subject-independent finger movement classification

studies performed in literature, the highest classification accuracies

have been reported from subject-dependent classifications (Kaya

et al., 2018; Alsuradi et al., 2024; Degirmenci et al., 2024b).

Compared to the literature studies, different feature domains and

feature types (especially Poincare plot-based nonlinear features,

entropy-based spectral features, and Wavelet transform-based

time-frequency domain features) have been investigated for finger

movement classification separately in our study. In addition to

SVM and EL algorithms, several machine learning algorithms have

used to classify finger movements in our experimental section.

Considering feature extraction and classification stages, our study

has computational advantages. The EEG signals of NoMT case are

implemented to finger movements and a 6-class finger movement

classification study to obtain more realistic and accurate BCI

system. In fingermovement classification research area, the detailed

EEG channel and feature investigation have not been performed

using different feature domains in any study. Therefore, our

main aim is to implement the detailed EEG channel and feature

investigation in classification of finger movements using ANOVA-

based feature selectionmethod rather than finding the best classifier

performance. Toward this aim, ANOVA-based feature selection

process conducted to determine discriminative and significant

features for each feature set separately. In addition, channel-based

ANOVA-selected statistically significant feature distribution maps

are obtained for each feature set, separately. Using these maps,

the detailed analysis have been performed in this study. In the

5F dataset described by Kaya et al., motor imagery tasks involve

finger movements controlled by overlapping regions of the motor

cortex, primarily localized around channel C3. Consequently,

ERP signals at C3 may not distinctly differentiate between finger

movements, with the most notable difference observed between

the thumb and pinkie. Additionally, contrary to the common

hypothesis in the literature that motor imagery predominantly

focuses on channels C3, C4, and Cz (Pfurtscheller & Neuper,

2001), our findings reveal a more widespread distribution of

neural activity across multiple EEG channels within specific

feature domains. This suggests that brain regions beyond the

primary motor cortex contribute meaningfully to finger movement
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TABLE 16 A comparison of the accuracy of this method with several state-of-the-art studies, for both subject-independent and subject-dependent

cases, within this field.

Study N n Features Classifier c CV Accuracy (%)

Subject-independent task

Kaya et al. (2018) 8 19 PSD SVM 5 random split 43.00

EEG band power (63-27-10%)

FT amplitudes

Zahra et al. (2022) 8 19 EEG time series CNN 5 10-fold 57.50

Sliding window

Noise addition

Yang et al. (2024) 8 19 Feature-dependent EL 5 5-fold 50.64

frequency band

selection

FT amplitudes

Riemanian geometry

Alsuradi et al. (2024) 8 19 Temporal features N/A 5 leave-one- 40.00

subject-out

Degirmenci et al. (2024b) 8 19 ITD SVM 6 5-fold 34.48

This study 8 19 TD, FD, TF, SVM 6 5-fold 39.30

and ND features

Subject-dependent task

Kaya et al. (2018) 8 19 PSD SVM 5 random split 20.00-60.00

EEG band power (63-27-10%)

FT amplitudes

Anam et al. (2019) 4 19 CSP RF 5 5-fold 51.00-56.00

Anam et al. (2020) 4 19 CSP ADL 5 5-fold 74.61-77.75

Kato et al. (2020) 8 19 multi-class CSP SVM 5 10-fold 23.90-58.30

Mwata-Velu et al. (2021) 8 4 EMD BLS 5 200-fold 66.00-76.13

Azizah et al. (2022) 8 4 Spectrogram features SVM 5 10-fold 21.20-66.60

Mwata-Velu et al. (2022) 4 4 Raw EEG data EEGNet 5 200-fold 80.10-91.70

Alsuradi et al. (2024) 8 19 Temporal features N/A 5 N/A Average 50.00

within-subject

Degirmenci et al. (2024b) 8 19 ITD EL 6 5-fold 35.83-55.00

This study 8 19 TD, FD, TF, SVM 6 5-fold 32.50-59.17

and ND features

The abbreviation “N” represents the “number of subjects,” “n” denotes the “number of EEG channels,” “c” refers to the “number of classes,” and “CV” stands for the “Cross-Validation Method”.

