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Discriminative power of diverse 
nonlinear EEG dynamics across 
consciousness states during 
auditory stimulation in disorders 
of consciousness
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Department of Rehabilitation, The Second Qilu Hospital of Shandong University, Jinan, China

Objective: This study addressed the challenge of assessing consciousness 
in patients with disorders of consciousness (DOC) using nonlinear dynamic 
parameters applied to electroencephalogram (EEG) characteristics stimulated 
by music.
Method: EEG signals from 57 patients with DOC at the Rehabilitation Medical 
Center of the Second Hospital of Shandong University were analyzed using the 
Lyapunov Exponent (LE), Approximate Entropy (ApEn), Lempel–Ziv Complexity 
(LZC), and Correlation Dimension (D2). These parameters were then correlated 
with the total CRS-R score to evaluate their effectiveness. The results indicated 
that preferred music significantly improved cortical excitability in minimally 
conscious state (MCS) patients, as evidenced by the ApEn, LZC, and D2 
algorithms, but had no significant effect on vegetative state (VS)/unresponsive 
wakefulness syndrome (UWS) patients.
Results: LE, however, showed significant responsiveness in the frontal and 
middle temporal lobes of patients with VS/UWS. Correlation analysis revealed 
significant associations between changes in ApEn, LZC, and D2 due to musical 
stimulation and the total CRS-R score, whereas the LE showed no such 
correlation.
Conclusion: ApEn, LZC, and D2 are valuable for assessing and distinguishing 
conscious states in patients with DOC, with LE providing supplementary 
information for patients with VS/UWS. Nonlinear EEG parameters offer promising 
reference values for effective clinical interventions in DOC.
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1 Introduction

After severe acquired brain injury, some patients may exhibit a persistent consciousness 
(pDOC) that lasts for more than 28 days (Wang et al., 2020). Depending on the level of 
preserved consciousness, these patients are typically classified into two main categories: 
vegetative state (VS)/unresponsive wakefulness syndrome (UWS), characterized by 
spontaneous eye-opening without any conscious behavior, and minimally conscious state 
(MCS), characterized by inconsistent but reproducible conscious behavior (Ling et al., 2023).

OPEN ACCESS

EDITED BY

Sandra Carvalho,  
University of Minho, Portugal

REVIEWED BY

Zhipeng He,  
Sun Yat-sen University, China
Xuetong Zhai,  
University of Pittsburgh, United States

*CORRESPONDENCE

Fanshuo Zeng  
 zfsdsg1987@126.com

RECEIVED 06 June 2025
ACCEPTED 18 August 2025
PUBLISHED 12 September 2025

CITATION

Tang Y, Sheng Q, Wu X and Zeng F (2025) 
Discriminative power of diverse nonlinear 
EEG dynamics across consciousness states 
during auditory stimulation in disorders of 
consciousness.
Front. Hum. Neurosci. 19:1640520.
doi: 10.3389/fnhum.2025.1640520

COPYRIGHT

© 2025 Tang, Sheng, Wu and Zeng. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  12 September 2025
DOI  10.3389/fnhum.2025.1640520

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2025.1640520&domain=pdf&date_stamp=2025-09-12
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1640520/full
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1640520/full
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1640520/full
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1640520/full
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1640520/full
mailto:zfsdsg1987@126.com
https://doi.org/10.3389/fnhum.2025.1640520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2025.1640520


Tang et al.� 10.3389/fnhum.2025.1640520

Frontiers in Human Neuroscience 02 frontiersin.org

In recent years, clinical research has focused on identifying 
effective methods to promote awakening in patients with disorders of 
consciousness (DOC). One such method is musical stimulation, 
which has been widely used to prevent sensory deprivation in patients 
by potentially affecting neural networks and accelerating neuronal 
plasticity (Herdener et al., 2010). In addition, musical stimulation has 
been shown to activate a wide range of cortical responses, supporting 
concepts such as the “Mozart effect” and the “mood and arousal 
hypothesis” (Luauté et al., 2018).

