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Inner speech recognition (ISR) is an emerging field with significant potential for 
applications in brain-computer interfaces (BCIs) and assistive technologies. This 
review focuses on the critical role of machine learning (ML) in decoding inner 
speech, exploring how various ML techniques improve the analysis and classification 
of neural signals. We analyze both traditional methods such as support vector 
machines (SVMs) and random forests, as well as advanced deep learning approaches 
like convolutional neural networks (CNNs), which are particularly effective at 
capturing the dynamic and non-linear patterns of inner speech-related brain 
activity. Also, the review covers the challenges of acquiring high-quality neural 
signals and discusses essential preprocessing methods for enhancing signal quality. 
Additionally, we outline and synthesize existing approaches for improving ISR through 
ML, that can lead to many potential implications in several domains, including 
assistive communication, brain-computer interfaces, and cognitive monitoring. 
The limitations of current technologies were also discussed, along with insights 
into future advancements and potential applications of machine learning in inner 
speech recognition (ISR). Building on prior literature, this work synthesizes and 
organizes existing ISR methodologies within a structured mathematical framework, 
reviews cognitive models of inner speech, and presents a detailed comparative 
analysis of existing ML approaches, thereby offering new insights into advancing 
the field.
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1 Introduction

Inner speech, also known as covert speech, is the silent, internal conversation individuals 
have with themselves, playing a crucial role in essential cognitive functions like planning, 
decision-making, and self-regulation (Alderson-Day and Fernyhough, 2015). This cognitive 
process involves complex neural networks that link auditory processing, motor planning, and 
sensory feedback, all shaped by both cognitive needs and external influences (Endicott, 2024). 
Mechanistic models help elucidate the neural basis of inner speech. For example, the corollary 
discharge model suggests that inner speech is the predicted sensory consequence of planned 
articulatory movements, whereas the perceptual simulation model posits that the brain 
reactivates stored neural patterns from past speech in regions of the brain, such as Broca’s and 
Wernicke’s areas (Barsalou, 2008; Scott et al., 2013; Whitford et al., 2017; Pratts et al., 2023; 
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Gao et  al., 2024). Disruptions or the absence of inner speech are 
observed in various disorders, including schizophrenia (Mahfoud 
et  al., 2023), frontotemporal dementia (Vercueil, 2001), autism 
(Whitehouse et al., 2006; Wallace et al., 2009), aphasia (Fama and 
Turkeltaub, 2020), and depression (Ghamari Kivi et al., 2023). These 
impairments highlight the significance of accurately decoding inner 
speech though inner speech recognition (ISR), which could have 
profound implications in fields such as brain-computer interfaces 
(BCIs) and assistive technologies for individuals with speech 
impairments (Lopez-Bernal et al., 2024). Despite this transformative 
potential, many obstacles are associated with current technologies, 
including low decoding accuracy, limited generalizability across users, 
and insufficient real-time performance (Lopez-Bernal et al., 2024; 
Jahanikia et al., 2023). Thus, there is a critical need for more robust 
ISR systems.

Recent advances in machine learning have helped bridge the gap 
between cognitive foundations and practical implementations by 
enabling the development of systems capable of decoding inner speech 
from neural activity. However, effective decoding still depends on 
reliable signal acquisition methods. Non-invasive techniques like 
electroencephalography (EEG) offer high temporal resolution but 
suffer from low signal-to-noise ratios (Cohen, 2017), while 
magnetoencephalography (MEG) provides better spatial resolution 
but is less accessible (Baillet, 2017). Functional magnetic resonance 
imaging (fMRI) is mainly used for research but is limited in real-time 
applications due to its low temporal resolution (Logothetis, 2008; Mao, 
2009). For greater precision, invasive methods like 
electrocorticography (ECoG) provide high-quality data, though their 
use is confined to extreme clinical settings (Martin et  al., 2018). 
Preprocessing techniques, such as artifact removal, normalization, and 
band-pass filtering, are essential for enhancing the quality of acquired 
signals (Mullen et al., 2015). Once the signals are obtained, machine 
learning (ML) plays a pivotal role in decoding inner speech. 
Traditional supervised learning methods, such as support vector 
machines (SVMs) and random forests, have been used for feature-
based classification of inner speech signals (Jahanikia et al., 2023). 
Recently, convolutional neural networks (CNNs) have gained 
prominence in inner speech recognition due to their ability to 
effectively extract spatial features from neural signals. CNNs excel at 
capturing the complex, non-linear characteristics of inner speech-
related brain activity, making them highly suitable for decoding these 
signals with greater accuracy (Berg et  al., 2021; Vorontsova 
et al., 2021).

Even though interest in ISR is increasing, its broader use is 
impeded by several fundamental scientific challenges. A significant 
problem is the diversity of neural representation—inner speech differs 
greatly among individuals regarding structure, language formulation, 
and timing. Such variability makes it difficult to generalize ISR 
models, particularly across heterogeneous user populations. Moreover, 
the low signal-to-noise ratio characteristic of non-invasive neural 
recordings such as EEG presents considerable challenges for precise 
decoding (Cohen, 2017; Mullen et al., 2015; Craddock et al., 2016). 
Neural signals associated with inner speech are frequently faint and 
can be easily obscured by muscle artifacts, eye blinks, and external 
disturbances. It is essential to surmount these challenges in order to 
develop robust ISR systems. ISR is particularly valuable in brain-
computer interface (BCI) applications, as it provides a direct means of 
communication without the need for physical articulation. For people 

with speech impairments, like those with locked-in syndrome or 
anarthria, this can be life-changing: it allows for silent communication 
and greater self-determination (Arjestan et al., 2016; Martin et al., 
2018; Lopez-Bernal et al., 2024).

In this review, we  examine the current state of inner speech 
recognition by focusing on the various approaches used in the field 
across the ISR pipeline, including signal acquisition methods, 
preprocessing techniques, and commonly used datasets. From these 
existing models, we offer a comprehensive performance comparison 
assessing their effectiveness and practical relevance to ISR tasks. 
Moreover, we  explain and synthesize existing machine learning 
approaches into a structured ISR framework aimed at clarifying the 
current landscape and guiding future research directions. We also 
discuss the limitations of current technologies and offer insights into 
future directions and practical applications for possible advancements.

2 Distinct articulatory, phonetic, and 
vocalic organization in inner overt 
speech production

In the discipline of ML, voice recognition is a broad subject that 
explores the subtleties of human communication, covering a range 
from explicit speech to the complexities of inner speech. The 
production of inner overt speech in terms of articulatory, phonetic, 
and vocalic organization is one remarkable features of this terrain as 
discussed below (Proix et al., 2022).

2.1 Articulatory variations

To make audible sounds during inner overt speech, the voice 
chords, tongue, and lips must move in unison. Examining the 
articulatory patterns involved in inner overt speech offers valuable 
insight into the brain mechanisms that support this process.

2.2 Phonetic discrepancies

The accurate articulation of phonemes, the smallest units of sound 
that differentiate words, characterizes the phonetic landscape of overt 
speech. Comprehending the phonetic characteristics of inner overt 
speech is critical to improving the resilience of ML models, particularly 
in situations where thought-based interactions or quiet 
communication are essential.

2.3 Vocalic dynamics

Pitch, intonation, and rhythm are examples of vocalic 
characteristics of overt speech that greatly influence how emotions 
and intents are expressed. The intricacies of vocalic organization in 
inner overt speech can be  captured, offering a thorough 
comprehension of the complexities that ML models need to overcome 
to interpret the intentions encoded in speech signals.

The investigation of these unique organizational features becomes 
essential for the advancement of ML models in inner speech detection. 
Connecting the dots between spoken words’ actual physical forms and 
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their virtual equivalents is a difficult but necessary task that could 
open new avenues for human-machine communication.

