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Introduction: Motion sickness often causes passengers to experience negative 
emotions such as tension, which in turn triggers symptoms like dizziness and 
nausea, seriously affecting the travel experience of passengers. Previous studies 
have shown that music can alleviate negative emotions such as tension, but its 
effect on motion sickness remains unclear, and the differences in the alleviation 
effect of different types of music on motion sickness need to be quantitatively 
evaluated.

Methods: We collected Electroencephalogram (EEG) data from 30 subjects in a 
simulated driving environment and constructed a motion sickness recognition 
model by combining time-and frequency-domain features (mean, variance, 
skewness, kurtosis, power spectral density) with classification algorithms. The 
model achieved accurate identification of passenger motion sickness states. 
Based on this model, the intervention effects of four types of music (joyful, sad, 
stirring, and soft) on motion sickness were further evaluated and compared with 
the control group (taking natural recovery measures).

Results: The results showed that soft and joyful music had better intervention 
effects (average reduction of 56.7 and 57.3%, respectively), followed by 
passionate and sad music (average reduction of 48.3 and 40%, respectively), 
among which the alleviation effect of sad music was lower than that of the 
control group (average reduction of 43.3%). In addition, it was verified that the 
EEG Kolmogorov-Chaitin complexity in the occipital region was significantly 
negatively correlated with the motion sickness grade p = −0.625, p < 0.005).

Discussion: The study suggests that personalized music intervention strategies 
may effectively alleviate motion sickness symptoms of passengers, thereby 
increasing cabin comfort and improving the travel experience of passengers.
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1 Introduction

With the advancement of autonomous driving technology to SAE Level 3, human-
machine shared control has emerged as the predominant operational paradigm (He et al., 
2024). In this configuration, drivers collaborate dynamically with the autonomous system, 
relinquishing continuous vehicular control. While this transition enhances driving 
convenience and safety, it simultaneously introduces novel kinesthetic challenges for 
occupants, particularly a marked elevation in motion sickness incidence. Empirical evidence 
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indicates that passengers experience significantly higher susceptibility 
to motion sickness compared to drivers (Smyth et al., 2018). During 
mixed-mode operation (alternating between manual and assisted 
driving), occupants frequently develop motion sickness when 
kinematic vehicle parameters (e.g., longitudinal/lateral acceleration, 
yaw rate) conflict with visual cues, resulting in vestibulo-
ocular mismatch.

Currently, the measurement methods of motion sickness are mainly 
divided into subjective measurement and objective measurement (Chang 
et  al., 2020). Subjective measurements are based on relevant 
questionnaires, which are filled out verbally or independently to obtain 
the patient’s motion sickness rating, while objective measurements rely 
on physiological signal acquisition equipment to collect objective 
physiological and behavioral data from patients and correlate them with 
the user’s subjective motion sickness ratings, thus exploring the 
relationship between objective parameters and motion sickness. 
Subjective measures of motion sickness are commonly used, including 
the Pensacola Motion Sickness Questionnaire (MSQ; Graybiel et al., 
1965), the Simulator Sickness Questionnaire (SSQ; Kennedy et al., 1993), 
and the Misery Scale (MISC; Bos et al., 2005).

A large number of studies have been devoted to the mitigating 
modulation of motion sickness, mainly focusing on pharmacological 
management and sensory interventions, and it has been shown that 
there is expression of cholinergic M1, M2, and M5 receptor subtypes in 
the vestibular organ and vestibular ganglion (Li et al., 2007), with the M1 
and M5 receptors functioning as postsynaptic excitatory receptors. 
Based on this finding, the anti-motion sickness effect of scopolamine 
may originate from its specific blocking effect on M1 and M5 receptor 
subtypes (Zhang et al., 2016). Hongri et al. (2025) developed a motion 
sickness model using rotational stimulation and assessed the efficacy of 
Tianmu ultrafine powder in alleviating symptoms through behavioral 
indices (e.g., motion sickness response index, balance beam test, 
spontaneous activity test). Their results demonstrated that this powder 
significantly reduced motion sickness in mice without adverse effects 
(Hongri et  al., 2025). Xiang (2024) investigated the efficacy of 
intradermal needle therapy in alleviating motion sickness. Rotational 
motion was used to induce motion sickness in the subjects, with blood 
pressure and pulse rate as indicators. The results showed that intradermal 
needles stimulated at a frequency of 60 times/min were more effective 
in improving the symptoms and signs of rotation-induced motion 
sickness, suggesting that higher stimulation frequencies may be closer 
to the optimal treatment dose and can achieve more satisfactory 
treatment outcomes (Xiang, 2024). While existing research has 
predominantly focused on optimizing motion sickness recognition 
algorithms and developing olfactory-or tactile-based interventions, the 
relationship between auditory stimuli (particularly music genres) and 
motion sickness in driving environments remains underexplored.

To address these issues, this study focuses on investigating the 
effects of different types of music on motion sickness. By constructing 
a motion sickness identification model based on 
electroencephalographic signals, we  systematically evaluate the 
differential regulatory effects of four types of music (joyful music, sad 
music, stirring music, and soft music) on motion sickness.