EEG (Electroencephalogram) is a non-invasive brain function 
testing technique known for its speed, convenience, and ease of 
bedside assessment. It offers high temporal and acceptable spatial 
resolution (Lai et al., 2020), making it an ideal choice for this study to 
objectively assess patients with DOC in the presence of musical 
stimuli. Traditionally, EEG signal features have been extracted using 
linear methods in the frequency domain (e.g., fast Fourier transform 
or wavelet transform) and parametric techniques (e.g., autoregressive 
modeling). However, these linear methods are limited in their ability 
to detect potentially nonlinear features (Pritchard and Duke, 1995). 
EEG signals exhibit significant random fluctuations in amplitude over 
time and are characterized by nonlinear and dynamic features 
(Akdemir Akar et al., 2015; Liu et al., 2021). Therefore, it is important 
to use nonlinear dynamics to extract EEG signal features, as these are 
fundamentally independent of EEG spectral analysis parameters and 
are complementary to “classical” EEG linear analysis (Eagleman and 
Drover, 2018; Altıntop et al., 2022). Nonlinear analyses are believed to 
reveal the complexity of EEG signals through various measures, such 
as the Lyapunov Exponent (LE), Approximate Entropy (ApEn), 
Lempel–Ziv Complexity (LZC), and Correlation Dimension (D2). 
Each of these algorithms captures different aspects of the signal 
complexity. We hypothesized that using these four algorithms to assess 
the effects of musical stimuli on the cerebral cortex in patients with 
DOC would yield different results. Therefore, this study aimed to 
identify the nonlinear dynamic algorithms that most accurately assess 
the state of consciousness in patients with DOCs under quiet and 
external stimulation conditions.

2 Materials and methods

2.1 Study design

This prospective cross-sectional study was conducted from 
October 17, 2023, to May 20, 2024. A total of 57 patients with DOC 
and 22 healthy participants from the Department of Rehabilitation 
Medicine of the Second Hospital of Shandong University participated 
in this study. The study was approved by the Ethics Committee of the 
Second Hospital of Shandong University (KYLL-2023-414) and the 
registration code was ChiCTR2300079310. Informed consent was 
obtained from each patients’ family.

The VS/UWS state is defined as the presence of an awake state 
without responsiveness to external stimuli. Patients with pDOC and 
MCS exhibit fluctuating responses to external stimuli. Patients with 
MCS are further subdivided into MCS + and MCS- based on their 
ability to process language (Ling et  al., 2023). Patients with MCS 
exhibit intermittent responses to external stimuli, specifically primary 
or reflexive behaviors such as body flinching after a painful stimulus 
or eye tracking in response to mirrors. Conversely, MCS + patients 

could use objects normally and communicate effectively and reliably 
with their surroundings. The inclusion criteria were: 1. The diagnostic 
criteria for DOC were met: 2. Aged 18–80 years; 3. no previous history 
of brain injury, and 4. Stable vital signs. Exclusion criteria were as 
follows: 1. Hearing impairment; 2. continuous aggravation, active 
cerebral hemorrhage, or intracranial hypertension, and 3. Atresia 
syndrome, severe cerebral atrophy, or hydrocephalus; 4. History of 
epilepsy, 5. severe spasticity resulting in EMG artifacts, and 6. cranial 
decompressive resection or cranial defects affecting regional EEG 
amplitude, and 7. Neurodevelopmental disorders.

2.2 General parameters

Patient clinical data, including age, sex, duration of injury, and 
type of injury (traumatic brain injury, stroke, or ischemic–hypoxic 
encephalopathy), were collected. The behavioral assessment of the 
patients was performed using the Coma Recovery Scale-Revised 
(CRS-R). The CRS-R is considered the most valid and sensitive 
method for identifying individuals with very low consciousness 
(Cortese et al., 2015). This scale consists of six subscales: auditory, 
visual, motor, verbal, communicative, and arousal (Wang et al., 2020). 
CRS-R assessments are usually performed between 10 a.m. and 
12 p.m. (Cortese et al., 2015) and separated from the administration 
of CNS medications (e.g., muscle relaxants and sedatives) by an 
interval of at least 10 h. An experienced rehabilitative physician 
conducted the EEG assessments on the same day. All the CRS-R 
evaluations were conducted by an experienced physician who was 
blinded to the EEG results throughout the assessment process. To 
enhance reliability, each patient underwent three consecutive CRS-R 
assessments (on the EEG recording day and subsequent 2 days), with 
the average score used for statistical analysis. The study employed 
separate specialized teams for different components: EEG acquisition 
by trained neurophysiological technicians. EEG analysis by dedicated 
signal processing researchers. Behavioral assessments by clinical 
rehabilitation staff.