3 Related works

The investigation into inner speech has garnered scholarly 
attention across various disciplines, unveiling a multifaceted landscape 
of research endeavors aimed at comprehending the intricacies of this 
cognitive phenomenon. This section provides a comprehensive review 
of pertinent studies and scholarly contributions related to inner 
speech within academic discourse. This review not only serves to 
elucidate the diverse perspectives within the field but also lays the 
foundation for contextualizing the subsequent discussions on the 
integration of inner speech in the landscape of ML and DL for 
speech recognition.

Examining the literature in chronological order, (Huang et al., 
2002) conducted a comparative analysis of cortical pathway activation 
associated with language production during both silent and overt 
speech. The authors suggested that the findings could have 
implications for aphasiology; however, they cautioned against 
extrapolating these findings to an aphasic population until comparable 
protocols are used. In a separate study, (Geva et al., 2011) executed a 
mixed nonrandomized control trial aimed at investigating whether 
individuals’ post-stroke, exhibiting impaired overt speech production, 
also manifest deficits in inner speech. Through the allocation of tasks, 
participants engaged in half using inner speech and the remaining half 
using overt speech, facilitating the quantification of disparities 
between inner and overt speech abilities. The outcomes of a Mann–
Whitney test (p < 0.05) revealed a significant performance difference 
between the two groups for all three inner speech tasks, indicating that 
the patient group, as a whole, exhibited impairments compared to the 
control group.

Stark et al. (2017) conducted an experimental study involving 
thirty-eight individuals diagnosed with chronic aphasia (27 males, 11 
females), with an average age of 64.53 ± 13.29 years and a post-stroke 
duration ranging from 8 to 11 months. The participants were 
categorized based on their speech abilities, resulting in three groups: 
those with relatively preserved inner and overt speech (n = 21), those 
with relatively preserved inner speech but poor overt speech (n = 8), 
and those not classified due to inadequate measurements of inner and/
or overt speech (n = 9). The cohort, characterized by deficient overt 
speech, exhibited a noteworthy correlation between inner speech and 
both overt naming (r  = 0.95, p < 0.01) and the mean length of 
utterances generated during a written picture description (r = 0.96, 
p < 0.01).

Simistira Liwicki et  al. (2022) concentrated on the automated 
decoding of inner speech through noninvasive means, specifically 
EEG. The authors attained performance accuracies of 35.20 and 
29.21% while classifying five vowels and six words within a publicly 
accessible dataset, employing the fine-tuned iSpeech-CNN 
architecture. Berg et al. (2021) employed a 2D Convolutional Neural 
Network (CNN) grounded in the EEGNet architecture. The 
researchers categorized EEG signals from eight subjects engaged in 
internal contemplation of four distinct words. The outcomes revealed 
an average accuracy of 29.7% for word recognition, marginally 
surpassing chance levels. Kiroy et  al. (2022) used the Multi-layer 
Perceptron (MLP) neural network classification method to 

demonstrate accuracy in word detection within imagined speech 
based on brain activity patterns. The accuracy ranged from 49 to 61% 
for three classes and 33 to 40% for seven classes, with corresponding 
random recognition rates of 33.3 and 14.2%, respectively.

Nalborczyk et al. (2020) achieved a classification accuracy of 0.472 
[95% CI (0.426, 0.518)] for predicting the class of nonwords during 
inner speech production and listening. This outcome reflects the 
inherent complexity and challenges in accurately classifying inner 
speech. In contrast, their results for overt speech production were 
notably higher, with a classification accuracy of 0.847 [95% CI (0.814, 
0.876)]. This significant difference in accuracy between inner and 
overt speech accentuates the current technological limitations in 
decoding internal speech processes. Shepelev et al. (2021) utilized 
SVM and found that the average classification accuracy for the 
analyzed classes of speech events was relatively low, not exceeding 42.9 
and 45.1%, respectively. The study also highlighted the difficulty in 
classifying speech intonations, with confident intonation recognized 
with only about 32% accuracy (±6%), and uncertain intonation 
detected in 48% (±5%) of cases. Neutral speech recognition was 
somewhat higher at 58% accuracy (±8%). These findings, while 
demonstrating certain limitations in current methodologies, also 
show the progress being made in the field. The high quality of the 
approaches developed by these studies suggests promising potential 
for future applications in BCIs, especially for those based on inner 
speech pattern recognition. This area of research is crucial for 
advancing communication technologies, particularly for individuals 
with speech impairments or neurological disorders. The disparity in 
accuracy between different types of speech and intonations also 
indicates the need for further research and development to enhance 
the effectiveness of these technologies.

The research by Arjestan et  al. (2016), which probes into the 
development of BCIs based on decoding inner-overt speech from EEG 
signals, represents a significant stride in the field of speech recognition 
and assistive technology. This study particularly focused on developing 
a system that enables individuals with LIS to communicate with the 
external world, and to recognize overt, semi-overt, and covert speech.

The conclusion drawn from these related works emphasizes the 
substantial progress and diverse methodologies employed in inner 
speech research. Techniques like EEG, neural networks, and SVM 
have been instrumental in exploring the neural underpinnings and 
classification accuracies related to inner speech. These approaches 
have significantly advanced our comprehension of the complex nature 
of decoding inner speech patterns. Collectively, these studies lay a 
crucial groundwork for the field. They not only enhance our current 
understanding but also set the stage for future research endeavors. The 
insights gained from these works are pivotal in driving forward the 
exploration and refinement of methods in the broader scope of inner 
speech research. This ongoing effort is vital for the continued 
development of technologies that can facilitate communication for 
individuals with speech impairments or neurological conditions, 
thereby enriching their interaction with the world around them.

4 Data acquisition

ISR requires high-fidelity neural signal acquisition to decode the 
covert nature of internal speech. Selecting the appropriate signal 
acquisition method is crucial due to the unique trade-offs between 
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spatial resolution, temporal resolution, invasiveness of procedure, and 
practicality, whereby all these factors critically influence ISR 
model performance.

The most widely used technique is electroencephalography (EEG) 
because of its excellent temporal resolution, portability, and 
non-invasiveness (Cohen, 2017). Particularly, these characteristics of 
EEG make it suitable for real-time ISR applications in both 
non-clinical and consumer-facing settings. Yet, along with these are 
disadvantages, namely low spatial resolution and high susceptibility 
to noise and artifacts (Hamid et  al., 2021). This can reduce the 
precision of inner speech decoding.

As opposed to EEG, magnetoencephalography (MEG) offers 
better spatial localization than EEG whilst maintaining high temporal 
resolution (Baillet, 2017). Therefore, in the context of ISR, MEG is 
more effective in pinpointing the origin of brain signals related to 
inner speech. Despite this, many factors limit its practicality such as 
costliness and maintenance (Cargnelutti and Tomasino, 2023). Other 
factors limiting its use include the sensitivity to head movement that 
can distort spatial distribution, highlighting the need for stillness 
during recording, as well as the need for magnetically shielded 
environments that limit its accessibility, especially outside of research 
laboratory settings (Clarke et al., 2022).

Functional Magnetic Resonance Imaging (fMRI) is another neural 
acquisition modality that provides excellent spatial resolution (Jiang 
et al., 2024), whereby it is often used to map brain regions in inner 
speech processes. Nonetheless, fMRI is not routinely used for active 
ISR systems and is mainly valuable for preliminary studies and neural 
mapping due to the poor temporal resolution and unsuitable setup for 
real-time applications (Logothetis, 2008; Mao, 2009).