The main contributions of this work can be  summarized 
as follows:

	(1)	 The system quantified the differentiated intervention effects of 
four types of music on motion sickness and found that joyful 

music and soft music had better alleviating effects on motion 
sickness (57.3 and 56.7%, respectively), providing empirical 
evidence for cabin music intervention for motion sickness.

	(2)	 The recognition model based on electroencephalographic 
signals (particularly the occipital lobe BPNN model, with an 
accuracy rate of 85.6%) provides an objective measurement 
tool for evaluating the effectiveness of music intervention.

	(3)	 Extraction and analysis of the complexity of KC in the occipital 
lobe confirmed a certain correlation with motion sickness, 
proving that it can be  used as an assessment indicator for 
motion sickness.

2 Materials and methods

2.1 Experimental scenario

Since this experiment requires the collection of EEG data from 
subjects in the motion sickness state, and the induction of motion 
sickness symptoms in the actual road environment may lead to a 
decrease in driving maneuvering ability, which is a safety hazard. 
Therefore, in this study, a driving simulation experiment was used 
instead of a real-road experiment to induce motion sickness symptoms 
and collect EEG data from the subjects. The main advantages of the 
simulator are that it is safe and avoids the risk of driving due to motion 
sickness, and the experimental environment can be  controlled to 
precisely adjust the parameters of the visuomotor stimuli to induce 
different degrees of motion sickness. It has been shown that the visual-
vestibular conflict effect generated by driving simulators is physiologically 
similar to the real motion environment and can effectively induce typical 
motion sickness symptoms (Bronstein et al., 2020). Based on this, the 
present study was conducted to collect EEG data under motion sickness 
through a driving simulator experimental platform.

In this study, Forza Horizon 5 software developed on the EA 
platform and Lestar V99 driving simulator are used to build a driving 
simulation environment, which can simulate the road traffic 
environment of the driver in the real driving process (Ali et al., 2020), 
and contains the vehicle operating system, the image display system, 
and the sound system in three parts, and the simulator has certain 
assisted driving functions, which can be good simulation of the current 
assisted driving and manual driving synthetic environment. Driving 
and manual driving synthetic environment. The simulator’s display 
screen has a width-to-height ratio of 16:9, with a horizontal field of 
view (FOV) of 83° and a vertical FOV of 53°. The vehicle control 
system is equipped with a steering wheel, gearshift, accelerator pedal, 
brake pedal, and clutch. The visual display system includes an LCD 
screen that provides a first-person driving perspective, while the audio 
system delivers surround sound effects during the simulated driving 
process. The EEG data acquisition device operates at a sampling rate of 
500 Hz. The 64-channel EEG electrodes are positioned according to the 
international 10–10 system, with CPz and End electrodes serving as 
reference and ground, respectively. Throughout the experiment, 
electrode impedance is maintained below 5 kΩ. The entire experimental 
process is programmed using E-Prime 3, which can be connected to 
the EEG equipment to synchronize marking. Music control is also 
achieved through E-Prime 3 by connecting to headphones for playback.

The experimental setup scene is shown in Figure  1. The 
environment in the laboratory was always well ventilated and well lit.
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2.2 Initial screening of simulator roads

Forza Horizon 5 software has built-in rich and real road sections to 
choose from. In order to achieve better motion sickness inducing effects 
on the subjects during the formal experiments, the built-in roads are first 
screened, taking into account the experimental needs, the susceptibility 
of the subjects to motion sickness, and the degree of driving proficiency, 
and are screened in accordance with the following principles:

	(1)	 The road trip should be appropriate, the road trip is too short 
to meet the set experimental time requirements, the trip is too 
long will lead to fatigue and interfere with the motion sickness 
induced experiment.

	(2)	 The road should have good motion sickness inducing effect, 
which can ensure the successful induction of most subjects.

	(3)	 The complexity of the road should be appropriate; if the road 
complexity is too low, the motion sickness inducing effect will 
be poor, which will affect the accuracy of the experiment, and 
at the same time, the road conditions are too single, which will 
easily cause fatigue; while if the complexity is too high, the 
subjects with low driving skill may frequently have collisions 
and drive out of the road area, which will interfere with 
the experiment.

In accordance with the above principles, 10 roads with different 
road complexity, road length, and different surrounding landforms 
(rainforest, desert, mountain, coast, etc.) were selected in the software, 
and all of them required more than 5 min of traveling time to 
complete. These 10 roads will be used for subsequent experimentalists 
to analyze and screen the effectiveness of road sickness induction.

In order to assess the 10 roads initially screened in the driving 
simulator as described above, the MISC, Karolinska Sleepiness Scale 
(KSS; Kaida et al., 2006), and the 7-level Likert Scale (Capuano et al., 

2016) were used to record the subjects’ motion sickness level, fatigue 
level, and road complexity during the driving task, respectively. The 
MISC, KSS, and Likert Scale used are shown in Tables 1–3.

Forty volunteers were recruited to participate in the simulator 
road screening experiment, including 22 males and 18 females, and 
the specific information of the volunteers is shown in Table 4.

