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Background: Deep brain stimulation is a primary surgical treatment for

advanced Parkinson’s disease (PD). The globus pallidus interna (GPi) is a key

target for this procedure. The posterior subthalamic area (PSA) serves as an

effective target for tremor-dominant Parkinson’s disease. However, it is less

commonly utilized in conventional DBS surgery compared to the subthalamic

nucleus (STN) or the ventral intermediate nucleus (VIM). There is currently no

clinical research on the combined DBS surgery targeting both the PSA and the

GPi, which is why we have conducted this study.

Case report: We introduced a case of a patient with advanced PD. Due

to the patient’s primary manifestations of right-sided tremor and left-sided

rigidity, along with significant dyskinesia on the left side, DBS implantation was

performed in the left hemisphere targeting the PSA and in the right hemisphere

targeting the GPi. The patient’s UPDRS-III score decreased from 73 to 46

postoperatively, showing an improvement of approximately 36.99%, while the

H-Y stage improved from stage 4 to 2.5, representing a 37.5% improvement.

During the 6-months postoperative follow-up, the patient’s PD symptoms were

effectively controlled, with no significant adverse effects.

Discussion: When advanced PD patients present with asymmetric and variable

motor symptoms, combined DBS stimulation targeting both the GPi and the PSA

is a viable treatment option.

KEYWORDS

different targets, deep brain stimulation, posterior subthalamic area, globus pallidus
internus, Parkinson’s disease

1 Introduction

Parkinson’s disease is the second most common neurodegenerative disorder after
Alzheimer’s disease, and its onset is generally believed to be associated with the depletion of
dopamine in the nigrostriatal pathway (Dauer and Przedborski, 2003). The disease leads
to impairments in both motor and non-motor functions, and its high cost of care and
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treatment significantly increases the economic burden on families
and society in the context of an aging population. Deep brain
stimulation (DBS) is the primary surgical treatment for primary
PD, and it can improve specific symptoms by targeting different
brain regions (Abusrair et al., 2022). Currently, most PD patients
exhibit asymmetrical symptoms on the left and right sides. If we
use bilateral symmetric target DBS surgery, it may not effectively
address the issue of asymmetrical symptoms. The globus pallidus
interna (GPi) is a target that has a direct antiparkinsonian effect,
particularly in reducing dystonia (Vidailhet et al., 2005). The
posterior subthalamic area (PSA) is a novel target that demonstrates
better efficacy in alleviating tremors (Ramirez-Zamora et al., 2016).

Here, we present a case of a PD patient who primarily
presented with right-sided tremor, left-sided rigidity, and
significant dyskinesia on the left side. Given the patient’s severe
right-sided tremor and the superior efficacy of the PSA over both
the subthalamic nucleus (STN) and GPi for tremor control, we
selected the PSA as the target in the left cerebral hemisphere, while
opting for GPi stimulation in the right hemisphere to address
concurrent non-motor symptoms and left-sided dyskinesia.

The use of asymmetric target stimulation during surgery has
gradually been adopted in clinical practice and has received positive
feedback (Schadt et al., 2007; Hedera et al., 2013; Maesawa et al.,
2022). However, there is still no consensus on the optimal target
for DBS, and research on asymmetric targets targeting the PSA
has primarily focused on essential tremor, with most studies
employing a combination of the PSA and the VIM (ventral
intermediate nucleus) stimulation (Yilmaz et al., 2024; Chong
et al., 2024; Kojoh et al., 2020). Research on the asymmetric
targeting of the GPi has only been reported in cases where GPi
and subthalamic nucleus (STN) stimulation were combined to treat
PD, primarily characterized by tremor (Zeng et al., 2022). Zhang
et al. (2020) demonstrated the efficacy of combined STN-GPi DBS
in Parkinson’s disease through a study involving eight patients,
particularly for those with poor contralateral symptom control
or requiring medication reduction. In contrast to these existing
asymmetric DBS approaches, we present the first reported PSA-
GPi combination for PD patients exhibiting rigidity-dyskinesia
asymmetry.

The combined use of the GPi and the PSA in DBS surgery
remains to be further explored. Although numerous reports
have emerged regarding the use of different targets in DBS
surgery, to our knowledge, there are scant clinical cases involving
the combined treatment of GPi-PSA. Today, we will present
the technical approach and therapeutic outcomes of this novel
treatment strategy.