Electrocorticography (ECoG) is an invasive method that delivers 
high spatial and temporal resolution by directly placing the electrodes 
on the surface of the cortex (Todaro et al., 2019). Due to this direct 
placement, it offers the most accurate and clean signal data for ISR and 
has shown strong performance in speech decoding (Martin et al., 
2018). However, the narrow applicability of ECoG to people in clinical 
settings, such as patients undergoing neurosurgery, restricts its 
broader use. The overview of these neural signal acquisition models 
used in ISR are summarized in Table 1 below.

Based on these trade-offs, EEG remains the most commonly used 
practical modality for ISR, whereas other methods like MEG, fMRI, 
and ECoG are often limited to specialized research or clinical contexts. 
Thus, this makes the effectiveness of ML and DL models in ISR highly 
dependent on meticulous data acquisition procedures. Given the 
inherently covert and internal nature of inner speech, distinct 
challenges arise, necessitating methodological precision in acquiring 
pertinent data for both model training and evaluation.

The primary limitations evident in extant research pertain not 
only to reproducibility and the accessibility of data and code, but also 
to the consistency and quality of neural data acquisition across diverse 
populations. In a seminal study, (Stark et al., 2017) undertook an 
experiment involving thirty-eight individuals afflicted with chronic 
aphasia. Rigorous demographic profiling, encompassing gender 
distribution, average age (64.53 ± 13.29 years), and time elapsed since 
stroke (8–11 months), was meticulously executed. This demographic 
information assumes critical significance in gauging the 
generalizability of ISR models across heterogeneous populations. 
Acknowledging the nuanced spectrum of inner and overt speech 
capabilities, participants were systematically categorized into distinct 
cohorts. By de-alienating individuals exhibiting relatively preserved 
inner and overt speech, those manifesting relatively preserved inner 
speech with concurrent poor overt speech, and a subgroup eluding 
classification due to inadequate measurements of inner and/or overt 
speech. Such meticulous stratification facilitates model tailoring to 
specific subpopulations, recognizing the intricacies of inner 
speech attributes.

Diverse screening techniques and preprocessing procedures have 
been employed on the data. Preprocessing is paramount for ISR as it 
plays a critical role in ensuring the fidelity of neural signals (Mullen 
et  al., 2015). As previously mentioned, EEG signals have high 
susceptibility to various sources of noise, and so if these interferences 
are not addressed, these artifacts can obscure the subtle neural 
signatures of inner speech and lead to a higher frequency of false 
negatives or positives (Ingolfsson et al., 2022). The choice of specific 
preprocessing techniques in the reviewed literature is mainly 
attributable to the nature of EEG data along with the challenges of 
inner speech. For instance, (Nieto et al., 2022) implemented a data 

TABLE 1 Comparative overview of neural signal acquisition methods for inner speech recognition (ISR).

Modality Typical SNR 
(in dB)

Temporal 
resolution

Spatial 
resolution

Invasiveness Practical use ISR suitability

EEG (Berg et al., 

2021; Cohen, 2017)

~0 to 5 dB (can 

vary widely 

depending on 

setting and task)

High Low Non-invasive Portable, low cost Real-time ISR, widely 

used

MEG (Baillet, 2017; 

Cargnelutti and 

Tomasino, 2023)

~3 to 10 dB High Medium-High Non-invasive Expensive, limited to 

labs

Useful in research

fMRI (Logothetis, 

2008; Mao, 2009)

~30 to 40 dB 

(depends on 

BOLD signal 

quality)

Low Very high Non-invasive Bulky, poor real-

time performance

Brain mapping only

ECoG (Martin et al., 

2018; Todaro et al., 

2019)

~10 to 20 dB or 

higher

High High Invasive Limited to mainly 

neurosurgical 

patients

High accuracy, 

clinical use
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filtering process within the frequency range of 0.5 to 100 Hz, where 
this was done to isolate frequencies relevant to cortical activity while 
excluding irrelevant low-frequency drift and high-frequency noise. 
Along with this, a 50 Hz notch filter was used to eliminate powerline 
interference. Additionally, an Independent Component Analysis was 
utilized to identify and eliminate noise-afflicted components, 
predominantly those contaminated with ocular and muscular 
artifacts. EEG, electrooculography (EOG), and electromyography 
(EMG) data were obtained through a BioSemi ActiveTwo high-
resolution biopotential measuring system. With regards to the EEG 
signals, they were recorder using 128 scalp electrodes and 8 external 
sensors for eye and muscle activity, with high resolution and a 
sampling rate of 1,024 Hz. On the other hand, in the investigation 
conducted by (Kiroy et al., 2022), continuous EEG recordings were 
obtained monopolarly from 14 channels (f3, f4, f7, f8, Fp1, Fp2, c3, c4, 
t3, t4, t5, t6, p3, p4), following the international 10×20 system 
arrangement. The recordings were facilitated using the 
“ENCEPHALAN 131” amplifier, manufactured by 
“MEDICOM-MTD” in Taganrog, Russia. In brief, careful electrode 
placement is imperative for minimizing EOG contamination and 
improving spatial localization.

In order to improve signal quality for inner speech recognition 
(ISR), contemporary EEG (electroencephalography) preprocessing 
combines deep learning and adaptive learning techniques.

4.1 Adaptive filtering

Nonstationary noise, such eye blinks and muscular movement, is 
adaptively suppressed using methods like Least Mean Squares (LMS) 
and Recursive Least Squares (RLS). A new hybrid technique that 
included adaptive filtering with ICA greatly enhanced artifact removal 
while maintaining the integrity of the cognitive signal (Kher and 
Gandhi, 2016).

4.2 Wavelet + ICA

Wavelet denoising and Independent Component Analysis (ICA) 
work together to preserve neuronal characteristics while reducing 
transient and structural artifacts (Veeramalla et al., 2025).

4.3 Adversarial denoising (GAN/WGAN-GP)

In artifact-heavy EEG recordings, Generative Adversarial 
Networks (GANs) and Wasserstein GAN with Gradient Penalty 
(WGAN-GP) have demonstrated up to 14.5 dB gains in signal-to-
noise ratio (SNR), surpassing conventional denoising (Tibermacine 
et al., 2025).

4.4 pix2pix autoencoder GAN

This design efficiently eliminates EMG noise and produces a high-
fidelity reconstruction of a clean EEG (Wang et al., 2024).

More reliable and real-time inner speech decoding is made 
possible by these preprocessing techniques, which range from deep 

adversarial frameworks to adaptive filters. This is essential for real-
world brain-computer interface (BCI) applications.

Five right-handed male subjects aged 25–31 participated in the 
study Arjestan et al. (2016) and EEG signals were recorded using a 
SAM25FO system with 21 active Ag–AgCl electrodes. A head-cap was 
used to position the 21 EEG electrodes on the scalp according to the 
international 10–20 system. The ground electrode was placed at Fpz, 
and the right mastoid was used as a reference. Fp1 and Fp2 electrodes 
were not used due to high EOG noise, whereby this choice underscores 
the importance of removing high-noise channels to preserve signal 
integrity. On the other hand, by the experimental protocol of Lee et al. 
(2021a), EEG signals were recorded in response to speech stimuli and 
resting periods, with a total of 300 trials for each condition.

The acquisition of inner speech data mandates the application of 
sophisticated measurement techniques. It requires exhaustive 
assessments, including an exploration of the interplay between inner 
speech and overt naming, as well as an analysis of the mean length of 
utterances during a written picture description. These refined 
measurements contribute not only to a nuanced comprehension of 
inner speech dynamics but also furnish indispensable data for the 
training of ML algorithms. In Martin et al. (2018), subdural electrode 
grids implanted during the surgical procedures recorded ECoG 
signals. These grids were made of platinum-iridium and spaced 0.6 to 
1 cm apart. Thorough statistical scrutiny assumes paramount 
importance in deriving meaningful insights from the acquired data. 
Some authors have employed correlation coefficients to elucidate 
significant relationships, providing insights into the strength and 
directionality of associations between inner speech and overt naming, 
as well as mean length of utterance. Stringent significance thresholds 
(p < 0.01) were established to fortify the robustness of the findings 
(Martin et al., 2018).