During the experiment, the subjects completed the driving tasks 
of 10 roads sequentially according to the requirements, and every time 
they completed a driving task, they filled in the MISQ scale and 
Caroline Sleepiness Scale for that road, and when the level of motion 
sickness reached 3 or more, it was regarded as a successful induction; 
in order to avoid too much intervention of the cumulative effect of 
motion sickness, after the completion of filling in the scales, the 
subjects would be free to move around for 3 min in order to alleviate 
the effect of motion sickness and wake up the brain, and after 3 min 
After 3 min, the subjects will continue to complete the next road 
driving task. The screening process is shown in Figure 2.

The 10 roads were numbered and the data from the experiment 
were collected to present the performance of the 10 roads in the three 
dimensions using k-means clustering diagram. As shown in Figure 3.

According to the aforementioned screening principles, it can 
be seen that road 2, road 3 and road 5 have better motion sickness 
inducing effect, but road 2 and road 3 are easy to make people tired, 
so the comprehensive consideration, road 5 was selected as the 
subsequent experimental motion sickness inducing material.

2.3 Experimental procedure

2.3.1 Subjects were screened for susceptibility to 
motion sickness

Due to individual differences in sensitivity to motion stimuli and 
to visual conflict-inducing schemes such as driving simulators, in 

FIGURE 1

Experimental scenario.
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order to ensure that the experiment can effectively induce observable 
motion sickness symptoms and control the variability brought about 
by individual differences, and to ensure the efficient conduct of the 
experiment, subjects with moderate susceptibility to motion sickness 
were selected for the follow-up music-relieving experiments in 
this study.

Translated with DeepL.com (free version) all questionnaire 
screeners are required to meet the following criteria:

	(1)	 Corrected visual acuity ≥1.0 (Snellen 20/20), no color blindness 
or color deficiency (by Ishihara test), and no history of recent 
ophthalmic surgery.

TABLE 1  MISC scale.

Symptomatic Motion sickness Level

No symptoms. 0

I’m a little uncomfortable, but I do not have any obvious symptoms. 1

Dizziness, feeling cold/hot, headache, upset stomach, upset throat, increased sweating, blurred vision, Yawning, 

hiccups, tiredness (fatigue), increased saliva production, but not nausea

Seemingly tangible or intangible 2

Mildly 3

Moderately 4

Severe 5

Nausea

Mildly 6

Moderately 7

Severe 8

Borderline dry heaving 9

Vomiting 10

TABLE 2  Karolinska sleepiness scale.

Degree of sleepiness Score

Fully conscious state 1

Very lucid state 2

Sober 3

More awake 4

Between wakefulness and sleepiness 5

More sleepy 6

Drowsy but alert 7

Drowsy but less able to maintain alertness 8

Extremely sleepy and wanting to go to sleep 9

TABLE 3  7-level Likert scale.

Descriptive Define Score

Almost no maneuvering, no obstacles on the road Maximum simplicity 1

Very little attention is required and the operation is fully automated. Very simple 2

Occasional attention to road conditions is required, but handling is stress-free. Simpler 3

Requires steady attention and a clear need to operate. Moderate 4

High-frequency operation requiring a high degree of concentration. Sticky 5

Complex road conditions with low operational tolerance. Very difficult 6

It’s almost impossible to complete the driving task. Great difficulty 7

TABLE 4  Volunteer age, driving age details.

Age, years driving Average value Standard deviation Upper quartile

Age (years) 27.8 6.1 26

Driving experience (years) 5.0 3.0 4.5
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	(2)	 No history of mental illness, cardiovascular disease, 
vestibular dysfunction or syncope, and no medication 
affecting vestibular function 48 h before the  
experiment.

	(3)	 Pure tone audiometry ≤25 dB HL, no tinnitus or balance  
disorders.

Motion sickness susceptibility is generally assessed using the 
Motion Sickness Susceptibility Questionnaire (MSSQ; Lukacova 
et al., 2023), which is an effective predictor of susceptibility to motion 
sickness in a laboratory setting by assessing the frequency and 
severity of motion sickness in individuals who have ridden various 
types of transportation in the past. However, some of the questions 
in the traditional questionnaire (e.g., amusement park rides: roller 
coasters, etc.) have limited applicability in the Chinese population, 
so the MSSQ modified by Leilei Pan of the Naval Medical University 
was used as the instrument in this study. Therefore, this study used 
the MSSQ modified by Pan Leilei of Naval Military Medical 
University, which replaces amusement park rides with more suitable 
means of transportation for Chinese subjects (e.g., “bus bumps”) to 

increase the accuracy of the screening process (Pan Leilei and 
Ruirui, 2016).

The modified version of the MSSQ scale consists of a childhood 
questionnaire and an adulthood questionnaire, with the childhood 
questionnaire recording up to the age of 12 years and the adulthood 
questionnaire recording within the last 10 years, and the 
questionnaires are the same during both childhood and adulthood, 
i.e., Tables 5, 6. The susceptibility index calculation and grading 
criteria are then based on a modified version of the MSSQ-R3 formula:

	
( ) ( )+ ×

− − =
2 7

3 N VTSS TSS
MSSQ R A B

NST 	
(1)

In the formula, ( )− −3MSSQ R A B  is the susceptibility index 
during childhood or adulthood, respectively, and the sum of the two 
is the total susceptibility index; NTSS  is the total nausea symptom 
score, VTSS  is the total vomiting symptom score, and NST  is the 
number of types of rides on transportation or amusement rides.