2 Case presentation

2.1 Presentation and examination

This case report describes a 71-years-old male patient who
developed right upper limb tremor without identifiable triggers
5 years ago, with subsequent progressive spread to the right lower
limb, left upper limb, and ultimately the left lower limb, resulting in
generalized tremor involving all four extremities. He was diagnosed
with “Parkinson’s disease” at a local hospital. After treatment with

half a tablet of carbidopa-levodopa (1/2 tablet daily), his condition
was well-controlled. Over the past 2 years, his symptoms have
progressively worsened, manifesting as prominent right-sided limb
tremor (6 Hz frequency), left-sided rigidity with tremor (3 Hz
frequency), bradykinesia, turning difficulty, impaired nocturnal
turning, and dysphagia. The patient is currently being treated
with half a tablet of carbidopa-levodopa (1/2 tablet) four times a
day (qid), 1 tablet of amantadine once a night (qn), and 1 tablet
of pramipexole three times a day (tid). However, the symptoms
have not improved significantly, and the patient has developed
dyskinesias and other adverse effects from the medication. As a
result, the patient has sought further treatment at this hospital
for surgical intervention. Physical examination showed that the
patient’s facial expression was stiff, the neck muscle tension was
high, the limb muscle strength was grade 5, the right limb muscle
tension was increased, the tremor was obvious, the left limb
muscle tension was increased, the knee joint was stiff, the joint
activity was slow, and the stability was poor. In the upright state,
the back leans forward, the walking is unstable, and the turning
is slow. Bilateral finger-nose test was positive, UPDRS-III was
73, H-Y stage was 4, PDQ-39 score was 118, ALCT showed a
57 % improvement rate, and DBS surgery was recommended.
The patient did not report cardiovascular, pulmonary, renal, or
endocrine diseases. There was no abnormality in the MRI images
of the patient’s brain.

2.2 Surgical interventions

Given the patient’s severe right-sided tremor, we selected the
left PSA as the target for stimulation. Considering the left-sided
rigidity and prominent dyskinesia, we chose the right GPi as the
second target. Therefore, we performed bilateral DBS with a dual
lead configuration, targeting the left PSA and the right GPi. The
patient’s CT images were acquired using the Leksell Stereotactic
Frame System and fused with preoperative MRI images. The
surgical plan was created using the Leksell Stereotactic Frame
System. Local anesthesia was administered first, followed by the
fixation of the patient using the Leksell stereotactic frame.

The X coordinate of the left PSA target is located at 107.5 mm
on the left side of the midpoint of the AC-PC line, the Y coordinate
is located at 89.5 mm behind the midpoint of the AC-PC line, and
the Z coordinate is located at 121 mm below the midpoint of the
AC-PC line. The angle between PSA target and AC-PC plane was
107.5◦, and the angle between PSA target and midline was 57◦. The
X coordinate of the right GPi target is located on the right side
of the midpoint of the AC-PC line at 75 mm, the Y coordinate
is located 99 mm in front of the midpoint of the AC-PC line,
and the Z coordinate is located 117 mm below the midpoint of
the AC-PC line. The angle between GPi target and AC-PC plane
was 87◦, and the angle between GPi target and midline was 73◦

(Figure 1).
The patient underwent intraoperative electrophysiological

mapping using the Alpha Omega microelectrode recording
system to assess the functional areas of the target nuclei. The
microelectrode recorded signals from the left PSA and the
right GPi. During the procedure, experimental stimulation was
performed, and the patient showed significant improvement in
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FIGURE 1

Preoperative and postoperative fused images (preoperative plan in green, actual implanted electrode shown in white). (A) Postoperative fused image
of the right GPi. (B) Postoperative fused image of the left PSA.

tremor symptoms without any adverse effects. After thoroughly
disinfecting the right occipital, posterior auricular, and cervical
regions, as well as the right subclavicular area, the patient was
administered local anesthesia. The pulse generator (G102RZ)
was implanted, and the lead was finally placed. The procedure
was completed successfully, with no complications during or
after surgery. The patient was conscious and stable at the end
of the operation.

2.3 Postoperative course

The patient exhibited a good mental state postoperatively,
with a significant reduction in tremor and the ability to
perform daily activities independently, including ambulation
without assistance. Postoperative image fusion confirmed precise
electrode positioning without intracranial complications, utilizing
T1-weighted contrast-enhanced (1 mm slice thickness), standard
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TABLE 1 Comparison of pre- and postoperative scale
scores in the patient.

Status UPDRS-III H-Y stage

Preoperative 73 4

Postoperative 46 2.5

Improvement 36.99% 37.50%

T1-weighted, axial and coronal T2-weighted, and susceptibility-
weighted imaging (SWI, 2 mm slice thickness) sequences, with
fusion processing performed using Leksell swgiplem software
(version 10.0) (Figure 1). Consistent with both the product
requirements for bilateral uniform frequency settings and the
clinically conventional 130 Hz stimulation paradigm, initial
stimulator parameters were configured at: amplitude 1.2 V, pulse
width 60 µs (microseconds), and frequency 130 Hz upon device
activation.