One of the main concerns in inner speech research is when 
incomplete data prevents some participants from being properly 
classified. It is imperative to transparently acknowledge and address 
this limitation, underscoring the imperative for future investigations 
to adopt comprehensive data acquisition strategies. The fastidious 
acquisition of inner speech data necessitates discerning participant 
recruitment, meticulous stratification protocols, sophisticated 
measurement methodologies, and rigorous statistical analyses. These 
considerations collectively underpin the construction of precise and 
dependable ML and DL models for ISR.

5 Datasets used

The investigation into ISR within the context of ML and DL 
methodologies necessitates a rigorous examination of the datasets 
employed. The selection and characterization of datasets play a pivotal 
role in shaping the robustness and generalizability of models 
developed for this intricate cognitive process. In this section, 
we provide a comprehensive overview of the datasets utilized in the 
reviewed literature, highlighting key considerations such as screening 
methodologies, preprocessing techniques, and the overall data 
landscape. This exploration aims to elucidate the foundations upon 
which subsequent analyses and model development have been built, 
offering insights into the challenges and opportunities inherent in 
leveraging diverse datasets for advancing our understanding of inner 
speech within the computational paradigm.
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EEG stands as a widely adopted modality for analyzing inner 
speech and open access EEG datasets are frequently utilized in studies. 
The dataset compiled by (Pressel Coretto et  al., 2017) comprised 
information provided by fifteen young adults who volunteered to take 
part in the study. EEG signals were systematically recorded under two 
distinct conditions: during instances of inner speech and pronounced 
speech. These specific conditions were chosen strategically to facilitate 
subsequent investigations aimed at discerning EEG patterns 
distinguishing overt from covert speech. Each participant conducted 
50 trials, consisting of repetitions distributed across various blocks. 
Among these, 40 trials corresponded to the imagined speech mode, 
while the remaining 10 were representative of the pronounced speech 
modality. The dataset by Nieto et al. (2022) comprises information 
from ten participants obtained under the specified paradigm, 
alongside two related paradigms, utilizing an acquisition system 
equipped with 136 channels. Jones and Voets (2021) employed an 
unusually extensive dataset of 7 T functional magnetic resonance 
imaging (fMRI) to train a deep neural network (DNN). This dataset 
was acquired as a single healthy volunteer engaged in multiple hours 
of covert reading and repetition tasks. Shepelev et al. (2021) conducted 
a series of psychophysical experiments to establish a voice database. 
The experimental cohort comprised 12 healthy female second-year 
bachelor students, with a mean age of 19.6 ± 0.8 years.

The dataset used in Arjestan et al. (2016) comprises EEG signals 
recorded from five male subjects, focusing on imagined speech tasks. 
Three protocols were employed: overt speech without vibration of the 
vocal cords, semi-overt speech (vocal track forming without 
pronouncing), and covert (silent) speech. The dataset includes three 
syllables (/kaː/, /fiː/, and /suː/), six vowels (/æ/, /e/, /au/, /aː/, /iː/, and /
uː/), and resting states in Persian. Nine subjects, including three males 
with an average age of 25.00 ± 2.96, participated in the study by Lee et al. 
(2021a) and the dataset used in the study (Martin et al., 2018) involved 
ECoG recordings obtained from seven patients undergoing neurosurgical 
procedures for epilepsy, all of whom provided informed consent.

In light of the studies discussed above, we have delineated the 
specific datasets employed in the respective studies, shedding light on 
the meticulous processes involved in data acquisition. The utilization 
of comprehensive datasets, whether through extensive fMRI 
recordings, EEG channels, or psychophysical experiments, reflects the 
dedication to robust empirical foundations within the examined 
research endeavors. These datasets, meticulously curated and selected, 
serve as the cornerstone for subsequent analyses and model training 
in the pursuit of advancing our understanding of various aspects 
related to speech, cognition, and neural processes. As we  move 
forward in this review, the diversity and depth of the datasets 
underscore the significance of methodological choices and contribute 
to the richness of insights derived from the collective body of research 
in the field of speech recognition and cognitive sciences.

6 Organizing existing frameworks in 
ISR

In the continuous evolution of speech recognition technologies, 
the integration of DL and ML frameworks stands as a pivotal frontier, 
particularly within the intricate domain of ISR. This section delves 
into the cutting-edge methodologies proposed by researchers to 
harness the power of neural networks and ML algorithms for 

deciphering the complexities of inner speech. From novel model 
architectures to refined training strategies, this exploration serves as a 
glimpse into the forefront of research endeavors that strive to bridge 
the gap between the intricacies of human cognition and the capabilities 
of artificial intelligence (AI) in the realm of speech recognition.

6.1 Mathematical formulations

The application of DL and ML frameworks in ISR draws upon 
well-established mathematical models capable of discerning and 
interpreting the intricate patterns inherent in inner speech data. This 
section elucidates the mathematical foundations that underpin 
commonly used frameworks, providing insight into the methodologies 
employed to bridge the gap between raw data and meaningful insights.

A frequently employed modeling methodology involves adopting 
a regression framework to establish a connection between brain 
activity and a stimulus or mental state representation. Specifically, the 
stimulus features at a particular time are conceptualized as a weighted 
sum of neural activity, expressed as follows:

 ( ) ( ) ( )= ∑ . ,Y t w p X t p

where Y (t) is the stimulus feature at time t, X(t, p) is the neural 
activity at time t and feature p, w(p) is the weight for a given feature p 
(Martin et  al., 2018). Another prevalent decoding model is 
classification, where neural activity is categorized as pertaining to a 
discrete event type from a finite set of choices. Both modeling 
approaches, regression, and classification, can employ a spectrum of 
ML algorithms. These algorithms encompass elementary regression 
techniques to more intricate non-linear methods, including hidden 
Markov models, support-vector algorithms, and neural networks etc. 
as shown in Figure 1.

Decoding models enable researchers to leverage brain activity for 
inferring the stimuli and/or experimental properties most likely present 
at each moment in time. The decoder serves as a proof of concept: 
when presented with a novel pattern of unlabeled brain activity (i.e, 
brain activity without its corresponding stimulus properties), it has the 
potential to reconstruct the most probable stimulus value that elicited 
the observed brain activity (Pasley et al., 2012).

feature ( ) ( )∗= +∑ ∑lags channelsN N
ij it activity t j  weight ( )+, .i j error t

In vector notation, this is represented as follows:

 ∈= +s Xw

In vector notation, the expression is characterized by vectors, 
encompassing stimulus feature values observed chronologically, and the 
matrix X representing channel activity. Each row of X corresponds to a 
specific time point, and each column denotes a neural feature, with 
separate columns accounting for time lags. The vector w comprises model 
weights, with each weight corresponding to a neural feature*time lag 
combination. Additionally, ǫ signifies a vector representing random noise 
at each timepoint, commonly assumed to follow a Gaussian distribution.

In conclusion, this section consolidates existing mathematical 
frameworks used in ISR studies, offering insight into current modeling 
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approaches and identifying areas for optimization. The constant 
pursuit of more efficient and accurate mathematical frameworks 
remains paramount, propelling the evolution of ISR technologies and 
contributing to the broader intersection of cognitive science and AI.

