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Introduction: Motion sickness often causes passengers to experience negative
emotions such as tension, which in turn triggers symptoms like dizziness and
nausea, seriously affecting the travel experience of passengers. Previous studies
have shown that music can alleviate negative emotions such as tension, but its
effect on motion sickness remains unclear, and the differences in the alleviation
effect of different types of music on motion sickness need to be quantitatively
evaluated.

Methods: We collected Electroencephalogram (EEG) data from 30 subjects in a
simulated driving environment and constructed a motion sickness recognition
model by combining time-and frequency-domain features (mean, variance,
skewness, kurtosis, power spectral density) with classification algorithms. The
model achieved accurate identification of passenger motion sickness states.
Based on this model, the intervention effects of four types of music (joyful, sad,
stirring, and soft) on motion sickness were further evaluated and compared with
the control group (taking natural recovery measures).

Results: The results showed that soft and joyful music had better intervention
effects (average reduction of 56.7 and 57.3%, respectively), followed by
passionate and sad music (average reduction of 48.3 and 40%, respectively),
among which the alleviation effect of sad music was lower than that of the
control group (average reduction of 43.3%). In addition, it was verified that the
EEG Kolmogorov-Chaitin complexity in the occipital region was significantly
negatively correlated with the motion sickness grade p = —0.625, p < 0.005).

Discussion: The study suggests that personalized music intervention strategies
may effectively alleviate motion sickness symptoms of passengers, thereby
increasing cabin comfort and improving the travel experience of passengers.

KEYWORDS

electroencephalographic data, motion sickness recognition, relief methods, music
therapy, machine learning

1 Introduction

With the advancement of autonomous driving technology to SAE Level 3, human-
machine shared control has emerged as the predominant operational paradigm (He et al.,
2024). In this configuration, drivers collaborate dynamically with the autonomous system,
relinquishing continuous vehicular control. While this transition enhances driving
convenience and safety, it simultaneously introduces novel kinesthetic challenges for
occupants, particularly a marked elevation in motion sickness incidence. Empirical evidence
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indicates that passengers experience significantly higher susceptibility
to motion sickness compared to drivers (Smyth et al., 2018). During
mixed-mode operation (alternating between manual and assisted
driving), occupants frequently develop motion sickness when
kinematic vehicle parameters (e.g., longitudinal/lateral acceleration,
yaw rate) conflict with visual cues, resulting in vestibulo-
ocular mismatch.

Currently, the measurement methods of motion sickness are mainly
divided into subjective measurement and objective measurement (Chang
et al, 2020). Subjective measurements are based on relevant
questionnaires, which are filled out verbally or independently to obtain
the patient’s motion sickness rating, while objective measurements rely
on physiological signal acquisition equipment to collect objective
physiological and behavioral data from patients and correlate them with
the user’s subjective motion sickness ratings, thus exploring the
relationship between objective parameters and motion sickness.
Subjective measures of motion sickness are commonly used, including
the Pensacola Motion Sickness Questionnaire (MSQ; Graybiel et al.,
1965), the Simulator Sickness Questionnaire (SSQ; Kennedy et al., 1993),
and the Misery Scale (MISC; Bos et al., 2005).

A large number of studies have been devoted to the mitigating
modulation of motion sickness, mainly focusing on pharmacological
management and sensory interventions, and it has been shown that
there is expression of cholinergic M1, M2, and M5 receptor subtypes in
the vestibular organ and vestibular ganglion (Li et al., 2007), with the M1
and M5 receptors functioning as postsynaptic excitatory receptors.
Based on this finding, the anti-motion sickness effect of scopolamine
may originate from its specific blocking effect on M1 and M5 receptor
subtypes (Zhang et al., 2016). Hongri et al. (2025) developed a motion
sickness model using rotational stimulation and assessed the efficacy of
Tianmu ultrafine powder in alleviating symptoms through behavioral
indices (e.g., motion sickness response index, balance beam test,
spontaneous activity test). Their results demonstrated that this powder
significantly reduced motion sickness in mice without adverse effects
(Hongri et al, 2025). Xiang (2024) investigated the efficacy of
intradermal needle therapy in alleviating motion sickness. Rotational
motion was used to induce motion sickness in the subjects, with blood
pressure and pulse rate as indicators. The results showed that intradermal
needles stimulated at a frequency of 60 times/min were more effective
in improving the symptoms and signs of rotation-induced motion
sickness, suggesting that higher stimulation frequencies may be closer
to the optimal treatment dose and can achieve more satisfactory
treatment outcomes (Xiang, 2024). While existing research has
predominantly focused on optimizing motion sickness recognition
algorithms and developing olfactory-or tactile-based interventions, the
relationship between auditory stimuli (particularly music genres) and
motion sickness in driving environments remains underexplored.

To address these issues, this study focuses on investigating the
effects of different types of music on motion sickness. By constructing
a  motion  sickness identification model based on
electroencephalographic signals, we systematically evaluate the
differential regulatory effects of four types of music (joyful music, sad
music, stirring music, and soft music) on motion sickness.