When stimulating the left PSA, the patient’s right-sided
tremor was significantly reduced, and when stimulating the
right GPi, the patient’s left-sided rigidity improved markedly.
The patient’s postoperative ON-DBS UPDRS-III score of
46 demonstrated a 36.99% improvement compared to the
preoperative OFF-DBS score of 73, with tremor frequencies
bilaterally improved from preoperative levels (right: 6 Hz; left:
3 Hz) to 2 Hz in both extremities, while the Hoehn and Yahr
stage improved from 4 to 2.5 postoperatively, representing a 37.5%
enhancement in disease severity (Table 1). The patient continued
with the same medication regimen for PD and underwent
regular follow-up. At the 6-months postoperative follow-up,
the patient was re-evaluated, and a DBS programming session
was conducted. The patient’s Parkinson’s disease symptoms
were effectively controlled postoperatively, with a MoCA
score of 27 indicating preserved cognitive function and no
significant adverse effects observed during the initial follow-up
period; scheduled longitudinal follow-ups will be conducted
to monitor the sustained therapeutic efficacy of this surgical
intervention.

3 Discussion

Currently, four primary targets are utilized in DBS surgery:
the ventral intermediate nucleus (VIM), STN, GPi, and PSA. The
VIM, located within the ventrolateral thalamus, demonstrates
superior efficacy for tremor control and is indicated for essential
tremor, Parkinson’s disease with isolated tremor symptoms,
and tremor-dominant Parkinson’s disease subtypes (Mao
et al., 2019). However, current clinical trials demonstrate that
although this target shows satisfactory short-term therapeutic
efficacy, it exhibits poor long-term tolerability with progressively
diminishing treatment effects over time (Blomstedt et al., 2007).
Moreover, this target is associated with significant adverse
effects, including dysphagia, gait disturbances, and postural
instability (Hariz and Blomstedt, 2022). Consequently, considering
the long-term quality of life outcomes, we did not prioritize
this target as the primary therapeutic option in the current
treatment regimen.

The STN, located within the basal ganglia, remains a classical
and pivotal target for DBS surgery, with extensive clinical
evidence demonstrating its efficacy in alleviating tremor,
rigidity, and bradykinesia in the majority of PD patients
(Kocabicak et al., 2012). The GPi, an integral component
of the basal ganglia (BG) and a classical DBS target, is
anatomically composed of the medial (GPi) and lateral (GPe)
segments. The GPi-DBS restores the balance of the basal
ganglia circuitry by inhibiting the hyperactive neurons in
the GPi and simultaneously suppresses pathological β-band
oscillations while enhancing γ-band oscillations to improve
motor control. Randomized controlled trials have shown that
GPi-DBS improves baseline UPDRS motor scores during the
off-medication state by 27%–54% (Au et al., 2021). Currently,
while some researchers contend that the STN demonstrates
superior efficacy over the GPi for tremor amelioration, others
propose that the GPi may constitute the tremorgenic source,
resulting in ongoing controversy regarding optimal target
selection (STN versus GPi) for tremor management in clinical
practice (Wong et al., 2020; Dirkx et al., 2016). However, a
consensus exists regarding the suboptimal tremor control
efficacy of both the STN and GPi, particularly in patients with
high-frequency tremor manifestations (Azghadi et al., 2022;
Wong et al., 2020). In this case, the patient exhibited high-
frequency right-sided tremor (6 Hz) with potential comorbid
essential tremor components, for which both conventional
targets demonstrated limited therapeutic efficacy, prompting
our exploratory investigation of the PSA as an alternative
intervention target.

The PSA is located posterior to the ventral thalamus and is
primarily composed of the caudal zona incerta (cZi), the dentato-
rubro-thalamic tract (DRTT), and adjacent fibers. Mathematical
theory model simulations suggest that PSA-DBS may reduce the
abnormal signals transmitted from the cerebellum to the thalamus
by inhibiting the pathological β-oscillations in the DRTT (Wu
et al., 2023). Clinical trials have demonstrated that the PSA
exhibits markedly superior efficacy in tremor control compared
to alternative DBS targets (Kim et al., 2021). Postoperative
outcomes of the PSA-DBS are significantly improved: patients
typically experience an improvement of 80%–95% in symptoms
after medication discontinuation, and long-term follow-up studies
show that tremor improvement can last for more than 5 years
(Stenmark Persson et al., 2023); (Chopra et al., 2013). Moreover,
this target is primarily associated with dysphagia and balance
disorders as its main adverse effects, while demonstrating a
significantly lower incidence of complications compared to other
nuclear targets (Xie et al., 2012; Chopra et al., 2013). Based on its
superior efficacy in controlling both tremor and gait disturbances
compared to STN and GPi, coupled with a more favorable
adverse effect profile, we selected this target in the left cerebral
hemisphere to manage the patient’s severe right-sided limb tremor
symptoms.