The classifiers used are CNN (Convolutional Neural Network), RF (Random Forest), ADL (Autonomous Deep Learning), SVM (Support Vector Machine), EEGNet (EEGNet Deep Learning

Model), BLS (Bi-layered Long-Short Classifier), and EL (Ensemble Learning). Features are PSD (power spectral density), FT (Fourier transfrom), ITD (intrinsic time-scale decomposition),

EMD (empirical mode decomposition), and CSP (common spatial pattern).

representation (Pfurtscheller & Neuper, 2006). Previous studies

have utilized a fixed set of EEG channels to extract features for

finger movement classification (Azizah et al., 2022; Mwata-Velu

et al., 2022). However, existing literature suggests that neural

activation patterns are subject-specific andmay vary across cerebral

hemispheres, even during identical MI tasks. A comprehensive

analysis of feature distributions across EEG channels enables a

more precise characterization of underlying neurophysiological

processes, thereby underscoring the necessity of identifying

electrodes that yield the most informative and discriminative

signals for accurate finger movement classification. Given the

essential role of functional brain networks in motor planning

and execution (Deco et al., 2011), such broad EEG analyses

offer valuable insights into overall brain dynamics. Additionally,

Frontiers inHumanNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnhum.2025.1633910
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Degirmenci et al. 10.3389/fnhum.2025.1633910

distinguishing finger movements from resting states (NoMT)

holds significant potential for clinical applications, including the

diagnosis and rehabilitation of neurological disorders such as

Parkinson’s disease and stroke-induced motor deficits (Ward et al.,

2005). Future integration of functional brain network data with

advanced classification models may enhance early detection and

facilitate personalized treatment strategies for nervous system

disorders. This aspect of the study has brought an important

perspective to the studies on the classification of finger movements.

4 Conclusion

In this study, the effects of different feature domains and

a statistical significance-based feature selection method are

investigated to classify finger movements. First, several EEG

features of EEG segments are obtained from four different

feature domains, including time-domain, frequency-domain, time-

frequency, and nonlinear domain. In addition to these feature sets,

two different combinations of features frommultiple domains were

investigated. Hence, a total of 1102 EEG features are calculated

from four different feature domains, and six feature sets are

generated for our finger movement analysis. By applying the

statistical significance-based feature selection method, relevant and

significant – hence fewer – EEG features are determined and

selected from each feature set separately. All features obtained in six

different feature sets and the statistically significant reduced feature

sets were tested with various machine learning algorithms. The

applied methods were tested on two different classification cases

(subject-dependent and subject-independent classification). The

results showed that the highest accuracy rates of 39.30% and 59.17%

were obtained using the second combination feature set (TD +

FD + TF + ND) and the SVM classifier in subject-independent

and subject-dependent classifications, respectively. The selected

EEG features (which are (i) energy and variance of five frequency

bands in frequency-domain feature set, (ii) all feature types in time

domain, time-frequency-domain, and nonlinear domain feature

sets) and all EEG channels resulted in maximum accuracy of

59.17% with the SVM classifier for subject-dependent analysis.

For subject-independent analysis, the selected EEG features

included (i) all feature types except waveform length, average

amplitude change value, absolute difference in standard deviation,

and slope-change value in the time-domain feature set; (ii) energy

and variance values of all frequency bands except the gamma band

in the frequency-domain feature set; (iii) entropy values of five

frequency bands in the time-frequency-domain feature set; and (iv)

SD2 and SD1/SD2 values with lag = 1 in the nonlinear feature

set. The selected EEG channels comprised (i) specific channels

including the 2nd, 3rd, 7th, 11th, 13th, 14th, and 15th channels in

the time-frequency domain feature set, and (ii) all EEG channels

in the time-domain, frequency-domain, and nonlinear feature

sets. This combination achieved a maximum accuracy of 39.30%

with the SVM classifier. According to the detailed feature and

channel activity research, it was concluded that the selected features

and channels may vary depending on whether the classification

case is subject-dependent or subject-independent. The ANOVA-

based feature selection method generally improves the prediction

performance in choosing significant and relevant EEG features

from different feature sets. The best classification results on

two different classification cases were obtained with the second

combination feature set (TD+FD+TF+ND) among all feature sets

and the SVM classifier among all classification algorithms.

Our main goal in this study is not to provide the best classifier

performance but to investigate and indicate the discriminative

EEG channels and features for the classification of finger

movements. Toward this aim, the EEG channel and feature

analysis was performed using channel-based statistical feature

distribution maps. Particularly, the detailed feature and EEG

channel analysis was implemented for the first time to classify finger

movements along with various feature domains and their different

combinations to the best of our knowledge. The EEG channel and

feature analysis in finger movement classification indicates that it

works well and supports literature in choosing specific frequency

bands, and features from some feature domains. These specific

selections have also been demonstrated to be effective in previous

studies of prediction of motor imagery tasks based on EEG. It

has been observed that selections are performed from features

and channels that are not proven in the literature and that this

improves the classification performance. Conversely, performance

was also improved by balanced selections across all channels

and features. Therefore, our experimental analysis suggests that

classifier performance may be improved by implementing detailed

feature and EEG channel analysis using a feature selection method

based on statistical significance. Nonetheless, in this study, we only

used an EEG dataset recorded from 13 healthy subjects, and each

EEG data consists of 19 EEG channels sampled at 1000 Hz. To

draw a more general conclusion, a dataset covering more subjects

is necessary.
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