The main contributions of this work can be summarized
as follows:

(1) The system quantified the differentiated intervention effects of
four types of music on motion sickness and found that joyful
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music and soft music had better alleviating effects on motion
sickness (57.3 and 56.7%, respectively), providing empirical
evidence for cabin music intervention for motion sickness.

(2) The recognition model based on electroencephalographic
signals (particularly the occipital lobe BPNN model, with an
accuracy rate of 85.6%) provides an objective measurement
tool for evaluating the effectiveness of music intervention.

(3) Extraction and analysis of the complexity of KC in the occipital
lobe confirmed a certain correlation with motion sickness,
proving that it can be used as an assessment indicator for
motion sickness.

2 Materials and methods
2.1 Experimental scenario

Since this experiment requires the collection of EEG data from
subjects in the motion sickness state, and the induction of motion
sickness symptoms in the actual road environment may lead to a
decrease in driving maneuvering ability, which is a safety hazard.
Therefore, in this study, a driving simulation experiment was used
instead of a real-road experiment to induce motion sickness symptoms
and collect EEG data from the subjects. The main advantages of the
simulator are that it is safe and avoids the risk of driving due to motion
sickness, and the experimental environment can be controlled to
precisely adjust the parameters of the visuomotor stimuli to induce
different degrees of motion sickness. It has been shown that the visual-
vestibular conflict effect generated by driving simulators is physiologically
similar to the real motion environment and can effectively induce typical
motion sickness symptoms (Bronstein et al., 2020). Based on this, the
present study was conducted to collect EEG data under motion sickness
through a driving simulator experimental platform.

In this study, Forza Horizon 5 software developed on the EA
platform and Lestar V99 driving simulator are used to build a driving
simulation environment, which can simulate the road traffic
environment of the driver in the real driving process (Ali et al., 2020),
and contains the vehicle operating system, the image display system,
and the sound system in three parts, and the simulator has certain
assisted driving functions, which can be good simulation of the current
assisted driving and manual driving synthetic environment. Driving
and manual driving synthetic environment. The simulator’s display
screen has a width-to-height ratio of 16:9, with a horizontal field of
view (FOV) of 83° and a vertical FOV of 53°. The vehicle control
system is equipped with a steering wheel, gearshift, accelerator pedal,
brake pedal, and clutch. The visual display system includes an LCD
screen that provides a first-person driving perspective, while the audio
system delivers surround sound effects during the simulated driving
process. The EEG data acquisition device operates at a sampling rate of
500 Hz. The 64-channel EEG electrodes are positioned according to the
international 10-10 system, with CPz and End electrodes serving as
reference and ground, respectively. Throughout the experiment,
electrode impedance is maintained below 5 k€. The entire experimental
process is programmed using E-Prime 3, which can be connected to
the EEG equipment to synchronize marking. Music control is also
achieved through E-Prime 3 by connecting to headphones for playback.

The experimental setup scene is shown in Figure 1. The
environment in the laboratory was always well ventilated and well lit.
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FIGURE 1
Experimental scenario.
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2.2 Initial screening of simulator roads

Forza Horizon 5 software has built-in rich and real road sections to
choose from. In order to achieve better motion sickness inducing effects
on the subjects during the formal experiments, the built-in roads are first
screened, taking into account the experimental needs, the susceptibility
of the subjects to motion sickness, and the degree of driving proficiency,
and are screened in accordance with the following principles:

(1) The road trip should be appropriate, the road trip is too short
to meet the set experimental time requirements, the trip is too
long will lead to fatigue and interfere with the motion sickness
induced experiment.

(2) The road should have good motion sickness inducing effect,
which can ensure the successful induction of most subjects.

(3) The complexity of the road should be appropriate; if the road
complexity is too low, the motion sickness inducing effect will
be poor, which will affect the accuracy of the experiment, and
at the same time, the road conditions are too single, which will
easily cause fatigue; while if the complexity is too high, the
subjects with low driving skill may frequently have collisions
and drive out of the road area, which will interfere with
the experiment.

In accordance with the above principles, 10 roads with different
road complexity, road length, and different surrounding landforms
(rainforest, desert, mountain, coast, etc.) were selected in the software,
and all of them required more than 5min of traveling time to
complete. These 10 roads will be used for subsequent experimentalists
to analyze and screen the effectiveness of road sickness induction.

In order to assess the 10 roads initially screened in the driving
simulator as described above, the MISC, Karolinska Sleepiness Scale
(KSS; Kaida et al., 2006), and the 7-level Likert Scale (Capuano et al.,
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2016) were used to record the subjects’ motion sickness level, fatigue
level, and road complexity during the driving task, respectively. The
MISC, KSS, and Likert Scale used are shown in Tables 1-3.

Forty volunteers were recruited to participate in the simulator
road screening experiment, including 22 males and 18 females, and
the specific information of the volunteers is shown in Table 4.