The percentile was used to determine the level of susceptibility 
grades: mild susceptibility (<50%), moderate susceptibility (50–75%), 

FIGURE 2

Simulator road screening experimental procedure.

FIGURE 3

Simulated roadway k-means clustering map.
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and severe susceptibility (>75%), and a total of 112 subjects were 
screened, from which 30 subjects with moderate susceptibility to 
dizziness were screened to participate in the subsequent experiment. 
And before the beginning of the experiment, the data of individual 
characteristics of the subjects were recorded: height, age, height, and 
body mass as shown in Table 7.

2.3.2 Motion sickness triggering and music 
modulation

Thirty subjects will be divided into six groups of five each, four of 
which will be moderated with four types of music after the induction of 
motion sickness (moderated group), one group will mark the EEG data 
after the motion sickness score reaches 2 (almost no motion sickness) 
that is the end of the group (baseline group) without moderation, and 
the last group will serve as a control group, which will be  taken to 
meditate for 1 min after the normal completion of the simulated driving 
task induced by the motion sickness, without other interventions.

In order to better study visually induced dystonia, all subjects 
were told to refrain from consuming alcohol, caffeine, and nicotine 
for 48 h before the start of the experiment, and to get enough sleep. 
Prior to the start of the experiment, all subjects were required to fill 
out an informed consent form to ensure that they fully understood 
the objectives and specific tasks of the experiment.

During the experiment, subjects were asked to verbally report the 
level of motion sickness according to a simplified version of the 

Motion sickness scale (MSS), which is shown in Table 8. The reason 
why the traditional MISC was not used is that it has more gradations 
and is not suitable for subjects to quickly judge their own state during 
the experiment. The use of the MSS improves the efficiency of the 
experiment, reduces subject talking, and decreases interference with 
the EEG data.

The specific experimental procedure, which can be divided into 
the following three stages:

Preparatory stage:

In order for the subjects to understand the symptoms associated 
with motion sickness and to ensure that they were in good physical 
condition before the driving phase, the subjects were first asked to fill 
in the SSQ scale mentioned above, see Table 9, and if they had any 
discomfort, they were asked to choose another time for the experiment 
in order not to affect the results. When the subjects were in good 
physical and mental condition, they would sit still for 3 min in the 
driving simulator to eliminate the fatigue state and record the EEG 
signals in this state for baseline data.

Evoked stage:

Subjects reported their MSS ratings after completing a driving 
task on a selected road using the simulator while the experimenter 
made EEG markings.

TABLE 6  Nausea and vomiting on transportation or amusement rides and vomiting symptoms on transportation or amusement rides.

Entertainment 
activities

Never (1 point) Basically not. 
(2 points)

Occasionally 
(3 points)

Non-Recurrent 
(4 points)

Always 
(5 points)

Enclosed carriage

Bus

Trains

Helicopter

Boat

Ship or ferry

Trapeze

TABLE 7  Information sheet for subjects.

Scene Males Females Age Driving 
experience

Twisty 

mountain 

road

16 14 27.9 4.6

TABLE 8  Motion sickness scale.

None Almost no 
motion 
sickness

Mildly Moderately Serious

1 2 3 4 5

TABLE 5  Sample questionnaire on the number of rides on transportation or amusement rides.

Entertainment activities Never (1 point) 1–4 times (2 points) 5–10 times (3 points) 11 or more (4 points)

Enclosed carriage

Bus

Trains

Helicopter

Boat

Ship or ferry

Trapeze
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Modulation stage:

The subjects stopped the driving task, the experimenter played the 
corresponding type of music to the subjects in the modulation group 
(60 s) for modulation, and the subjects in the control group took the 
natural recovery measures to relieve the motion sickness. All subjects 
reported the level of motion sickness after 60 s, and the experimenter 
labeled the EEG data.

The experimental flow is shown in Figure 4.

2.3.3 Ethical statement
The studies involving humans were approved by Ethics Committee 

of Chongqing University of Arts and Sciences (Approval No. 
CQWL202541). The studies were conducted in accordance with the 
local legislation and institutional requirements and adhere to the 
Declaration of Helsinki. The participants provided their written 
informed consent to participate in this study. Written informed 
consent was obtained from the individual(s) for the publication of any 
potentially identifiable images or data included in this article.

2.4 Data processing and analysis

The process of analyzing, processing and classifying EEG data 
related to motion sickness is shown in Figure 5, which contains: data 
preprocessing, feature extraction and model training (Amin et al., 
2015). Feature extraction mainly focuses on time domain and 
frequency domain features, and finally the extracted features are 
organized and loaded into the model for training and classification to 
obtain classification results.

2.4.1 Data preprocessing
EEG signals are susceptible to a variety of noise interferences 

during acquisition, such as ophthalmoscopic, electromyographic, 

industrial frequency noise (50 Hz/60 Hz), and device drift (Usakli, 
2010), which can seriously affect the accuracy of subsequent analysis. 
Therefore, data preprocessing is a key step in EEG analysis, aiming 
to improve the signal-to-noise ratio and retain effective physiological 
information. Commonly used preprocessing methods include band-
pass filtering to remove high-frequency noise and low-frequency 
drift, independent component analysis to separate artifacts, 
bad-conduct interpolation, and segment alignment. Through 
preprocessing, the robustness of the feature extraction and 
classification models can be significantly improved, laying a reliable 
data foundation for subsequent research (Musthafa et al., 2024). The 
flowchart of the preprocessing of EEG signals in this paper is shown 
in Figure 6.