The patient exhibited left-sided limb rigidity accompanied
by dyskinetic movements, a clinical presentation for which
the GPi is typically preferred over the STN in standard
therapeutic practice (Sriram et al., 2014; Mirza et al., 2017).
The patient presented with a comprehensive symptom
profile encompassing motor manifestations (tremor, rigidity,
bradykinesia, and gait disturbances) alongside non-motor
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features including depression, anxiety, cognitive impairment,
and constipation, for which the GPi target demonstrates
superior therapeutic efficacy over the STN in addressing
cognitive dysfunction, anxiety, and depressive symptoms
(Wang et al., 2016; El Ghazal et al., 2023). Given the GPi’s
demonstrated superiority in managing both dyskinesia and
non-motor symptoms, we ultimately selected the GPi target for
implantation in the patient’s right cerebral hemisphere rather than
the STN.

In recent years, with the discovery of different target
areas, asymmetric target surgery has attracted the attention
of researchers. Zhang et al. (2020) recently demonstrated the
therapeutic efficacy of combined STN-GPi DBS surgery in
eight Parkinson’s disease patients through comparative analysis
of UPDRS-III scores, Timed Up and Go (TUG) test results,
PDQ-39 questionnaire outcomes, and axial symptom assessments
performed preoperatively, immediately postoperatively, and at 6-
and 12-months follow-ups. In previous reports, the combination of
the GPi and the STN is more effective in improving symptoms on
the contralateral limb than the GPi or the STN alone (Zeng et al.,
2022). The PSA-DBS has been used in multiple clinical cases for
combining the PSA-VIM stimulation to treat tremor syndromes or
essential tremor (Yilmaz et al., 2024; Chong et al., 2024). Still, it is
relatively uncommon in the treatment of PD tremor, with only one
case report demonstrating a successful outcome of combining the
PSA-VIM stimulation for Parkinsonian tremor symptoms (Kojoh
et al., 2020). There have been no clinical reports of DBS surgery
targeting the combined PSA-GPi pathway.

The current DBS systems can use a single pulse generator
device to adjust stimulation for two electrode leads. Therefore, in
patients with PD primarily characterized by tremor, using multiple-
target approaches with dual-electrode configurations is technically
feasible and more effective. In this case, a severe tremor in PD
may involve complex pathophysiology affecting multiple functional
networks, including the cerebellum-thalamocortical pathway and
the globus pallidus-thalamocortical pathway.

The combined treatment of the left PSA and the right GPi
can simultaneously target both the tremor circuit and the overall
motor control network. This combined approach demonstrated
superior efficacy over other target combinations in managing the
patient’s overall non-motor symptoms, high-frequency right-sided
limb tremor, and left-sided rigidity with dyskinetic movements,
while maintaining a relatively favorable adverse effect profile.

It is important to note several limitations. First, the stimulation
frequencies for the PSA and the GPi differ, requiring separate
frequency adjustments during DBS programming. In the absence
of prior reference cases and due to product requirements
mandating identical bilateral frequency settings, we proceeded
with the intervention based on established clinical experience.
We recommend that future clinical trials gradually determine
the optimal frequency settings for the PSA-GPi combination
(Hidding et al., 2023). As this study constitutes a single-case
report with only 6-months follow-up data, the observed outcomes
may reflect incidental findings; we plan to conduct extended
longitudinal monitoring to verify the surgical efficacy, while
definitive confirmation of PSA-GPi DBS’s therapeutic effects for
Parkinson’s disease patients with asymmetric bilateral motor
symptoms will require future randomized controlled trials for
validation.

4 Conclusion

We report the first documented case utilizing combined
PSA-GPi DBS to treat Parkinson’s disease presenting with
unilateral tremor and rigidity accompanied by asymmetric
motor symptoms, with our findings suggesting potential
efficacy in managing rigidity-dyskinesia asymmetry; however,
as this represents a single-case study, future randomized
controlled trials are warranted to definitively establish the
therapeutic value of this intervention. However, the long-
term effects of dual-target DBS stimulation at the PSA-GPi
interface remain unclear and require further investigation
and long-term monitoring to fully assess its safety and
efficacy.
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