During the experiment, the subjects completed the driving tasks
of 10 roads sequentially according to the requirements, and every time
they completed a driving task, they filled in the MISQ scale and
Caroline Sleepiness Scale for that road, and when the level of motion
sickness reached 3 or more, it was regarded as a successful induction;
in order to avoid too much intervention of the cumulative effect of
motion sickness, after the completion of filling in the scales, the
subjects would be free to move around for 3 min in order to alleviate
the effect of motion sickness and wake up the brain, and after 3 min
After 3 min, the subjects will continue to complete the next road
driving task. The screening process is shown in Figure 2.

The 10 roads were numbered and the data from the experiment
were collected to present the performance of the 10 roads in the three
dimensions using k-means clustering diagram. As shown in Figure 3.

According to the aforementioned screening principles, it can
be seen that road 2, road 3 and road 5 have better motion sickness
inducing effect, but road 2 and road 3 are easy to make people tired,
so the comprehensive consideration, road 5 was selected as the
subsequent experimental motion sickness inducing material.

2.3 Experimental procedure

2.3.1 Subjects were screened for susceptibility to
motion sickness

Due to individual differences in sensitivity to motion stimuli and
to visual conflict-inducing schemes such as driving simulators, in
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TABLE 1 MISC scale.
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Symptomatic Motion sickness Level
No symptoms. 0
T'm a little uncomfortable, but I do not have any obvious symptoms. 1
Seemingly tangible or intangible 2
Dizziness, feeling cold/hot, headache, upset stomach, upset throat, increased sweating, blurred vision, Yawning, Mildly 3
hiccups, tiredness (fatigue), increased saliva production, but not nausea Moderately 4
Severe 5
Mildly 6
Moderately 7
Nausea
Severe 8
Borderline dry heaving 9
Vomiting 10

TABLE 2 Karolinska sleepiness scale.

Fully conscious state 1
Very lucid state 2
Sober 3
More awake 4
Between wakefulness and sleepiness 5
More sleepy 6
Drowsy but alert 7
Drowsy but less able to maintain alertness 8
Extremely sleepy and wanting to go to sleep 9

TABLE 3 7-level Likert scale.
Descriptive Define Score
Almost no maneuvering, no obstacles on the road Maximum simplicity 1
Very little attention is required and the operation is fully automated. Very simple 2
Occasional attention to road conditions is required, but handling is stress-free. Simpler 3
Requires steady attention and a clear need to operate. Moderate 4
High-frequency operation requiring a high degree of concentration. Sticky 5
Complex road conditions with low operational tolerance. Very difficult 6
It’s almost impossible to complete the driving task. Great difficulty 7

TABLE 4 Volunteer age, driving age details.
Age, years driving Average value Standard deviation Upper quartile
Age (years) 27.8 6.1 26 ‘
Driving experience (years) 5.0 3.0 4.5 ‘

order to ensure that the experiment can effectively induce observable
motion sickness symptoms and control the variability brought about
by individual differences, and to ensure the efficient conduct of the
experiment, subjects with moderate susceptibility to motion sickness
were selected for the follow-up music-relieving experiments in
this study.
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Translated with DeepL.com (free version) all questionnaire
screeners are required to meet the following criteria:

(1) Corrected visual acuity >1.0 (Snellen 20/20), no color blindness

or color deficiency (by Ishihara test), and no history of recent
ophthalmic surgery.
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(2) No history of mental illness, cardiovascular disease,
vestibular dysfunction or syncope, and no medication
affecting  vestibular  function 48h Dbefore the
experiment.

(3) Pure tone audiometry <25 dB HL, no tinnitus or balance

disorders.

Motion sickness susceptibility is generally assessed using the
Motion Sickness Susceptibility Questionnaire (MSSQ; Lukacova
etal.,, 2023), which is an effective predictor of susceptibility to motion
sickness in a laboratory setting by assessing the frequency and
severity of motion sickness in individuals who have ridden various
types of transportation in the past. However, some of the questions
in the traditional questionnaire (e.g., amusement park rides: roller
coasters, etc.) have limited applicability in the Chinese population,
so the MSSQ modified by Leilei Pan of the Naval Medical University
was used as the instrument in this study. Therefore, this study used
the MSSQ modified by Pan Leilei of Naval Military Medical
University, which replaces amusement park rides with more suitable
means of transportation for Chinese subjects (e.g., “bus bumps”) to
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increase the accuracy of the screening process (Pan Leilei and
Ruirui, 2016).

The modified version of the MSSQ scale consists of a childhood
questionnaire and an adulthood questionnaire, with the childhood
questionnaire recording up to the age of 12 years and the adulthood
questionnaire recording within the last 10years, and the
questionnaires are the same during both childhood and adulthood,
i.e., Tables 5, 6. The susceptibility index calculation and grading
criteria are then based on a modified version of the MSSQ-R3 formula:

_ (218Sy +TSSy )x7

- NST )

MSSQ-R3-A(B)

In the formula, MSSQ—R3—A(B) is the susceptibility index
during childhood or adulthood, respectively, and the sum of the two
is the total susceptibility index; TSSy is the total nausea symptom
score, TSSy is the total vomiting symptom score, and NST is the
number of types of rides on transportation or amusement rides.