6.2 Architectural frameworks in ML and DL 
for ISR

Analyzing model structures is essential for enhancing ISR using 
ML and DL techniques. This section navigates through a spectrum of 

architectural frameworks, drawn from existing ISR literature, and 
highlights how these models distill the intricate patterns inherent in 
inner speech data. Rooted in a foundation of computational elegance 
and cognitive insights, the discussion unfolds around innovative 
structures, model complexities, and their theoretical underpinnings. 
The overarching aim is to discern the nuances and overall potential 
offered by various architectural paradigms in the realm of ISR. As 
we delve into this academic discourse, the emphasis is on providing a 
comprehensive survey and critical analysis of architectural choices, 
contributing to the scholarly dialogue surrounding the effective fusion 
of ML and DL techniques for decoding the complexities of inner 

FIGURE 1

Predictive model overview. (A) Experimental Protocol: Electroencephalography (EEG) electrodes are placed on the scalp, while electrocorticography 
(ECoG) electrodes are placed on the cortical surface beneath the skull to capture neural signals. (B) Data Collection: Neural signals (ECoG) and 
corresponding audio signals are recorded in response to stimuli (e.g., hunger). (C) Feature Extraction: Neural data are processed to extract high-
frequency activity (X), while audio data are converted into spectrograms (Y). (D) Fitting and Validation: Extracted features are used to train and validate 
models using both regression and classification frameworks. Training and testing sets are utilized to assess model performance.

https://doi.org/10.3389/fnhum.2025.1637174
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Chowdhury et al. 10.3389/fnhum.2025.1637174

Frontiers in Human Neuroscience 08 frontiersin.org

speech. The various ML and DL models used for detecting inner 
speech in reviewed papers are discussed in Table 2 below.

The exploration of proposed ML and DL models within this 
section underscores the versatile and innovative approaches employed 
in decoding inner speech. From neural network architectures to 
advanced training strategies, the methodologies discussed 
demonstrate a concerted effort to enhance the accuracy and efficiency 
of ISR systems. The amalgamation of computational techniques with 
cognitive insights not only reflects the interdisciplinary nature of this 
field but also underscores the potential for transformative 
advancements. As we move forward, these proposed models serve as 
a foundation for continued exploration and refinement, offering 
valuable contributions to the evolving landscape of ISR through ML 
and DL methodologies.

Interpretability is still a major concern, especially for clinical 
applications like speech brain-computer interfaces (BCIs), even 
though Table 2 compares traditional machine learning (ML) models 
(e.g., Support Vector Machines, Extreme Learning Machines) and 
deep learning (DL) architectures (e.g., CNN, EEGNet, LSTM) in the 
context of inner speech recognition. For BCI users who depend on 
these systems for mobility or communication, the “black-box” nature 
of DL models may make it difficult to understand the reasoning 
behind some classifications, which could result in misclassification 
concerns (Gandin et al., 2021).

In order to display feature importance and obtain understanding 
into decision limits, recent explainable AI (XAI) projects have created 
frameworks like SHAP (SHapley Additive exPlanations) and LIME 
(Local Interpretable Model-Agnostic Explanations). Although it was 
not included in their study, Simistira Liwicki et al. (2022) point out 
that saliency maps could be added to CNNs to improve interpretability. 
In order to guarantee openness and user confidence, future research 
should concentrate on integrating XAI approaches into BCI pipelines.

7 Synthesis of methodological 
approaches in ISR

Within the growing intersection of ML and DL, this section 
synthesizes existing methodologies applied in ISR research tailored for 
the nuanced investigation of inner speech. The discourse unfolds 
across a spectrum of proposed approaches, each strategically 
employing ML and DL techniques to discern and interpret the 
intricacies inherent in ISR. This scholarly endeavor focuses on 
reviewing representative strategies, model architectures, and training 
paradigms, collectively contributing to the ongoing advancement of 
sophisticated systems designed to navigate the complex fabric of inner 
speech. Grounded in both neuroscientific insights and computational 
progress, the methodologies presented herein represent a concerted 
scholarly effort aimed at bridging the cognition and AI realms, 
offering valuable insights into the transformative potential of ML and 
DL in unraveling the complexities of inner speech.

Simistira Liwicki et al. (2022) addressed the challenge of detecting 
five vowels and six words using a publicly available EEG dataset. 
Figure 2 illustrates the workflow of the proposed approach, wherein 
distinct networks are trained for vowels and words, guided by the 
architecture depicted in the same figure. The proposed network draws 
inspiration from the work of Cooney et al. (2020).

Feature extraction and classification represent the two primary 
facets of the methodologies discussed in the context of ISR. Feature 
extraction is pivotal as it involves the identification and extraction of 
pertinent information or patterns from the raw data, thereby capturing 
the intrinsic characteristics of inner speech signals. This step is critical 
for transforming complex input data into a more manageable and 
informative representation. On the other hand, classification is the 
subsequent process, wherein the extracted features are utilized to 
categorize or label the inner speech data into predefined classes, such 
as specific speech sounds or spoken words (Geva et al., 2011). The 
effectiveness of the overall methodology hinges on the synergy 
between these two components, where robust feature extraction lays 
the foundation for accurate and discriminative classification, 
collectively contributing to the advancement of ISR systems.

7.1 Feature extraction

The extraction of discriminative features constitutes a pivotal stage 
in the realm of ISR, where ML and DL methodologies converge to 
unravel the intricate patterns inherent in neural signals. This section 
delves into the diverse strategies and techniques employed for feature 
extraction, aiming to capture the characteristics of inner speech 
representations. From traditional signal processing methods to 
advanced neural network architectures, the methodologies discussed 
herein underscore the significance of robust feature extraction in 
enhancing the interpretability and discriminative power of 
ISR systems.

Gasparini et al. (2022) employed Power Spectral Density (PSD) as 
a precursor to classification, utilizing Welch’s method for its 
calculation. The PSD analysis focused on relative power within specific 
frequency bands, namely alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–100 Hz). Meanwhile, Wang et al. (2013) conducted an 
experiment with eight participants who mentally read two Chinese 
characters representing “left” and “one.” Notably, they successfully 
differentiated between these characters and the resting state. In their 
study, the feature vectors of EEG signals were extracted through 
Common Spatial Patterns (CSP).

In contrast, Kim et al. (2014) focused on three specific vowels—/a/, 
/i/, and /u/. They employed multivariate empirical mode 
decomposition (EMD) and CSP for feature extraction, coupled with 
linear discriminant analysis, achieving an accuracy level of 
approximately 70%. Nieto et al. (2022) employed a CSP filter for each 
frequency band, from which the average power in the first six spatial 
components was computed. This process resulted in a 36-dimensional 
feature vector, comprising six features for each of the six bands, which 
was utilized for subsequent classification. To ensure uniformity, each 
feature in the vector was scaled within the range of 0 to 1. Feature 
extraction of Arjestan et al. (2016) involves the use of CSP filters and 
EMD. These methods were primarily chosen for their ability to extract 
discriminative spatial and frequency features from noisy multichannel 
EEG data. CSP displayed effectiveness in maximizing the variance 
between inner speech classes, whereas EMD decomposes the EEG 
signal into intrinsic mode functions that may correspond to 
temporally meaningful components such as mental syllables or 
phonemes (Kim et al., 2014; Arjestan et al., 2016). The classification is 
performed using SVM with a radial basis function (RBF) kernel.

https://doi.org/10.3389/fnhum.2025.1637174
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


C
h

o
w

d
h

u
ry et al. 

10
.3

3
8

9
/fn

h
u

m
.2

0
2

5.16
3

7174

Fro
n

tie
rs in

 H
u

m
an

 N
e

u
ro

scie
n

ce
0

9
fro

n
tie

rsin
.o

rg

TABLE 2 Proposed ML and DL models for inner speech recognition.

