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Editorial on the Research Topic

Machine-learning/deep-learning methods in neuromarketing and

consumer neuroscience

This Research Topic explores the application of Machine Learning (ML) and Deep

Learning (DL) methods in Neuromarketing and Consumer Neuroscience. Rather than

following the prevailing “AI trend” (Messeri and Crockett, 2024), we aim to promote

data-driven approaches as effective solutions to two persistent challenges in the field:

low ecological validity and the issue of reverse inference (Yao and Wang, 2024). These

challenges arise when mental states (m) are inferred from neurophysiological indices (x)

that, although grounded in neuroimaging research, are often collected under artificial

laboratory conditions. Their correlational nature (x|m) also undermines their predictive

utility (m|x) unless both the prior (P(m)) and base rate (P(x)) are properly specified

(Plassmann et al., 2015; Ramsøy, 2019).

ML/DL methods address these issues in two ways. First, they estimate P(m|x),

facilitating a more robust variant of reverse inference known as “pattern-based

decoding” (Nathan and Pinal, 2017). Second, when trained in ecologically valid contexts

(e.g., consumer decision-making or exposure to marketing stimuli), they enhance

generalizability without sacrificing accuracy (Shamay-Tsoory and Mendelsohn, 2019).

Free from predefined assumptions, these methods can also uncover latent structures in

physiological data, offering new theoretical insights and hypotheses (Verzelli et al., 2024).

Despite these advantages, their adoption remains limited (Song et al., 2025). To date,

only 35% of studies in Neuromarketing and Consumer Neuroscience (20 of 57) have

utilized ML/DL methods (Rawnaque et al., 2020), with this percentage varying between

27% (23 of 86) (Byrne et al., 2022) and 50% (43 of 86) (Khondakar et al., 2024) in

EEG-focused studies.

This Research Topic features eight contributions: six experimental studies, one dataset

paper, and one meta-analysis. The investigated mental states range from emotion and
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engagement to preference andwillingness to pay. Classifiers include

both traditional and ensemble models, as well as shallow and deep

neural networks. Modalities include the electrical and metabolic

activity of both the peripheral and central nervous systems. Below

is a brief overview of the contributions, presented in order

of publication.

Hakim et al. explored willingness to pay (WTP) using EEG

recordings from 231 participants while viewing 72 product images.

A deep architecture combining CNN and RNN with attention

layers was trained on raw signals, achieving 75.09% accuracy in

binary classification and a 0.276 RMSE in continuous prediction.

Filter-based model explainability highlighted beta, delta, and

alpha bands, as well as the frontal region (FPz) as the most

predictive features.

Merritt et al. predicted hit songs based on peripheral

measures of “immersion” and “retreat” in 33 participants

exposed to 24 tracks (13 of which were hits). A logistic

regression model reached 69% accuracy, which was improved

to 97% by a stacked ensemble of kNN, SVM, and ANN.

Using only the first 60 seconds of data, the model retained

82% accuracy.

Çakar and Filiz examined political engagement using fNIRS

in 33 participants rating 12 political leader images accompanied

by valenced descriptors. A range of models was tested, with

LightGBM achieving the best accuracy of 78%. SHAP analysis

identified dorsomedial and ventromedial prefrontal activations as

key predictors of political preference.

Polo et al. investigated emotional responses to visual,

auditory, and bimodal stimuli through EEG, SC, PPG,

respiration, and pupillometry in a 22-participants sample.

Standardized emotional content covered all arousal-valence

quadrants. Among several tested classifiers, AdaBoost performed

best (52% accuracy for auditory, 44% for visual, and 51%

for combined). The proposed novel Square Method feature

selection identified EEG, SC, ECG, and respiration as the most

informative modalities.

Watanuki studied consumer decisions involving branded vs.

unbranded foods by analyzing 32 previously published fMRI

studies (2000–2023) using Activation Likelihood Estimation and

Multi-Coordinate Pattern Analysis via sparse Partial Least Squares

Discriminant Analysis. The ventromedial prefrontal cortex was

consistently activated in both conditions, while the lingual and

parahippocampal gyri were uniquely responsive to branded stimuli.

The latter also emerged as a key region for discriminating

brand engagement.

Çakar et al. addressed credit decision-making using fNIRS

recorded while 39 participants evaluated 35 loan offers. Features

were input to several models, with Extra Trees achieving the highest

accuracy of 79%. SHAP analysis related the prediction outcomes

to activation in dorsolateral, orbitofrontal and ventromedial

prefrontal regions.

Bilucaglia et al. presented I DARE, a multimodal dataset of

physiological responses obtained from 63 participants exposed to

32 emotional images. Stimuli were drawn from standard affective

databases and selected semi-automatically based on valence-

arousal geometry and raters’ agreement. The dataset, that includes

pre-processed EEG, SC, PPG, EMG and eye-tracking data, is

available at https://figshare.com/projects/I_DARE/186558.

Finally, Marques dos Santos andMarques dos Santos examined

brand perception using fMRI data from 22 participants shown 160

stimuli. A MLP was trained on BOLD responses achieved 55.9%

accuracy. SHAP and path-weight analysis identified early visual

areas, particularly the cuneal and lateral occipital cortices, as key

contributors to preference discrimination.
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