The percentile was used to determine the level of susceptibility
grades: mild susceptibility (<50%), moderate susceptibility (50-75%),
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TABLE 5 Sample questionnaire on the number of rides on transportation or amusement rides.

Entertainment activities

Never (1 point)

Enclosed carriage

1-4 times (2 points)

5-10 times (3 points)

11 or more (4 points)

Bus

Trains

Helicopter

Boat

Ship or ferry

Trapeze

TABLE 6 Nausea and vomiting on transportation or amusement rides and vomiting symptoms on transportation or amusement rides.

Entertainment
activities

Never (1 point)

Basically not.
(2 points)

Non-Recurrent
(4 points)

Occasionally
(3 points)

Always
(5 points)

Enclosed carriage

Bus

Trains

Helicopter

Boat

Ship or ferry

Trapeze

TABLE 7 Information sheet for subjects.

Scene Males Females Age Driving
experience

Twisty

mountain 16 14 279 4.6

road

and severe susceptibility (>75%), and a total of 112 subjects were
screened, from which 30 subjects with moderate susceptibility to
dizziness were screened to participate in the subsequent experiment.
And before the beginning of the experiment, the data of individual
characteristics of the subjects were recorded: height, age, height, and
body mass as shown in Table 7.

2.3.2 Motion sickness triggering and music
modulation

Thirty subjects will be divided into six groups of five each, four of
which will be moderated with four types of music after the induction of
motion sickness (moderated group), one group will mark the EEG data
after the motion sickness score reaches 2 (almost no motion sickness)
that is the end of the group (baseline group) without moderation, and
the last group will serve as a control group, which will be taken to
meditate for 1 min after the normal completion of the simulated driving
task induced by the motion sickness, without other interventions.

In order to better study visually induced dystonia, all subjects
were told to refrain from consuming alcohol, caffeine, and nicotine
for 48 h before the start of the experiment, and to get enough sleep.
Prior to the start of the experiment, all subjects were required to fill
out an informed consent form to ensure that they fully understood
the objectives and specific tasks of the experiment.

During the experiment, subjects were asked to verbally report the
level of motion sickness according to a simplified version of the
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TABLE 8 Motion sickness scale.

Almost no Serious
motion

sickness

None

Mildly

Moderately

Dz ] s |+ | s

Motion sickness scale (MSS), which is shown in Table 8. The reason
why the traditional MISC was not used is that it has more gradations
and is not suitable for subjects to quickly judge their own state during
the experiment. The use of the MSS improves the efficiency of the
experiment, reduces subject talking, and decreases interference with
the EEG data.

The specific experimental procedure, which can be divided into
the following three stages:

Preparatory stage:

In order for the subjects to understand the symptoms associated
with motion sickness and to ensure that they were in good physical
condition before the driving phase, the subjects were first asked to fill
in the SSQ scale mentioned above, see Table 9, and if they had any
discomfort, they were asked to choose another time for the experiment
in order not to affect the results. When the subjects were in good
physical and mental condition, they would sit still for 3 min in the
driving simulator to eliminate the fatigue state and record the EEG
signals in this state for baseline data.

Evoked stage:
Subjects reported their MSS ratings after completing a driving
task on a selected road using the simulator while the experimenter

made EEG markings.
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TABLE 9 SSQ scales.
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FIGURE 4
Experimental procedure for motion sickness induction and relief.
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Modulation stage:

The subjects stopped the driving task, the experimenter played the
corresponding type of music to the subjects in the modulation group
(60 s) for modulation, and the subjects in the control group took the
natural recovery measures to relieve the motion sickness. All subjects
reported the level of motion sickness after 60 s, and the experimenter
labeled the EEG data.

The experimental flow is shown in Figure 4.

2.3.3 Ethical statement

The studies involving humans were approved by Ethics Committee
of Chongging University of Arts and Sciences (Approval No.
CQWL202541). The studies were conducted in accordance with the
local legislation and institutional requirements and adhere to the
Declaration of Helsinki. The participants provided their written
informed consent to participate in this study. Written informed
consent was obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.

2.4 Data processing and analysis

The process of analyzing, processing and classifying EEG data
related to motion sickness is shown in Figure 5, which contains: data
preprocessing, feature extraction and model training (Amin et al.,
2015). Feature extraction mainly focuses on time domain and
frequency domain features, and finally the extracted features are
organized and loaded into the model for training and classification to
obtain classification results.