Article Model Approach Sample 
size

Class set size Public availability

Simistira 

Liwicki et al. 

(2022)

q (CNN) Models are able to analyze the EEG data and identify patterns and features related to inner speech. The 

authors highlight the subject-dependent and subject-independent approaches in using these models 

for inner speech decoding.

15 11 (5 vowels: /a/, /e/, /i/, /o/, /u/; 6 

words: arriba/up, abajo/down, 

derecha/right, izquierda/left, 

adelante/forward, atrás/

backwards)

Yes (available at: https://github.com/

LTU-Machine-Learning/Rethinking-

Methods-Inner-Speech)
Gated recurrent unit 

(GRU)

Long short-term memory 

networks (LSTM)

Nieto et al. 

(2022)

Extreme learning machines 

(ELM)

The training procedure of an Extreme Learning Machine (ELM) involves two distinct steps. Initially, 

the input weight matrix (W) and the bias weight vector (b) are randomly initialized as independent 

realizations, typically drawn from a uniform distribution. Subsequently, the second step entails 

determining the suitable output weights (beta) using the Moore-Penrose generalized inverse 

(Haltmeier et al., 2024).

10 4 words (arriba, abajo, derecha, 

izquierda, i.e., “up,” “down,” 

“right,” “left”)

Yes (available at: https://doi.

org/10.18112/openneuro.ds003626.

v2.1.0)

Berg et al. 

(2021)

EEGNet EEGnet represents a compact convolutional neural network specifically crafted for diverse EEG-

related classification endeavors. It demonstrates an aptitude for capturing prevalent temporal and 

spatial EEG features through the application of its convolutional filters.

8 4 words (up, down, left, right) Yes (available at: https://doi.

org/10.18112/openneuro.ds003626.

v2.1.0)

Jones and 

Voets (2021)

Deep neural network 

(DNN)

Network weights underwent optimization through maximum likelihood estimation, employing 

stochastic gradient descent with Nesterov momentum. The objective function utilized a cross-entropy 

loss. Each layer’s weights were initialized from a Xavier uniform distribution. Input features were 

standardized using the mean and standard deviation derived from the training data.

1 9 target syllables (/ga/, /gi/, /gu/, 

/ma/, /mi/, /mu/, /sa/, /si/, /su/)

Not available

Support vector machine 

(SVM)

The control analysis was trained on 50 self-generated data points using leave-one-out cross-validation, 

resulting in 49 training examples for each train-test split. Notably, it outperformed DNNs in test 

accuracy with limited inner speech data.

Kiroy et al. 

(2022)

Support vector machine 

(SVM)

Achieved a notable level of identification and discrimination of the resting state. This success was 

particularly evident in models utilizing non-linear kernels, such as the sigmoid and radial basis 

function (RBF).

10 6 words (up, down, right, left, 

forward, backward)

Not available

Multi layer perceptrons 

(MLP)

Geraci et al. 

(2021)

Bayesian multilevel linear 

model (BMLM).

Models were fitted using the BRMS package with weakly informative priors. Two Markov Chain 

Monte Carlo (MCMC) runs were executed for each model to approximate the posterior distribution, 

consisting of 5,000 iterations each with a warm-up phase of 2,000 iterations.

Not 

applicable

Not applicable Not applicable

Shepelev 

et al. (2021)

Neural network Two computational approaches were tested for recognizing implicit speech intonations (C/U/N): 

generalized and personalized. In the generalized approach, classifier parameters were determined 

during the training session, and the model was subsequently tested with the validation sample of the 

second group’s speech recordings. In the personalized approach, optimal parameter values were 

calculated individually for each participant.

12 3 classes: Confident (C), 

Uncertain (U), Neutral (N)

Not available

Stephan 

et al. (2020)

A general linear model 

(GLM)

Utilizing a canonical Hemodynamic Response Function (HRF) yielded Beta-values for each condition 

(inner/overt), each channel, and each hemoglobin (oxy, deoxy). These values were then utilized for 

subsequent statistical analyses. The fNIRS data were ultimately averaged across participants.

46 2 (Inner speech, overt speech) Not available
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Neural activity and stimulus features contribute to the extraction 
of input and output features, respectively, in decoding models. 
Common examples of speech representations for decoding encompass 
auditory frequencies, modulation rates, or phonemes in the context of 
natural speech. Neural representations often involve extracting 
features such as firing rates from single-unit spiking activity or 
amplitudes in specific frequency bands, such as the high gamma band, 
from recorded electrophysiological signals.

7.2 Classification

The classification stage in the domain of ISR marks a pivotal phase 
where ML and DL methodologies converge to decipher and categorize 
the extracted features. As we  navigate through the landscape of 
classification, the emphasis is on unveiling innovative strategies that 
bridge the gap between the intricate nature of inner speech and the 
computational frameworks designed to decode its meaningful content. 
In this review, we assessed a diverse range of ML models that have been 
applied to ISR. These include traditional approaches, such as support 
vector machines (SVMs), random forests, and regularized linear 
discriminant analysis (RLDA), as well as deep learning models, like 
convolutional neural networks (CNNs), EEGNet, and recurrent 
architectures like LSTMs and GRUs. These models were selected based 
on their prevalence in ISR literature and their relevance to the distinct 
challenges often posed by ISR.

The traditional models offer benefits like simplicity, lower 
computational costs, and clearer interpretability (Golpour et al., 2020). 
These advantageous features are deemed important in ISR scenarios 
when datasets are small, preprocessing is well-optimized, and 
explainability is a priority. However, they rely on classical statistical 
learning techniques and make predictions based on the patterns found 
in manually selected features from the data (Cooney et al., 2019). This 
drawback and reliance on manual selection can limit their ability to 

capture the non-linear and distributed patterns often present in neural 
signals (Li et al., 2019). Consequently, the practicality of traditional 
models is constrained and limited, hindering their ability to generalize 
across the high-dimensional and temporally dynamic nature of 
neural data.

As opposed to this, DL models, particularly CNNs and recurrent 
networks, can automatically learn spatiotemporal features from raw data 
(Lawhern et al., 2018; Lee et al., 2021a). This makes them better suited for 
modeling the complexity of inner speech, especially when large and high-
quality datasets are available. Nevertheless, these models require more 
data, are computationally intensive, and can often lack transparency 
(Yousef and Allmer, 2023). Thus, this can be a drawback for clinical 
applications, especially in ISR given the covert and variable nature of inner 
speech. Overall, the distinction in the capabilities of the different models 
has been displayed in multiple studies evaluating their performance. The 
differences in these processes are illustrated below in Figure 3.

Cooney et al. (2019) have significantly contributed to the decoding 
of EEG signals for inner speech, particularly evident in their 
comprehensive evaluation of hyperparameters for EEG classification. 
Through extensive trials, the authors identified optimal 
hyperparameters for the Shallow CNN, Deep CNN, and EEGNet. The 
optimal performance of Shallow and Deep CNNs was achieved using 
the LeakyReLU activation function, while EEGNet demonstrated 
superior results with the exponential linear unit (ELU). In addition to 
assessing these modern approaches, the study included a comparative 
analysis with established methods, including SVM, Random Forests, 
and RLDA. Notably, the CNNs outperformed these traditional 
methods, underscoring the efficacy of convolutional neural networks 
in the context of EEG signal classification.