2.4.2 Feature extraction

	(1)	 Time-domain features: EEG time-domain features, as a kind of 
temporal signal, can reflect the amplitude and statistical 
properties of the signal over time, and are used to analyze the 
basic morphology and fluctuation patterns of EEG waveforms 
(Hjorth, 1970). The time domain features extracted in this 
study include: mean, variance, skewness, kurtosis.

	(a)	 Mean: the average of the EEG signals, which is the sum of 
all the sampled values divided by the total number of 
points. The formula is as follows:

	 =
= ∑ 1
1 N

iiX x
N 	

(2)

	(b)	 Variance: EEG variance characterizes the degree of 
dispersion of the signal amplitude, reflecting the intensity 
of fluctuations in EEG amplitude, and can be used to assess 
the state of brain activity. The formula is as follows:

FIGURE 4

Experimental procedure for motion sickness induction and relief.

TABLE 9  SSQ scales.

Symptomatic None Mildly Moderately Severity

1. Wearily O O O O

2. Headaches O O O O

⦙ ⦙ ⦙ ⦙ ⦙

15. Difficulty focusing vision O O O O

16. Whole-body discomfort O O O O

https://doi.org/10.3389/fnhum.2025.1636109
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Li et al.� 10.3389/fnhum.2025.1636109

Frontiers in Human Neuroscience 08 frontiersin.org

	
( )σ µ

=
= −∑ 22

1
1 n

ii x
N 	

(3)

	(c)	 Skewness: EEG skewness reflects the asymmetry of the 
signal amplitude distribution, with positive skewness 
indicating more high amplitudes and negative skewness 
vice versa, and can be  used to detect abnormal EEG 
activity. The formula is as follows, where б is the 
standard deviation:

	

( ) µ
σ=

 −
=   −  

∑
3

1
1
1

N
n

x n
S

N 	
(4)

	(d)	 Kurtosis: EEG kurtosis reflects the sharpness of the signal 
amplitude distribution, with high values suggesting 
abnormal transient activity (e.g., epileptic waves) and low 
values indicating a smooth rhythm. The formula is 
as follows:

	

( )( )µ=
−

=
∑

2
1

N
n x n

K
N 	

(5)

	(2)	 Frequency domain features: EEG frequency domain features 
reflect the distribution of signal energy in different frequency 
bands and are used to analyze brain rhythmic activities 
(Al-Fahoum and Al-Fraihat, 2014).

	(a)	 Power Spectral Density(PSD): indicates the signal power 
per unit frequency band, and the decomposition of EEG 
signals into frequency-domain energy distributions by 
Fourier transform is the core frequency-domain feature for 
portraying EEG rhythms. First, the Fourier transform is 
utilized to convert the EEG signal from the time domain 
to the frequency domain.

In this study, the Welch mean periodogram method was used to 
calculate the PSD of EEG data in order to analyze the characteristics 
of neural oscillations in different frequency bands. Five seconds after 
each marker was divided into five 1-s-long non-overlapping time 
windows to improve the temporal resolution and reduce the effect of 
transient noise, and a Hanning window was used for windowing to 
reduce spectral leakage and improve the accuracy of spectral 
estimation. Regarding the core parameters of PSD calculation, the 
number of FFT points is set to 256 to ensure the balance between 
spectral resolution and computational efficiency. A 50% overlap rate 

FIGURE 6

EEG data preprocessing process.

FIGURE 5

EEG data processing and analysis process.
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is used to enhance spectral smoothness and reduce the estimation  
variance.

The PSD was calculated using the Pwelch function in MATLAB 
software with the mathematical expression:

	
( ) ( ) ( ) πω

−
−

= =
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In Equation:
( )kx n  is the kth segment signal.
( )ω n  is the Hanning window function.

L is the window length.
K  is the total number of segments.

In this study, the average power density of two bands-theta band 
(4–8 Hz) and alpha band (8–13 Hz)-was extracted to reflect the neural 
oscillation patterns in different cognitive states, in which theta-band PSD 
is mainly related to memory encoding and attentional modulation, 
whereas alpha-band PSD can reflect the resting-state brain activity and 
is related to inhibitory control (Li et al., 2024). Finally, in order to reduce 
the influence of single-channel noise, the arithmetic mean of the PSDs 
of all effective channels in each brain region was taken to obtain the 
representative spectral characteristics of the brain region.

By combining time-and frequency-domain features, it is possible 
to comprehensively characterize the neural response induced by 
motion sickness and improve the accuracy of state identification and 
degree assessment.

2.4.3 Classification modeling based on EEG 
signals

In this experiment, the data from the preparation stage and the 
evoked stage were selected to form the dataset for building the 
classification model, and all the subjects had a halo level of 1 in the 
preparation stage, and the evoked stage halo level of the subjects in the 
baseline group was stopped after the evoked stage halo level reached 

2. Then the baseline sample cases were 30 for level 1, 10 for level 2, 8 
for level 3, 6 for level 4, and 6 for level 5. To enhance the sensitivity of 
the model to the time-varying features of the EEG signal and to 
alleviate the small-sample limitation, the present study used a sliding-
window strategy to segment the 5-s data after event labeling in 1-s 
steps (1-s window length, 4-s overlap). This method expands the 
original data volume by 5 times while maintaining the event-related 
temporal structure, and optimizes the model’s ability to generalize to 
individual response latencies by translational alignment of local time 
windows (Zhou et al., 2025).