2.4.1 Data preprocessing
EEG signals are susceptible to a variety of noise interferences
during acquisition, such as ophthalmoscopic, electromyographic,
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industrial frequency noise (50 Hz/60 Hz), and device drift (Usakli,
2010), which can seriously affect the accuracy of subsequent analysis.
Therefore, data preprocessing is a key step in EEG analysis, aiming
to improve the signal-to-noise ratio and retain effective physiological
information. Commonly used preprocessing methods include band-
pass filtering to remove high-frequency noise and low-frequency
drift, independent component analysis to separate artifacts,
bad-conduct interpolation, and segment alignment. Through
preprocessing, the robustness of the feature extraction and
classification models can be significantly improved, laying a reliable
data foundation for subsequent research (Musthafa et al., 2024). The
flowchart of the preprocessing of EEG signals in this paper is shown
in Figure 6.

2.4.2 Feature extraction

(1) Time-domain features: EEG time-domain features, as a kind of
temporal signal, can reflect the amplitude and statistical
properties of the signal over time, and are used to analyze the
basic morphology and fluctuation patterns of EEG waveforms
(Hjorth, 1970). The time domain features extracted in this
study include: mean, variance, skewness, kurtosis.

(a) Mean: the average of the EEG signals, which is the sum of
all the sampled values divided by the total number of
points. The formula is as follows:

= 1 N
X= 2 @)

(b) Variance: EEG variance characterizes the degree of
dispersion of the signal amplitude, reflecting the intensity
of fluctuations in EEG amplitude, and can be used to assess
the state of brain activity. The formula is as follows:
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(c) Skewness: EEG skewness reflects the asymmetry of the
signal amplitude distribution, with positive skewness
indicating more high amplitudes and negative skewness
vice versa, and can be used to detect abnormal EEG
activity. The formula is as follows, where 6 is the
standard deviation:

L o (xl)-a)
S:N—lz"_l[ o J ®

(d) Kurtosis: EEG kurtosis reflects the sharpness of the signal
amplitude distribution, with high values suggesting
abnormal transient activity (e.g., epileptic waves) and low
values indicating a smooth rhythm. The formula is
as follows:

®)
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bands and are used to analyze brain rhythmic activities
(Al-Fahoum and Al-Fraihat, 2014).

(a) Power Spectral Density(PSD): indicates the signal power
per unit frequency band, and the decomposition of EEG
signals into frequency-domain energy distributions by
Fourier transform is the core frequency-domain feature for
portraying EEG rhythms. First, the Fourier transform is
utilized to convert the EEG signal from the time domain
to the frequency domain.

In this study, the Welch mean periodogram method was used to
calculate the PSD of EEG data in order to analyze the characteristics
of neural oscillations in different frequency bands. Five seconds after
each marker was divided into five 1-s-long non-overlapping time
windows to improve the temporal resolution and reduce the effect of
transient noise, and a Hanning window was used for windowing to
reduce spectral leakage and improve the accuracy of spectral
estimation. Regarding the core parameters of PSD calculation, the
number of FFT points is set to 256 to ensure the balance between
spectral resolution and computational efficiency. A 50% overlap rate
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is used to enhance spectral smoothness and reduce the estimation
variance.

The PSD was calculated using the Pwelch function in MATLAB
software with the mathematical expression:

K 2

LS o ol

1

Poc(f) =7

Ky

In Equation:

Xk (n) is the kth segment signal.

a)(n) is the Hanning window function.
L is the window length.

K is the total number of segments.

In this study, the average power density of two bands-theta band
(4-8 Hz) and alpha band (8-13 Hz)-was extracted to reflect the neural
oscillation patterns in different cognitive states, in which theta-band PSD
is mainly related to memory encoding and attentional modulation,
whereas alpha-band PSD can reflect the resting-state brain activity and
is related to inhibitory control (Li et al., 2024). Finally, in order to reduce
the influence of single-channel noise, the arithmetic mean of the PSDs
of all effective channels in each brain region was taken to obtain the
representative spectral characteristics of the brain region.

By combining time-and frequency-domain features, it is possible
to comprehensively characterize the neural response induced by
motion sickness and improve the accuracy of state identification and
degree assessment.

2.4.3 Classification modeling based on EEG
signals

In this experiment, the data from the preparation stage and the
evoked stage were selected to form the dataset for building the
classification model, and all the subjects had a halo level of 1 in the
preparation stage, and the evoked stage halo level of the subjects in the
baseline group was stopped after the evoked stage halo level reached

10.3389/fnhum.2025.1636109

2. Then the baseline sample cases were 30 for level 1, 10 for level 2, 8
for level 3, 6 for level 4, and 6 for level 5. To enhance the sensitivity of
the model to the time-varying features of the EEG signal and to
alleviate the small-sample limitation, the present study used a sliding-
window strategy to segment the 5-s data after event labeling in 1-s
steps (1-s window length, 4-s overlap). This method expands the
original data volume by 5 times while maintaining the event-related
temporal structure, and optimizes the model’s ability to generalize to
individual response latencies by translational alignment of local time
windows (Zhou et al., 2025).