Schirrmeister et al. (2017) introduced both deep and shallow CNN 
architectures designed specifically for EEG signals, while (Lawhern et al., 
2018) proposed the EEGNet architecture. These architectures share a 
common foundation, employing spatial and temporal convolutions to 
discern patterns and features within the temporal and spatial dimensions, 

FIGURE 2

Representation of Inner Speech Recognition Methodology. Signal acquisition: Electroencephalography (EEG) signals are recorded from scalp 
electrodes, with representative traces shown for electrodes over the left and right hemispheres. Preprocessing: Acquired EEG signals undergo 
bandpass filtering, down sampling, and artifact removal using independent component analysis (ICA) to enhance signal quality. Feature extraction and 
decoding: Preprocessed signals are input to a convolutional neural network (CNN) for feature extraction and classification. Inner speech decoding: 
The CNN output is used to decode inner speech, distinguishing between different speech-related mental states and visualizing results on a computer 
interface.
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contributing to the effective analysis of EEG data. The classification 
framework of Lee et al. (2021a) was designed with convolution layers and 
separable convolution layers to capture temporal, spectral, and spatial 
information from raw EEG signals. The architecture took raw signals as 
input (C × T), where C represents the number of channels, while T 
represents the time dimension. Essentially, the framework aims to 
classify signals into 9 speaker classes.

CNN architectures are often selected due to their alignment with 
previously successful methods (Singh and Gumaste, 2020). These 
established methods typically involve the initial identification of 
feature vectors, which are then used to train a classifier. CNNs follow 
a similar procedure by first extracting features through convolutions 
and subsequently utilizing them for classification. An inherent 
advantage of CNNs is their ability to concurrently train both feature 
extraction and classification.

On the other hand, for inner-overt speech decoding in the study 
conducted by Martin et al. (2018), a linear mapping model was employed, 
representing the speech features (spectrogram or modulation) as a linear 
weighted sum of neural activity at each electrode. The model parameters 
were determined using gradient descent with early stopping 
regularization. The data were divided into training and testing sets, and 
model fitting was performed with a jackknife resampling technique. The 
algorithm monitored out-of-sample prediction accuracy and terminates 
after a specified number of iterations.

The EEGNet model stands out as a widely adopted architecture 
for inner speech classification. Its design incorporates principles 

akin to those found in Shallow and Deep CNNs, particularly 
concerning temporal and spatial convolutions (Jonsson, 2022). 
Consequently, the initial two convolutional layers exhibit 
similarities to the corresponding layers in these architectures, 
albeit with slight variations in the number of filters and the kernel 
size of the temporal convolution, which is contingent on the data’s 
sample rate. Notably, EEGNet introduces an enhancement in the 
form of a depth-wise separable convolution (Chollet, 2017), 
discernible in convolution layers three and four as illustrated in 
Figure 4.

The exploration of classification methodologies in the context of ISR 
provides valuable insights into the diverse approaches and architectures 
employed to discern patterns within EEG signals. From the widely 
adopted EEGNet model to the configurations of Shallow and Deep 
CNNs, the classification segment has highlighted the evolution of 
techniques for effectively categorizing inner speech representations. The 
utilization of convolutional layers for temporal and spatial feature 
extraction has proven to be instrumental, offering a robust foundation 
for classification models. Furthermore, the integration of depth wise 
separable convolutions, as exemplified by EEGNet, demonstrates the 
ongoing refinement and innovation in enhancing the discriminative 
power of these models (Lawhern et al., 2018). As the field progresses, the 
continual exploration and integration of advanced classification 
techniques promise to propel the capabilities of ISR systems, fostering a 
deeper understanding of the complex interplay between neural signals 
and the inherent intricacies of spoken language.

FIGURE 3

Comparison of traditional machine learning and deep learning approaches for inner speech decoding. Both approaches aim to decode inner speech 
words or intent from raw EEG data. The traditional pipeline involves extensive preprocessing, manual feature extraction (e.g., Power Spectral Density 
(PSD), Short-Time Fourier Transform (STFT)), and classification using classical models like Support Vector Machines (SVM), Random Forests (RF), or 
Regularized Linear Discriminant Analysis (RLDA). In contrast, deep learning models require only light preprocessing, automatically learn features 
through neural network layers, and utilize deep architectures such as Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), or 
EEGNet for classification.
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8 Performance evaluation of ISR 
models

This section provides a comparative overview of the performance 
metrics reported in important ISR studies. We assess the relative 
advantages and disadvantages of the existing ISR methodologies by 
synthesizing the classification accuracies, sample characteristics, and 
model types.

Recent studies show a broad spectrum of classification accuracies, 
which are largely affected by the model type, dataset size, and 
complexity of the speech class. CNN-based models, such as EEGNet, 
have demonstrated greater accuracy in classifying limited word sets 
than traditional methods like SVM or Random Forest. According to 
research conducted by Simistira Liwicki et al. (2022), a customized 
iSpeech-CNN reached an accuracy of 29.04% over 11 classes and had 
an F-score of 36.18%. In contrast, Berg et al. (2021) noted that the 
accuracy of 2D-CNN for 4-class inner speech word classification was 
29.67%, which is just a bit higher than chance level.

Moreover, research such as that by Kiroy et al. (2022) has shown 
that multilayer perceptrons (MLPs) yield better performance than 
SVMs when it comes to classifying spatial directional words in inner 
speech, with accuracy reaching as high as 47.3% in 6-class scenarios. 
Conversely, models that are trained on small subject pools or complex 
class sets (e.g., Shepelev et al., 2021 with emotional intonations) tend 
to exhibit greater variability.

In particular, investigations employing ECoG or high-resolution 
fMRI (e.g., Martin et al., 2018); Although Jones and Voets (2021) 
achieve significantly higher decoding accuracy, their work does not 
lend itself to real-time application. The results underscore a trade-off 
between decoding fidelity and practical deployment.

These findings are summarized in Table 3, which compares the 
model type, dataset, number of classes, evaluation metrics, and 
performance scores. The necessity for scalable models, solid data 
preprocessing, and benchmark datasets for equitable comparison is 
underscored by these results.

It is crucial to remember that results from different research 
cannot be directly compared with regard to the performance measures 
in Table 3 because of differences in sample sizes, recording modalities, 
class sets, and preprocessing methods. While most original research 
did not include formal statistical comparisons (e.g., p-values, 
confidence intervals), metrics such as standard deviation or median 
values (e.g., Jones and Voets, 2021; Nalborczyk et al., 2020) provide 
some sense of variability when available. Therefore, when analyzing 
performance patterns across different datasets, care should be used.

9 Technical limitations and future 
directions

Addressing ISR’s fundamental drawbacks is essential to enhancing 
performance and permitting wider use as it develops, particularly in 
BCI frameworks. In addition to outlining possible research directions 
to lead future innovation, this part offers a cohesive examination of 
technological restrictions.

 • Signal Quality and Noise

A core difficulty in ISR is the low SNR of neural recordings, 
especially in the case of EEG. Subtle in nature, inner speech 

signals can be  affected by muscle artifacts, eye blinks, and 
ambient noise. Methods like independent component analysis 
(ICA), adaptive filtering, and frequency band optimization 
have been extensively employed to enhance signal clarity 
(Mullen et al., 2015; Craddock et al., 2016; Cohen, 2017; Zhang 
et  al., 2022). Yet, it is still challenging to fully isolate inner 
speech signals. Hybrid modalities and multimodal sensing 
methods present possible avenues for progress (Liu and Ayaz, 
2018; Wellington et al., 2024). According to Pei et al. (2011), 
intracranial methods like ECoG have specifically shown 
improved signal fidelity and increased decoding accuracy. 
Despite their intrusive nature, these methods demonstrate the 
limits of ISR decoding capabilities in high-SNR settings.