2.3 EEG examination

For this study, EEG signal acquisition (ZN16E, Chengdu, China) 
was performed in the unipolar mode, which records the voltage 
difference between the measurement and reference electrodes. 
Multiple electrodes were used to record neuroelectric activity across 
different brain regions. A wireless digital EEG amplifier and a 
powerless chamber were used to minimize electromagnetic 
interference from the surrounding environment. EEG recordings were 
obtained while the patient was awake and lying comfortably in a quiet 
environment. All electrodes referenced earlobe electrodes to record 
EEG from 19 scalp sites (channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, 
O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz), according to the 
International 10–20 systems. The signals were digitized at a sample 
rate of 500 Hz, bandwidth of 0.3–100 Hz, and 12-bit AD 
conversion resolution.

Initially, EEG signals were recorded in a quiet state for 5 min. 
Subsequently, EEG signals were recorded for another 5 min while 
patients listened to their preferred music, which was obtained through 
interviews with the patients’ family members. To prevent emotional 

https://doi.org/10.3389/fnhum.2025.1640520
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Tang et al.� 10.3389/fnhum.2025.1640520

Frontiers in Human Neuroscience 03 frontiersin.org

bias, the selected music was upbeaten and optimistic. All music was 
played using binaural noise-canceling headphones at a volume of 
60–70 dB.

To ensure that the patient remained awake during the test, an 
experienced EEG evaluator monitored EEG traces online for signs of 
sleepiness and sleep onset. Vigilance states were classified according 
to standardized electrophysiological criteria. Wakefulness was defined 
as sustained posterior dominant rhythm in either the alpha (8–12 Hz) 
or low-beta (12–18 Hz) frequency ranges, with absence of sleep-
specific patterns including sleep spindles and K-complexes. If signs of 
behavioral sleepiness and/or EEG sleepiness were detected, the 
assessment was paused, and the patient was prodded awake according 
to the CRS-R standard wakefulness pattern. EEG signals from the 
corresponding segments were then recaptured. Participants were 
asked to keep their eyes closed throughout the procedure to minimize 
eye movement artifacts. To minimize electromyographic artifacts, 
participants with obvious spasticity were excluded, and EEG signals 
mixed with electromyographic artifacts were visually excluded by 
experienced EEG operators. Because ApEn and LZC are highly 
sensitive to high-frequency components in EEG signals (Kargarnovin 
et al., 2023), data showing a significant increase in nonlinear indexes 
due to invisible EMG (in the range of 50–150 Hz) were excluded. 
Ultimately, 65,536 consecutive intervals were selected for further 
analysis. For analysis, a 50 Hz trap filter was used to remove electrical 
noise, a 70 Hz high-frequency filter to reduce myoelectric interference, 
and a 0.53 Hz low-frequency filter to attenuate artifacts.

2.4 Nonlinear parameters

2.4.1 Lyapunov exponent
The LE is used to estimate the divergence (positive exponent) or 

convergence (negative exponent) of two neighboring trajectories in 
phase space. A positive Lyapunov Exponent indicates that the studied 
system is chaotic. Unlike the static D2 measure, LE provides a measure 
of relative dynamism, making it more suitable for assessing the brain’s 
ability to process information flexibly and to develop and evolve 
different information processing states from a similar initial state. The 
first dynamic system is formulated as follows:

	 ( )= ,x f x

Where X is the state vector in N dimensions.
We selected two phase points in the phase space, plotted their 

trajectories [ ( )1x t  and ( )2x t ], and tracked the changes in the 
distances d  between corresponding points of these trajectories during 
the evolution of the system. LE was calculated as follows:
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The h value (sum of positive exponents) is called the Kolmogorov–
Sinai entropy or ks-entropy. Using ks-entropy, it is possible to 
determine whether the model under study is chaotic or regular. For 
chaotic systems, a ks-entropy value greater than 0 indicates chaos, 
while a value of 0 or less indicates a regular system.