The EEG data acquisition channels used were Fp2, AF3, AF4, F7,
F3, Fz, F4, F8, FC5, FC1, FC2, FCe¢, C5, C3, Cz, C4, C6, CP5, CP1,
CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz, and O2, totaling 31
EEG channels. All EEG channels were categorized into 5 brain
regions (frontal pole region, frontal lobe region, central region,
parietal lobe region, and occipital lobe region) according to
their locations.

Multidimensional features of five brain regions were extracted
from the EEG signals, instantaneous domain statistical features (mean,
variance, skewness, and kurtosis) as well as frequency domain features
(power spectral densities in theta and alpha frequency bands). These
features can comprehensively characterize the temporal and spatial
dynamics of brain activity in the motion sickness state. Based on the
extracted features, this study systematically compares the performance
of traditional machine learning methods and deep learning models in
motion sickness state recognition, providing an experimental basis for
the establishment of an optimal classification prediction model. The
models involved include five models, including BP neural network, K
nearest neighbor (KNN), support vector machine (SVM), plain Bayes
(NB) and logistic regression (LR). An overview of the model for
classifying motion sickness levels based on EEG features is shown in
Figure 7.

2.4.4 Model evaluation

In this study, the performance of the motion sickness prediction
model was evaluated and the model with the highest total score was
set as the final model. Four metrics were used to evaluate the models,

mean value
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variance

Skewness

-

60 samples Level 1
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FIGURE 7
Overview of the five classification modeling.
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Performance of the five models. (a) Accuracy; (b) Precision; (c) Recall rate; (d) F1-score.

including accuracy, precision, recall, and F1 score. The calculation

process of these metrics is as follows:

TP+TN
Accuracy =———————— (7)
TP+TN +FP+FEN
TP
Precision=——— (8)
TP + FP
Recall = _T1P 9
TP+ FN
2 Precision- Recall
Fl—-score=——————— (10)

Precision+ Recall

where TP is the sample correctly predicted by the model to be in
the positive category, TN is the sample correctly predicted by the
model to be in the negative category, FP is the sample incorrectly
predicted by the model to be in the positive category, and FN is the
sample incorrectly predicted by the model to be in the
negative category.
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3 Result
3.1 Model evaluation results

The performance of each model in terms of is shown in Figure 8.
Observing the black folded line in the figure, the average scores of
accuracy, precision, recall, and F1 score of the five models all achieved
the maximum in the occipital lobe area, which to some extent
indicates that the EEG signals in the occipital lobe area are closely
related to motion sickness, and is the same as the conclusion drawn
by Chen et al. (2010). Since the BPNN model under the occipital lobe
area is again superior to the other four models, the BPNN model
under the occipital lobe area was finally selected as the final model for
occupant motion sickness recognition.

The confusion matrix of the BPNN-based motion sickness
recognition model is shown in Figure 9.

The BPNN model in this study uses a single hidden layer structure
(100 neurons with ReLU activation), the input layer receives 6 EEG
features and the output layer corresponds to 5 motion sickness levels.
After 1980 iterations of training, the model successfully converged and
achieved the highest accuracy (85.6%) in the test set. Its stratified
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FIGURE 9
Classification confusion matrix based on BPNN models.

sampling validation and standardized preprocessing ensured
generalization reliability. Preservation of the completed motion
sickness emotion model classified by the BPNN algorithm using EEG
features trained under the occipital lobe area prepares the model for
further modulation analysis.

3.2 Music modulation results

In order to analyze the relief effect of the four music types on
motion sickness and compare it with the state after natural recovery,
the EEG features in the occipital lobe area after the modulation of each
type of music (modulation group) as well as after the natural recovery
(control group) were inputted into the constructed and completed
recognition model of motion sickness, and we used the relief effect
index 5 as an evaluation criterion, with the formula as follows:

_Mxloo%
R

B

n= (11)

Among them:

Ry is the post-relief halo rating; Ry is the pre-relief halo rating.

The mitigation score 77, based on objective EEG data and the
mitigation score 77, based on subjective evaluations collected during
the experiment were organized as shown in Figure 10.

As shown in Figure 10, there is a correlation between the
subjective relief scores of 25 subjects in 5 groups and the objective
relief scores based on EEG data. In the subjective scores, the
motion sickness relief effect of soft music and joyful music was
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better than that of natural recovery, while sad music and stirring
music were not as good as that of natural recovery; in the objective
scores based on EEG data, the motion sickness relief effect of
joyful music, soft music and stirring music were better than that
of natural recovery, and similarly, sad music was not as good as
that of relief under natural recovery. Comparing the subjective and
objective motion sickness relief scores, it can be concluded that
joyful music and soft music have better motion sickness relief
effects, while sad music is less effective and stirring music is
moderate. A correlation analysis was performed between
subjective relief effects and alpha power spectral density in the
occipital lobe region. The results showed a close correlation
between the two (p < 0.05). When the subjects’ motion sickness
was relieved, there was a significant increase in alpha wave power
spectral density.