 • Generalization and Inter-Subject Variability

Individual differences in brain representations of inner speech 
make it difficult for ISR models to generalize across users. This 
heterogeneity is caused by a variety of factors, including inner 
speech formulation styles, brain structure, and language habits 
(Stark et al., 2017; Martin et al., 2018; Perrone-Bertolotti et al., 
2014). Cross-subject model transferability is difficult as a result. 
This can be lessened via domain adaptation and transfer learning, 

FIGURE 4

Architecture of the EEG-based classification model. The model 
begins with two batch normalization layers, processing 10 and 64 
input features, respectively. Subsequent layers involve Exponential 
Linear Unit (ELU) activation, dropout for regularization, and max-
pooling operations (1,4) and (1,8) to down sample the features. The 
core of the network consists of convolutional layers with 64 filters, 
designed to extract relevant patterns from the EEG signals. Finally, a 
classifier layer processes the learned features to predict one of four 
distinct output classes: right, left, down, or up.
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TABLE 3 Inner speech classification procedures, evaluation metrics and results.

Article Procedure Evaluation 
metrics

Results Sample 
size

Class set size Public availability

Simistira 

Liwicki et al. 

(2022)

The authors employ a tuned i-Speech CNN architecture for the classification of 

five vowels and six words using a publicly available dataset.

Precision 29.04 15 11 (5 vowels: /a/, /e/, /i/, /o/, /u/; 6 words: 

arriba/up, abajo/down, derecha/right, 

izquierda/left, adelante/forward, atrás/

backwards)

Yes (available at: https://github.com/

LTU-Machine-Learning/Rethinking-

Methods-Inner-Speech)
Weighted F-score 36.18

F-score 21.84

Berg et al. 

(2021)

Employing a 2D Convolutional Neural Network (CNN) modeled on the 

EEGNet architecture, the researchers categorized EEG signals from eight 

subjects during internal contemplation of four distinct words.

Accuracy 29.67 8 4 words (up, down, left, right) Yes (available at: https://doi.

org/10.18112/openneuro.ds003626.

v2.1.0)
Precision 29.76

Recall 29.68

F1-score 29.61

Jones and 

Voets (2021)

The authors trained phoneme-level decoders on a large, elicited inner speech 

dataset in a single subject. A second self-generated inner speech dataset was 

obtained from the same subject. Despite being trained solely on elicited inner 

speech neural recordings, the decoders accurately predicted unseen phonemes 

in both test conditions.

Median test accuracy 

(Transfer analysis)

47 1 9 target syllables (/ga/, /gi/, /gu/, /ma/, /mi/, 

/mu/, /sa/, /si/, /su/)

Not available

Median test accuracy 

(Replication analysis)

50.82

Kiroy et al. 

(2022)

Investigated were values recorded from 14 channels of 10 young men engaged 

in real verbalization (spoken speech) and the pronunciation of imagined words 

signifying directions in space (up, down, right, left, forward, backward).

SVM accuracy 43.7 10 6 words (up, down, right, left, forward, 

backward)

Not available

MLP accuracy 47.3

Nalborczyk 

et al. (2020)

The authors report findings from a preregistered experiment examining the 

electromyographic correlates of overt and inner speech production for two 

phonetic classes of nonwords. An automatic classification approach discerned 

articulatory features in nonwords during both overt and covert speech.

Mean 59.70 25 20 nonwords were used: 10 rounded and 10 

spread nonwords

Yes (available at: https://osf.io/czer4/)

SD 60.09

Median 42.03

Shepelev 

et al. (2021)

Two training approaches for the models were proposed and evaluated. The 

impact of parameters on mel-frequency cepstral coefficients calculation was 

investigated to understand its influence on resultant accuracies.

Accuracy 80 12 3 classes: Confident (C), Uncertain (U), 

Neutral (N)

Not available

Stark et al. 

(2017)

Scores for inner speech (categorized by group) were correlated with specific 

language and cognition measures extracted from the comprehensive aphasia 

test.

Mean 64 38 3 classes: Relatively preserved, preserved, and 

unclassified inner and overt speech

Yes (available at: https://doi.

org/10.23641/asha.5303542)SD 13

Arjestan et al. 

(2016)

Common spatial patterns (CSP) Energy, variance, ZCR, 

skewness, and kurtosis

81.3 5 3 syllables (/kaː/, /fiː/, /suː/), 6 vowels (/æ/, 

/e/, /au/, /aː/, /iː/, /uː/), resting (Persian)

Not available

Lee et al. 

(2021b)

Temporal changes Root mean square 76.19 9 9 subjects (speaker ID) Not available
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which reuse existing information to adjust to new users (Wilroth 
et al., 2023). Usability in actual BCI environments may be further 
enhanced by customized calibration procedures.

 • Benchmarking and Dataset Limitations

Reproducibility and model robustness are hampered by the dearth 
of sizable, varied, and publicly accessible ISR datasets. The lack of 
subjects, speech classes, or modalities in many of the current 
datasets makes comparison and generalization challenging (Nieto 
et al., 2022; Shepelev et al., 2021). Benchmark datasets with diverse 
people, languages, and situations are desperately needed (Cannard 
et al., 2024; Kaur et al., 2020). Additionally, uniform evaluation 
procedures and open-source pipelines will improve cross-study 
comparability (Lotte et al., 2013).

 • Clinical Trust and Interpretability

The clinical and user acceptability of deep learning models is 
limited since they frequently function as “black boxes.” 
Building confidence and guaranteeing model reliability depend 
on interpretability. The integration of explainable AI (XAI) 
techniques like as SHAP and LIME has been emphasized in 
recent work in ISR and more generally in medical AI (Ribeiro 
et al., 2016; Lin et al., 2023; Gandin et al., 2021). In high-stakes 
situations like assistive communication, these techniques can 
facilitate transparent decision-making and aid in the 
visualization of feature contributions.

 • Neurosecurity, Privacy, and Ethics

Serious ethical questions about privacy, autonomy, and possible 
abuse of cognitive data are brought up by the decoding of inner 
speech. Since neural data is extremely private, there are 
significant hazards associated with its improper interpretation 
or preservation (Yuste et al., 2017). To avoid abuse and advance 
user safety, ethical ISR development must incorporate 
informed permission, data anonymization, and institutional 
control (Masters, 2023; Lee et al., 2021a).

 • Real-time applications with multimodal integration

Future ISR systems should use multimodal techniques, 
integrating brain inputs with physiological or behavioral 
indicators like eye tracking, facial movements, or GSR, to 
improve performance and contextual awareness (Selfridge 
et al., 2011). This kind of integration might make it easier to 
distinguish irrelevant mental activity from inner speech. Real-
time ISR applications in clinical and consumer-facing settings 
can be  made easier by developments in portable EEG, dry 
electrodes, and low-latency processing architectures. (Lawhern 
et al., 2018; Minguillon et al., 2017)

10 Conclusion

This review has highlighted the pivotal role of machine learning 
(particularly models like CNNs and EEGNet) in advancing the 
domain of inner speech recognition (ISR). By analyzing the various 

key components across the ISR pipeline, from neural signal acquisition 
to preprocessing and model architecture, we outlined how ML allows 
for more accurate, robust and scalable decoding of inner speech. 
Moreover, our proposed structured framework offers a practical guide 
for improving ISR performance, setting the stage for future innovation.

In conclusion, despite the challenges facing ISR, including issues 
of interpretability, ethical concerns, and dataset diversity, the future of 
ISR remains promising. Technological advancements in machine 
learning and neuroimaging, along with deeper insights into the 
relationship between inner speech and brain dynamics, will drive the 
field forward. By addressing these limitations through collaboration, 
standardized criteria, and improved neuroimaging techniques, ISR 
systems can become more effective, inclusive, and responsible. The 
synergy between machine learning and cognitive neuroscience not 
only enhances technology but also advances our understanding of the 
profound mechanisms underlying inner speech, paving the way for a 
transformative era in ISR research.
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