2.4.2 Approximate entropy
ApEn, proposed by Pincus (2000), quantifies the unpredictability 

or randomness of a signal. It originates from nonlinear dynamics and 
is closely related to the LE, reflecting the rate of loss of information 
about the dynamics of a nervous system over time. ApEn is robust to 
low-frequency noise (Pincus, 2000; Richman and Moorman, 2000; 
Pincus, 2006) and suitable for time series that are relatively short 
(>100 data points) and mixed with noise. The calculation formula is 
as follows:
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The absolute value of ApEn is affected by three parameters: the 
elapsed time (N), the number of previous values used to predict 
subsequent values (m), and the filtering level (r). For this study, N was 
fixed at 4096 to improve the accuracy of the analysis. The noise filter 
defines the tolerance r, which is used to discriminate between “close” 
and “not close” subvectors of length N. The Filter level r was used to 
measure the amount of noise in the filtered data. Typically, r is selected 
based on the standard deviation (SD) of the signal. Referring to 
Ferenets et al., r = 0.2 SD and m = 2 were set for this study.

2.4.3 Lempel–Ziv complexity
The LZC algorithm comprises two main steps: coarse-graining 

and complexity processing (Ibáñez-Molina et al., 2015). First, the LZC 
of the EEG signal segment (N: segmentation length) is computed by 
converting the EEG data into a binary string (s(n)) (Maschke 
et al., 2022):
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Second, after the binary classification process, the binary string is 
analyzed from the beginning to produce a new sequence of symbols 
c(n). LZC computes the number of different patterns in the binary 
string and the complexity b(n) for length segments using an upper 
bound on the complexity c(n), which converges to a constant value for 
almost all c(n) values after computation:
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LZC typically ranges from 0 to 1, representing a nonlinear 
dynamic measure that indicates the rate at which new patterns emerge 
in a time series. A larger LZC implies a greater likelihood of new 
sequence patterns emerging, signifying more complex dynamic 
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behavior. When n is large, LZC becomes independent of the number 
of samples. To ensure accuracy, n was fixed at 4096 for this study.

2.4.4 Correlation dimension
The D2 determines and assesses the complexity of the system’s 

dynamics by using individual time series. This is achieved by 
constructing a pseudo-attractor in phase space using the attractor 
measurement properties of the system (Carlino et  al., 2012). The 
pseudo-attractor is then used to compute D2 without reconstructing 
the dynamic system from which the time series is generated. D2 
characterizes the dynamics of the EEG signal, providing information 
about the chaotic degrees of freedom and expressing the complexity 
of the system. The dimension of association (D2) is calculated as 
follows (Molnár et al., 1997):
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2.5 Statistical analysis

Data analysis was performed using IBM SPSS for Windows 
(version 26.0; IBM Corp, Armonk, NY, United States). The normality 
of the measurement data was assessed using the Shapiro–Wilk test. 
Continuous variables that followed a normal distribution were 
expressed as mean±standard deviation and compared between groups 
using the two independent samples t-test. Discrete variables that did 
not follow a normal distribution were expressed as quartiles (IQR) and 
compared using the Mann–Whitney U test. Categorical variables were 
described as percentages (%) and compared using the chi-square test.

Within-group comparisons using paired t-tests to assess music-
induced cortical activity in nonlinear parameters (LE, ApEn, LZC, 

D2) between resting and post-music stimulation states across VS/
UWS, MCS, and healthy subject groups. Between-group analyses 
employing one-way ANOVA with Bonferroni correction to compare 
these groups, respectively, in both resting and music conditions. 
Furthermore, MCS subgroup analyses featured: one-way ANOVA for 
between-subgroup differences in both resting and music conditions, 
respectively. The relationships were assessed using Pearson’s 
correlation analysis. Correlation coefficients were interpreted 
according to established thresholds: strong (0.6 ≤ R < 0.8), moderate 
(0.4 ≤ R < 0.6), and weak (0.2 ≤ R < 0.4) associations between the 
mean differences and CRS-R total scores. A p-value of less than 0.05 
was considered statistically significant for all analyses.