The EEG data acquisition channels used were Fp2, AF3, AF4, F7, 
F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C5, C3, Cz, C4, C6, CP5, CP1, 
CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz, and O2, totaling 31 
EEG channels. All EEG channels were categorized into 5 brain 
regions (frontal pole region, frontal lobe region, central region, 
parietal lobe region, and occipital lobe region) according to 
their locations.

Multidimensional features of five brain regions were extracted 
from the EEG signals, instantaneous domain statistical features (mean, 
variance, skewness, and kurtosis) as well as frequency domain features 
(power spectral densities in theta and alpha frequency bands). These 
features can comprehensively characterize the temporal and spatial 
dynamics of brain activity in the motion sickness state. Based on the 
extracted features, this study systematically compares the performance 
of traditional machine learning methods and deep learning models in 
motion sickness state recognition, providing an experimental basis for 
the establishment of an optimal classification prediction model. The 
models involved include five models, including BP neural network, K 
nearest neighbor (KNN), support vector machine (SVM), plain Bayes 
(NB) and logistic regression (LR). An overview of the model for 
classifying motion sickness levels based on EEG features is shown in 
Figure 7.

2.4.4 Model evaluation
In this study, the performance of the motion sickness prediction 

model was evaluated and the model with the highest total score was 
set as the final model. Four metrics were used to evaluate the models, 

FIGURE 7

Overview of the five classification modeling.
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including accuracy, precision, recall, and F1 score. The calculation 
process of these metrics is as follows:

	
+

=
+ + +
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where TP is the sample correctly predicted by the model to be in 
the positive category, TN is the sample correctly predicted by the 
model to be in the negative category, FP is the sample incorrectly 
predicted by the model to be in the positive category, and FN is the 
sample incorrectly predicted by the model to be  in the 
negative category.

3 Result

3.1 Model evaluation results

The performance of each model in terms of is shown in Figure 8. 
Observing the black folded line in the figure, the average scores of 
accuracy, precision, recall, and F1 score of the five models all achieved 
the maximum in the occipital lobe area, which to some extent 
indicates that the EEG signals in the occipital lobe area are closely 
related to motion sickness, and is the same as the conclusion drawn 
by Chen et al. (2010). Since the BPNN model under the occipital lobe 
area is again superior to the other four models, the BPNN model 
under the occipital lobe area was finally selected as the final model for 
occupant motion sickness recognition.

The confusion matrix of the BPNN-based motion sickness 
recognition model is shown in Figure 9.

The BPNN model in this study uses a single hidden layer structure 
(100 neurons with ReLU activation), the input layer receives 6 EEG 
features and the output layer corresponds to 5 motion sickness levels. 
After 1980 iterations of training, the model successfully converged and 
achieved the highest accuracy (85.6%) in the test set. Its stratified 

FIGURE 8

Performance of the five models. (a) Accuracy; (b) Precision; (c) Recall rate; (d) F1-score.
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sampling validation and standardized preprocessing ensured 
generalization reliability. Preservation of the completed motion 
sickness emotion model classified by the BPNN algorithm using EEG 
features trained under the occipital lobe area prepares the model for 
further modulation analysis.

3.2 Music modulation results

In order to analyze the relief effect of the four music types on 
motion sickness and compare it with the state after natural recovery, 
the EEG features in the occipital lobe area after the modulation of each 
type of music (modulation group) as well as after the natural recovery 
(control group) were inputted into the constructed and completed 
recognition model of motion sickness, and we used the relief effect 
index η as an evaluation criterion, with the formula as follows:

	

( )
η

−
= − ×100%A B

B

R R
R 	

(11)

Among them:
AR  is the post-relief halo rating; BR  is the pre-relief halo rating.

The mitigation score η2 based on objective EEG data and the 
mitigation score η1 based on subjective evaluations collected during 
the experiment were organized as shown in Figure 10.

As shown in Figure  10, there is a correlation between the 
subjective relief scores of 25 subjects in 5 groups and the objective 
relief scores based on EEG data. In the subjective scores, the 
motion sickness relief effect of soft music and joyful music was 

better than that of natural recovery, while sad music and stirring 
music were not as good as that of natural recovery; in the objective 
scores based on EEG data, the motion sickness relief effect of 
joyful music, soft music and stirring music were better than that 
of natural recovery, and similarly, sad music was not as good as 
that of relief under natural recovery. Comparing the subjective and 
objective motion sickness relief scores, it can be concluded that 
joyful music and soft music have better motion sickness relief 
effects, while sad music is less effective and stirring music is 
moderate. A correlation analysis was performed between 
subjective relief effects and alpha power spectral density in the 
occipital lobe region. The results showed a close correlation 
between the two (p < 0.05). When the subjects’ motion sickness 
was relieved, there was a significant increase in alpha wave power 
spectral density.