3.3 The analysis and verification of
Kolmogorov-Chaitin complexity for EEG

Currently, the concept of Kolmogorov-Chaitin(KC) complexity
we use actually refers to Lempel-Ziv complexity. KC complexity is a
data processing method based on data coarse-graining (Odan, 2024),
and the process of different coarse-graining is called N-valuing. In
this paper, we focus on the KC complexity of binarization. After
coarse-graining, the LZ complexity becomes insensitive to noise and
is very suitable for processing bioelectric signals similar to EEG (Liu
et al., 2010). It has been shown that the KC complexity of EEG
signals is closely related to mental fatigue, and it has been
experimentally found that the value of KC complexity gradually
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Mitigation effect scores based on subjective and objective data.

decreases as mental fatigue increases in the human brain (Zhang and
Zheng, 2008).

We will continue to study the EEG KC complexity of the occipital
lobe region corresponding to the three channels (O1, Oz, O2). The
corresponding KC complexity of the occipital lobe region will
be extracted as follows.

Binarization: the mean of the EEG signal within each time
window is first calculated and the signal is converted to a
binary sequence.

1,IF x; > Mean
0,IF x; < Mean

i =

(12)

where x; is the EEG signal sampling power and §; is the
binarized sequence.

Computational complexity c(n): subsequently traverse the binary
sequence and count the num (Zhang et al., 2016) ber of non-repeating
sub-patterns in it c(n), Initialize c(n):l, initial sub-patterns are Sy,
expand the substring step by step, if the new substring cannot
be duplicated from the existing pattern, c(n) increases, and after
traversing the whole sequence, the final c(n) is obtained.

Normalized KC complexity: logarithmic normalization is used to
avoid sequence length effects.

KC= b(n) (13)
n
b= fogsm (14)

n is the sequence length, and the normalized EEG KC complexity
takes values in the range (0,1).

Finally, the average EEG KC complexity under different levels of
motion sickness was calculated. Figure 11 shows the distribution of
EEG KC complexity of subjects under different levels and the
corresponding mean values.
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It can be seen that when the subjects were in a calm state, the
overall distribution of KC values in the occipital lobe area was high,
and after the occurrence of motion sickness, the KC complexity in the
occipital lobe area of the subjects generally appeared to have numerous
low level values; in the level 2-5 motion sickness state, there were a
small number of high level KC values, which may be due to the
individualization of the differences in the subjects; the KC complexity
in the occipital lobe area of the subjects was close to the same level as
a whole, and the trend of the change in the mean value can be seen
that it still showed a decreasing Trend (Liu et al., 2020).

Subsequently, the correlation analysis test between the degree of
dizziness and the KC complexity of the EEG signals in the occipital
region was performed using the prism software, and the results are
shown in Figure 12.

As can be seen from the figure, the correlation coeflicient between
motion sickness level and EEG KC complexity in occipital lobe area
was —0.625, and the two of them showed a significant negative
correlation, i.e., it indicates that, when the degree of motion sickness
is higher, the EEG KC complexity in occipital lobe area decreases at
this time. The occipital lobe area in which O1, O2, and Oz are located
has a very high sensitivity to motion sickness, which is not only in line
with the conclusions demonstrated in the previous sub-brain area and
sub-model analyses, but also further verifies the accuracy of the model
based on the recognition of motion sickness. Occipital lobe regions to
recognize the accuracy of the motion sickness recognition model, and
at the same time re-validates the conclusions drawn by Chen et al.

4 Discussion

This study used an objective assessment system based on
electroencephalographic signals to reveal the differential effects of
different music genres on the alleviation of motion sickness. The
results showed that joyful music and soft music had better
alleviating effects on motion sickness, with alleviation rates of 57.3
and 56.7%, respectively; while sad music had a lower alleviation
effect (40%) than natural recovery (43.3%). The BPNN recognition
model constructed based on these findings (with an accuracy rate
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of 85.6% in the occipital lobe region) further validated the strong
association between music intervention effects and neural activity
in the occipital lobe region, providing quantifiable metrics for real-
time music regulation.

4.1 Discussion of model prediction results

This study compared the performance of five machine learning
models in classifying electroencephalographic signals and found that
the BP neural network model in the occipital lobe region performed
best in terms of accuracy, precision, recall, and F1 score.

Presenting such results may stem from the synergistic effect of
physiological mechanisms and algorithmic properties. As a core area
for visual information processing, the occipital cortex plays a key role
in the development of motion sickness. Previous studies have shown
that visual-vestibular signal conflict is a major factor inducing motion
sickness, while the occipital area receives and integrates visuomotor
information, and its EEG activity can directly reflect an individual’s
physiological response to visual stimuli. When subjects were exposed
to different types of relieving music, the power changes of alpha
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(8-13 Hz) and theta (4-8 Hz) waves in the occipital region may reflect
the effect of music modulation on visual information processing,
which provides highly discriminative feature inputs for the
BPNN model.