3 Results

3.1 Clinical baseline information

This study included a total of 59 patients with DOC, comprising 
28 patients with VS/UWS and 31 patients with MCS. Due to severe 
motor artifacts, the EEG signals of two patients with DOC were 
excluded, resulting in a final DOC sample size of 57 patients (28 VS/
UWS and 29 MCS). In addition, 22 healthy participants were included, 
bringing the total sample size to 79. The healthy participants consisted 
of 15 males and 7 females with a median age of 60 years (IQR: 51.00, 
70.00). The VS/UWS group included 21 males and 7 females with a 
median age of 61.5 years (IQR: 45.00, 71.75) and a time to injury of 
72 years (IQR: 55.25, 104.50). The MCS group included 23 males and 
6 females with a median age of 60 years (IQR: 47.50, 73.00) and time 
to injury of 90 years (IQR: 45.00, 180.50). In addition, the median 
CRS-R total score was 4.00 (IQR: 2.00, 6.00) in the VS/UWS group 
and 9.00 (7.50, 10.00) in the MCS group, indicating significantly 
higher scores in the MCS group compared to the VS/UWS group. 
There were no statistically significant differences between the VS/
UWS and MCS groups in terms of age, sex, duration of injury, or type 
of injury (p > 0.05), as shown in Table 1.

TABLE 1  Demographic characteristics of DOC patients.

Feature VS/UWS group
(n = 28)

MCS group
(n = 29)

Healthy control group
(n = 22)

Age (y)
61.50

(45.00, 71.75)

60.00

(47.50, 73.00)

60.0

(51.00, 70.00)

Days post-injury
72.00

(55.25, 104.50)

90.00

(45.00, 180.50)

Sex

 � Male 21 23 15

 � Female 7 6 7

Etiology

 � Traumatic brain injury 4 8

 � Stroke 22 20

 � Hypoxic brain injury 2 1

CRS-R scores
4.00

(2.00, 6.00)

9.00

(7.50, 10.00)

Coma Recovery Scale-Revised (CRS-R), VS/UWS, Vegetative state/unresponsive wakefulness syndrome; MCS, Minimally conscious state.
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3.2 Intergroup differences in nonlinear 
cortical responses to musical stimulation

The application of various nonlinear parameters provided 
detailed insights into the effects of musical stimulation on cortical 
excitability across different groups. LE nonlinear analysis showed 
that the frontal lobes of the VS/UWS group exhibited a significant 
increase in cortical excitability following musical stimulation. In 
contrast, no significant response to musical stimulation was 
observed in any brain regions of the MCS group or the healthy 
control group. ApEn nonlinear analysis revealed that musical 
stimulation increased cortical excitability in prefrontal pole and 
occipital regions of the VS/UWS group. Conversely, musical 
stimulation significantly increased the excitability of the entire 
cerebral cortex in the MCS group, including the prefrontal pole 
and the frontal, central, parietal, occipital, anterior temporal, 
middle temporal, and posterior temporal lobes. In the healthy 
group, musical stimulation significantly increased excitability in 
the prefrontal pole and the frontal, parietal, occipital, anterior 
temporal, middle temporal, and posterior temporal lobes. The 
results of the LZC nonlinear analysis revealed that the VS/UWS 
and healthy control groups showed no significant responsiveness 
to musical stimulation. However, the MCS group demonstrated 
significant responsiveness in the prefrontal pole, frontal, central, 
parietal, and middle temporal lobes. D2 nonlinear analysis showed 
no significant activation in the VS/UWS and healthy control 
groups. In the MCS group, musical stimulation activated the 
prefrontal pole, frontal, central, anterior temporal, and middle 
temporal lobes (Table 2; Figure 1).

3.3 Comparison of differences in nonlinear 
parameters among the three groups both 
in the resting state and music stimulation

Our nonlinear EEG analysis revealed distinct consciousness-
state-dependent patterns across metrics. LE analysis showed no 
significant group differences in neural excitability during either 
resting state or musical stimulation (all p > 0.05). However, 
resting-state analyses demonstrated hierarchical complexity 
reductions: All three metrics (ApEn/LZC/D2) revealed 
significantly reduced complexity in VS/UWS versus controls 
globally (all p < 0.05), with region-specific impairments versus 
MCS: ApEn/D2  in prefrontal pole/occipital/anterior temporal 
areas (all p < 0.05), and LZC in most regions except prefrontal/
frontal. MCS patients showed intermediate ApEn/D2 with 
anterior temporal/prefrontal pole and temporal deficits versus 
controls (p < 0.05), while maintaining near-normal LZC values. 
During musical stimulation, VS/UWS displayed: (1) global ApEn/
LZC/D2 reductions, (2) both ApEn and D2 exhibited widespread 
reductions (prefrontal pole/frontal/central/parietal/anterior/
middle temporal vs. MCS), while LZC showed global impairment 
(all regions p < 0.05 except posterior temporal vs. MCS). In 
contrast, MCS patients maintained preserved complexity metrics 
overall, with only localized reductions in prefrontal/posterior 
temporal ApEn and middle temporal LZC (all p < 0.05), 
while D2 values showed no significant differences versus 
healthy controls.