3.3 The analysis and verification of 
Kolmogorov-Chaitin complexity for EEG

Currently, the concept of Kolmogorov-Chaitin(KC) complexity 
we use actually refers to Lempel-Ziv complexity. KC complexity is a 
data processing method based on data coarse-graining (Odan, 2024), 
and the process of different coarse-graining is called N-valuing. In 
this paper, we  focus on the KC complexity of binarization. After 
coarse-graining, the LZ complexity becomes insensitive to noise and 
is very suitable for processing bioelectric signals similar to EEG (Liu 
et  al., 2010). It has been shown that the KC complexity of EEG 
signals is closely related to mental fatigue, and it has been 
experimentally found that the value of KC complexity gradually 

FIGURE 9

Classification confusion matrix based on BPNN models.
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decreases as mental fatigue increases in the human brain (Zhang and 
Zheng, 2008).

We will continue to study the EEG KC complexity of the occipital 
lobe region corresponding to the three channels (O1, Oz, O2). The 
corresponding KC complexity of the occipital lobe region will 
be extracted as follows.

Binarization: the mean of the EEG signal within each time 
window is first calculated and the signal is converted to a 
binary sequence.

	

≥=  <

1,
0,

i
i

i

IF x Mean
S

IF x Mean	
(12)

where ix  is the EEG signal sampling power and iS  is the 
binarized sequence.

Computational complexity ( )c n : subsequently traverse the binary 
sequence and count the num (Zhang et al., 2016) ber of non-repeating 
sub-patterns in it ( )c n , Initialize ( )c n =1, initial sub-patterns are 1S , 
expand the substring step by step, if the new substring cannot 
be  duplicated from the existing pattern, ( )c n  increases, and after 
traversing the whole sequence, the final ( )c n  is obtained.

Normalized KC complexity: logarithmic normalization is used to 
avoid sequence length effects.
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(13)
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2log
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n 	
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n is the sequence length, and the normalized EEG KC complexity 
takes values in the range (0,1).

Finally, the average EEG KC complexity under different levels of 
motion sickness was calculated. Figure 11 shows the distribution of 
EEG KC complexity of subjects under different levels and the 
corresponding mean values.

It can be seen that when the subjects were in a calm state, the 
overall distribution of KC values in the occipital lobe area was high, 
and after the occurrence of motion sickness, the KC complexity in the 
occipital lobe area of the subjects generally appeared to have numerous 
low level values; in the level 2–5 motion sickness state, there were a 
small number of high level KC values, which may be  due to the 
individualization of the differences in the subjects; the KC complexity 
in the occipital lobe area of the subjects was close to the same level as 
a whole, and the trend of the change in the mean value can be seen 
that it still showed a decreasing Trend (Liu et al., 2020).

Subsequently, the correlation analysis test between the degree of 
dizziness and the KC complexity of the EEG signals in the occipital 
region was performed using the prism software, and the results are 
shown in Figure 12.

As can be seen from the figure, the correlation coefficient between 
motion sickness level and EEG KC complexity in occipital lobe area 
was −0.625, and the two of them showed a significant negative 
correlation, i.e., it indicates that, when the degree of motion sickness 
is higher, the EEG KC complexity in occipital lobe area decreases at 
this time. The occipital lobe area in which O1, O2, and Oz are located 
has a very high sensitivity to motion sickness, which is not only in line 
with the conclusions demonstrated in the previous sub-brain area and 
sub-model analyses, but also further verifies the accuracy of the model 
based on the recognition of motion sickness. Occipital lobe regions to 
recognize the accuracy of the motion sickness recognition model, and 
at the same time re-validates the conclusions drawn by Chen et al.

4 Discussion

This study used an objective assessment system based on 
electroencephalographic signals to reveal the differential effects of 
different music genres on the alleviation of motion sickness. The 
results showed that joyful music and soft music had better 
alleviating effects on motion sickness, with alleviation rates of 57.3 
and 56.7%, respectively; while sad music had a lower alleviation 
effect (40%) than natural recovery (43.3%). The BPNN recognition 
model constructed based on these findings (with an accuracy rate 

FIGURE 10

Mitigation effect scores based on subjective and objective data.
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of 85.6% in the occipital lobe region) further validated the strong 
association between music intervention effects and neural activity 
in the occipital lobe region, providing quantifiable metrics for real-
time music regulation.

4.1 Discussion of model prediction results

This study compared the performance of five machine learning 
models in classifying electroencephalographic signals and found that 
the BP neural network model in the occipital lobe region performed 
best in terms of accuracy, precision, recall, and F1 score.

Presenting such results may stem from the synergistic effect of 
physiological mechanisms and algorithmic properties. As a core area 
for visual information processing, the occipital cortex plays a key role 
in the development of motion sickness. Previous studies have shown 
that visual-vestibular signal conflict is a major factor inducing motion 
sickness, while the occipital area receives and integrates visuomotor 
information, and its EEG activity can directly reflect an individual’s 
physiological response to visual stimuli. When subjects were exposed 
to different types of relieving music, the power changes of alpha 

(8–13 Hz) and theta (4–8 Hz) waves in the occipital region may reflect 
the effect of music modulation on visual information processing, 
which provides highly discriminative feature inputs for the 
BPNN model.