The performance advantage of BP neural network is attributed to
its deep nonlinear modeling ability. BPNN can effectively capture the
complex dynamic features of EEG signals in occipital region under
music intervention, and its adaptive weight adjustment mechanism
shows stronger robustness to individual differences and noise
interference, which is significantly better than the shallow model. In
contrast, KNN and SVM may be limited by the local similarity metric
and linear kernel constraints, which make it difficult to adequately
characterize the high-dimensional nonlinear distributions of features
related to motion sickness.

4.2 Intervention effects of music on motion
sickness

This study found that soft and joyful music was significantly more
effective than sad music in relieving motion sickness, while stirring
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music had a moderate effect. Both subjective and objective data
consistently supported this conclusion. This finding not only validated
existing research but also revealed, to a certain extent, the specific
mechanisms involved in motion sickness regulation.

Subjective scores showed that the motion sickness relief effects
of soft and joyful music were significantly better than natural
recovery, a result that was further verified in the EEG data. The
soothing rhythm of soft music may reduce the symptoms of
nausea and dizziness associated with motion sickness by
modulating the autonomic nervous system and reducing
sympathetic excitability. In addition, soft music may enhance
alpha wave (8-13 Hz) activity in the occipital region, promote the
formation of a relaxed state in the brain, and alleviate visual-
vestibular conflicts. In contrast, the positive effects of joyful music
may stem from its rhythmic motivational effect, which elevates
emotional states by activating brain reward systems (e.g., the
nucleus ambiguus), thereby distracting individuals from dizziness
discomfort. Subjective and objective data consistently show that
sad music is even less effective in relieving motion sickness than
natural recovery. This phenomenon may stem from an emotional
resonance effect—the subdued melodies of sad music may
intensify negative emotional experiences, superimposing them on
the discomfort of motion sickness and thus exacerbating
subjective discomfort. Neurologically, sad music may inhibit
emotion regulation in the prefrontal-limbic system, making it
more difficult for individuals to recover from motion sickness, as
has been demonstrated in previous laboratory studies. The study
was conducted in the laboratory of the University of California,
Berkeley, and the United States (Li et al., 2025).

4.3 Relationship between EEG KC
complexity and motion sickness levels

In this study, we analyzed the Kolmogorov-Chaitin (KC)
complexity changes of EEG signals in the occipital lobe area under
different motion sickness states and found that the degree of motion
sickness showed a significant negative correlation with KC complexity
(r=—-0.625, p < 0.05). These results reveal the neural mechanism of
motion sickness from the perspective of nonlinear dynamics and
provide theoretical support for motion sickness recognition models
based on the occipital lobe area.

In the calm state, the visual cortex’s EEG activity exhibited higher
KC complexity, reflecting its high information complexity and
nonlinear dynamic properties during normal visual information
integration. With the onset of dizziness symptoms, KC values decreased
significantly, indicating weakened dynamic complexity in the
visual cortex.

4.4 Limitations and future work

First, although experiments were conducted in a simulated
environment, the current sample size is still relatively small. Analysis
indicates that the statistical power (29%) under the current sample
grouping has not yet reached conventional standards, which to some
extent reduces the certainty of the conclusions. Second, during the
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data processing stage, only commonly used features were extracted for
analysis, and the contribution of different features to motion sickness
classification was not evaluated, which may introduce redundant
features and affect the model’s interpretability and generalization
ability. Finally, the experiments were conducted using a driving
simulator, which inevitably differs from real-world driving
environments, potentially affecting the intensity of motion sickness
induction and EEG response patterns. The age range of participants
was narrow (20-30 years old), while susceptibility to motion sickness
may vary with age.

In subsequent studies, to further validate the conclusions, we will
expand the experimental sample size to achieve statistical power and
construct a more comprehensive set of EEG features in the experiment.
We will use feature selection algorithms to identify the most
discriminative feature subsets to improve model efficiency. We will
conduct real-vehicle experiments to assess the external validity of the
simulator experiment conclusions.

5 Conclusion

In summary, this study constructed and screened various
motion sickness recognition models by integrating EEG signal
analysis and machine learning techniques, and systematically
explored the intervention effects of different music types on motion
sickness. The results showed that the five types of features extracted
by sub-brain regions (mean, variance, skewness, kurtosis, and
power spectral density) were inputted into a variety of models and
performed better in the occipital lobe area, and the BPNN model
was again the best. BPNN model was again optimal; subjective and
objective data consistently showed that: gentle music and cheerful
music both significantly alleviated motion sickness symptoms;
while sad music may exacerbate discomfort through emotional
resonance. Notably, agitated music showed context-dependent
effects, which were effective in objective indicators but poor in
subjective experience. Based on the above conclusions, in the
future, we can monitor the changes of motion sickness of the
occupants in real time and play suitable music types according to
the state of motion sickness, so as to utilize the alleviating effect of
music to help the occupants maintain a good physical state, thus
enhancing the comfort of the occupants.
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