3.4 Comparison of nonlinear parameters 
between MCS- and MCS + in resting state 
and during musical stimulation

In both the resting state and during musical stimulation, 
MCS + patients exhibited higher cortical excitability compared to 
MCS- patients. The ApEn and D2 nonlinear analysis methods 
indicated that in the quiet state, excitability in the occipital cortex was 
significantly higher in MCS + patients than in MCS- patients 
(p < 0.05). In contrast, the LE nonlinear analysis revealed that in the 
quiet state, excitability in the central, parietal, and occipital cortices 
was significantly higher in MCS  +  patients compared to MCS- 
patients. Additionally, the MCS-parietal and occipital cortex 
excitability was significantly higher in MCS- patients (p < 0.05). 
Notably, the LZC nonlinear analysis method more effectively revealed 
differences in cortical excitability between MCS- and MCS + patients. 
It showed that excitability in the central, parietal, occipital, and 
posterior temporal cortex was significantly higher in MCS + patients 
compared to MCS- patients in both quiet and preferred music states 
(p < 0.05; Table 3).

3.5 Correlation between the total CRS-R 
score and nonlinear algorithm metrics 
across brain regions

This study employed correlation analysis to investigate the 
relationship between the total CRS-R scores of patients with DOC and 
the mean values of nonlinear algorithm metrics across different brain 
regions in response to musical stimulation. The differences in 
responses to musical stimuli were used to assess the patient’s ability to 
perceive external stimuli. The correlation between the differences in 
musical stimuli obtained using the LE algorithm and the total CRS-R 
score was not significant (R = −0.16, p = 0.23) (Figure  2A). In 
comparison, the other three metrics showed significant correlations 
with the total CRS-R score. The moderate correlation was observed 
for LZC (R = 0.53, p < 0.01; Figure 2C), followed by ApEn (R = 0.44, 
p < 0.01; Figure 2B), and the lowest significant correlation was found 
for D2 (R = 0.32, p = 0.02; Figure 2D).

4 Discussion

The brain, as a complex neural system, often exhibits chaotic firing 
behaviors in response to stimuli, which can be observed in EEG signals 
that possess non-smooth and non-linear characteristics (Liang et al., 
2020; Altıntop et al., 2022). Traditional linear analysis methods, which 
treat EEG signals as smooth and linear, may overlook intrinsic 
information pertinent to DOC, such as the phase correlations between 
different brain regions and the hierarchical organization of neural 
networks. Nonlinear dynamical systems, characterized by “chaos,” are 
particularly suited for exploring biological time series, especially EEG 
(Akdemir Akar et al., 2015). Chaos theory and nonlinear dynamical 
systems theory address deterministic systems that exhibit complex and 
seemingly random behavior (Kargarnovin et al., 2023). Therefore, the 
present study examined the excitability of the cerebral cortex in patients 
with DOC in response to musical stimuli, using various nonlinear 
dynamical parameters. Three main results were obtained: 1. Preferred 
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TABLE 2  Effects of preferred music on EEG nonlinear parameters.

Nonlinear 
parameters

VS/UWS group (n = 8) MCS group (n = 29) Healthy subject group (n = 22)

Resting 
state

Preferred 
music

Paired
Cohen’s 

d

Resting 
state

Preferred 
music

Paired
Cohen’s 

d

Resting 
state

Preferred 
music

Paired 
Cohen’s 

d

LE

Prefrontal pole 7.70 ± 1.93 7.66 ± 1.67 −0.06 8.84 ± 3.06 8.72 ± 3.35 −0.12 7.64 ± 2.06 7.72 ± 2.14 0.11

Frontal 7.69 ± 2.05h 8.60 ± 3.19 0.36 8.91 ± 3.55 8.87 ± 4.12 −0.03 7.85 ± 2.37 7.88 ± 2.00 0.03