The performance advantage of BP neural network is attributed to 
its deep nonlinear modeling ability. BPNN can effectively capture the 
complex dynamic features of EEG signals in occipital region under 
music intervention, and its adaptive weight adjustment mechanism 
shows stronger robustness to individual differences and noise 
interference, which is significantly better than the shallow model. In 
contrast, KNN and SVM may be limited by the local similarity metric 
and linear kernel constraints, which make it difficult to adequately 
characterize the high-dimensional nonlinear distributions of features 
related to motion sickness.

4.2 Intervention effects of music on motion 
sickness

This study found that soft and joyful music was significantly more 
effective than sad music in relieving motion sickness, while stirring 

FIGURE 12

Correlation analysis of motion sickness level and EEG KC complexity.

FIGURE 11

EEG KC complexity for each level of motion sickness.
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music had a moderate effect. Both subjective and objective data 
consistently supported this conclusion. This finding not only validated 
existing research but also revealed, to a certain extent, the specific 
mechanisms involved in motion sickness regulation.

Subjective scores showed that the motion sickness relief effects 
of soft and joyful music were significantly better than natural 
recovery, a result that was further verified in the EEG data. The 
soothing rhythm of soft music may reduce the symptoms of 
nausea and dizziness associated with motion sickness by 
modulating the autonomic nervous system and reducing 
sympathetic excitability. In addition, soft music may enhance 
alpha wave (8–13 Hz) activity in the occipital region, promote the 
formation of a relaxed state in the brain, and alleviate visual-
vestibular conflicts. In contrast, the positive effects of joyful music 
may stem from its rhythmic motivational effect, which elevates 
emotional states by activating brain reward systems (e.g., the 
nucleus ambiguus), thereby distracting individuals from dizziness 
discomfort. Subjective and objective data consistently show that 
sad music is even less effective in relieving motion sickness than 
natural recovery. This phenomenon may stem from an emotional 
resonance effect—the subdued melodies of sad music may 
intensify negative emotional experiences, superimposing them on 
the discomfort of motion sickness and thus exacerbating 
subjective discomfort. Neurologically, sad music may inhibit 
emotion regulation in the prefrontal-limbic system, making it 
more difficult for individuals to recover from motion sickness, as 
has been demonstrated in previous laboratory studies. The study 
was conducted in the laboratory of the University of California, 
Berkeley, and the United States (Li et al., 2025).

4.3 Relationship between EEG KC 
complexity and motion sickness levels

In this study, we  analyzed the Kolmogorov-Chaitin (KC) 
complexity changes of EEG signals in the occipital lobe area under 
different motion sickness states and found that the degree of motion 
sickness showed a significant negative correlation with KC complexity 
(r = −0.625, p < 0.05). These results reveal the neural mechanism of 
motion sickness from the perspective of nonlinear dynamics and 
provide theoretical support for motion sickness recognition models 
based on the occipital lobe area.

In the calm state, the visual cortex’s EEG activity exhibited higher 
KC complexity, reflecting its high information complexity and 
nonlinear dynamic properties during normal visual information 
integration. With the onset of dizziness symptoms, KC values decreased 
significantly, indicating weakened dynamic complexity in the 
visual cortex.

4.4 Limitations and future work

First, although experiments were conducted in a simulated 
environment, the current sample size is still relatively small. Analysis 
indicates that the statistical power (29%) under the current sample 
grouping has not yet reached conventional standards, which to some 
extent reduces the certainty of the conclusions. Second, during the 

data processing stage, only commonly used features were extracted for 
analysis, and the contribution of different features to motion sickness 
classification was not evaluated, which may introduce redundant 
features and affect the model’s interpretability and generalization 
ability. Finally, the experiments were conducted using a driving 
simulator, which inevitably differs from real-world driving 
environments, potentially affecting the intensity of motion sickness 
induction and EEG response patterns. The age range of participants 
was narrow (20–30 years old), while susceptibility to motion sickness 
may vary with age.

In subsequent studies, to further validate the conclusions, we will 
expand the experimental sample size to achieve statistical power and 
construct a more comprehensive set of EEG features in the experiment. 
We  will use feature selection algorithms to identify the most 
discriminative feature subsets to improve model efficiency. We will 
conduct real-vehicle experiments to assess the external validity of the 
simulator experiment conclusions.

5 Conclusion

In summary, this study constructed and screened various 
motion sickness recognition models by integrating EEG signal 
analysis and machine learning techniques, and systematically 
explored the intervention effects of different music types on motion 
sickness. The results showed that the five types of features extracted 
by sub-brain regions (mean, variance, skewness, kurtosis, and 
power spectral density) were inputted into a variety of models and 
performed better in the occipital lobe area, and the BPNN model 
was again the best. BPNN model was again optimal; subjective and 
objective data consistently showed that: gentle music and cheerful 
music both significantly alleviated motion sickness symptoms; 
while sad music may exacerbate discomfort through emotional 
resonance. Notably, agitated music showed context-dependent 
effects, which were effective in objective indicators but poor in 
subjective experience. Based on the above conclusions, in the 
future, we  can monitor the changes of motion sickness of the 
occupants in real time and play suitable music types according to 
the state of motion sickness, so as to utilize the alleviating effect of 
music to help the occupants maintain a good physical state, thus 
enhancing the comfort of the occupants.
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