Center 7.02 ± 1.02 7.09 ± 0.89 0.11 8.50 ± 3.75 8.29 ± 3.69 −0.29 7.78 ± 2.98 7.69 ± 2.27 −0.09

Parietal 8.04 ± 2.02 7.90 ± 1.69 −0.24 9.62 ± 4.04 9.30 ± 4.26 −0.18 8.54 ± 3.77 8.55 ± 3.30 0.01

Occipital 7.74 ± 1.56 7.87 ± 1.95 0.13 8.72 ± 2.63 8.57 ± 3.09 −0.11 8.53 ± 4.14 8.44 ± 3.60 −0.08

Anterior 

temporal
7.42 ± 1.50 7.61 ± 1.33 0.35 8.59 ± 2.98 8.53 ± 2.91 −0.07 8.42 ± 3.23 8.32 ± 2.62 −0.07

Middle temporal 7.21 ± 1.44 7.45 ± 1.61 0.52 8.05 ± 2.49 7.96 ± 2.21 −0.14 8.10 ± 3.00 8.04 ± 2.49 −0.06

Posterior 

temporal
7.38 ± 1.36 7.45 ± 1.19 0.10 8.33 ± 2.74 8.61 ± 4.17 0.12 7.85 ± 2.62 7.73 ± 2.31 −0.11

ApEn 1 4 2 5 3 6

Prefrontal pole 0.61 ± 0.13aah 0.63 ± 0.15dd 0.43 0.72 ± 0.72ii 0.76 ± 0.12f 0.83 0.81 ± 0.12bbgg 0.87 ± 0.13ee 0.81

Frontal 0.67 ± 0.15a 0.69 ± 0.15dd 0.28 0.78 ± 0.17i 0.83 ± 0.17 0.47 0.82 ± 0.13bbgg 0.88 ± 0.17ee 0.62

Center 0.67 ± 0.15 0.66 ± 0.14dd −0.02 0.76 ± 0.17ii 0.83 ± 0.17 0.67 0.82 ± 0.14bb 0.87 ± 0.17ee 0.38

Parietal 0.68 ± 0.16 0.68 ± 0.15d 0.08 0.75 ± 0.17ii 0.80 ± 0.15 0.60 0.79 ± 0.13bbg 0.83 ± 0.15ee 0.46

Occipital 0.68 ± 0.15h 0.70 ± 0.16 0.42 0.77 ± 0.17i 0.80 ± 0.16 0.51 0.80 ± 0.14bg 0.84 ± 0.17ee 0.47

Anterior 

temporal
0.64 ± 0.16a 0.66 ± 0.15dd 0.27 0.77 ± 0.18cii 0.82 ± 0.16 0.77 0.85 ± 0.13bbgg 0.90 ± 0.12ee 0.71

Middle temporal 0.70 ± 0.15 0.70 ± 0.15d 0.09 0.77 ± 0.20ii 0.83 ± 0.16 0.55 0.86 ± 0.15bbgg 0.92 ± 0.16ee 0.66

Posterior 

temporal
0.70 ± 0.16 0.72 ± 0.15 0.23 0.75 ± 0.18ii 0.80 ± 0.15f 0.60 0.85 ± 0.15bbg 0.90 ± 0.16ee 0.52

LZC

Prefrontal pole 0.32 ± 0.09a 0.32 ± 0.10d 0.29 0.39 ± 0.82cii 0.42 ± 0.09 0.70 0.48 ± 0.15bb 0.47 ± 0.15e −0.13

Frontal 0.35 ± 0.10a 0.35 ± 0.09d −0.04 0.45 ± 0.15i 0.48 ± 0.12 0.39 0.47 ± 0.16bb 0.45 ± 0.14e −0.22

Center 0.34 ± 0.80 0.34 ± 0.07d −0.09 0.42 ± 0.11ii 0.45 ± 0.12 0.72 0.48 ± 0.16bb 0.44 ± 0.14e −0.38

Parietal 0.36 ± 0.10 0.36 ± 0.09d −0.08 0.43 ± 0.13i 0.45 ± 0.13 0.43 0.48 ± 0.14bb 0.46 ± 0.15e −0.24

Occipital 0.36 ± 0.10 0.36 ± 0.10 0.26 0.43 ± 0.14 0.44 ± 0.14 0.25 0.52 ± 0.19bb 0.48 ± 0.18e −0.32

Anterior 

temporal
0.34 ± 0.10 0.34 ± 0.10d 0.13 0.41 ± 0.13ccii 0.44 ± 0.12 0.71 0.53 ± 0.17bb 0.52 ± 0.17e −0.07

Middle temporal 0.36 ± 0.10 0.36 ± 0.10d 0.13 0.42 ± 0.13ccii 0.45 ± 0.13f 0.83 0.56 ± 0.18bb 0.55 ± 0.17e −0.11

Posterior 

temporal

0.36 ± 0.10 0.37 ± 0.09 0.17 0.42 ± 0.13cc 0.43 ± 0.12 0.31 0.53 ± 0.15bb 0.50 ± 0.15e −0.29

D2

Prefrontal pole 3.03 ± 0.47a 3.08 ± 0.52dd 0.27 3.44 ± 0.46i 3.55 ± 0.45 0.49 3.77 ± 0.61bb 3.74 ± 0.40ee 0.09

Frontal 3.21 ± 0.57 3.27 ± 0.57d 0.33 3.60 ± 0.61ii 3.74 ± 0.62 0.55 3.75 ± 0.75b 3.82 ± 0.75e 0.36

Center 3.18 ± 0.42a 3.19 ± 0.39dd 0.02 3.54 ± 0.56ii 3.69 ± 0.59 0.76 3.81 ± 0.62bb 3.84 ± 0.61ee 0.12

Parietal 3.24 ± 0.51 3.26 ± 0.47d 0.08 3.55 ± 0.56 3.64 ± 0.58 0.33 3.68 ± 0.47b 3.68 ± 0.48e 0.01

Occipital 3.17 ± 0.44a 3.21 ± 0.43d 0.21 3.62 ± 0.66 3.67 ± 0.63 0.19 3.79 ± 0.73bb 3.80 ± 0.76ee 0.03

Anterior 

temporal

3.13 ± 0.58a 3.16 ± 0.56dd 0.18 3.56 ± 0.65ii 3.70 ± 0.58 0.54 3.76 ± 0.49bb 3.80 ± 0.51ee 0.21

Middle temporal 3.30 ± 0.56 3.32 ± 0.55d 0.06 3.62 ± 0.71ii 3.79 ± 0.69 0.63 3.91 ± 0.63bb 3.94 ± 0.58ee 0.17

(Continued)
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music stimuli induced excitability in the cerebral cortex of patients with 
DOC, and more brain regions were excited in the MCS group than in the 
VS/UWS group; 2. Different nonlinear kinetic algorithms produced 
different results; however, their overall trends were almost identical. LE, 
ApEn, LZC, and D2 were lower in both the VS/UWS and MCS groups 
than in the healthy control group, with the lowest values in the VS/UWS 
group, followed by the MCS group 3. In addition to LE, changes in ApEn, 
LZC, and D2 induced by preferred music stimuli in patients with DOC 
were significantly correlated with the CRS-R scores (p < 0.05).

Patients with DOC often have visual impairments, however their 
auditory systems are typically intact (Magee et al., 2017; Yu et al., 
2025). Therefore, in the present study, preferred music was used to 
stimulate responses to external stimuli in patients with DOC. Musical 
stimulation is expected to increase activity in the frontal, temporal, 
parietal, and subcortical areas, potentially positively affecting recovery 
of consciousness (Li et al., 2020). The study’s findings, using nonlinear 
analysis with ApEn, LZC, and D2 algorithms, consistently revealed 
that musical stimulation activated the prefrontal, frontal, central, and 
temporal lobe regions in the MCS group. In contrast, no significant 
activation was observed in any brain region in the VS/UWS group. 
Healthy participants exhibited significant activation in the prefrontal 
pole, frontal, parietal, occipital, and temporal regions, as revealed by 
the ApEn algorithm when exposed to their most preferred music. In 
addition, the MCS group demonstrated higher responsiveness to 
music than did the VS/UWS group, correlating with the CRS-R total 
score. The overall trend showed lower values in both the VS/UWS and 
MCS groups than in healthy participants, with the MCS- group 
exhibiting lower values than the MCS + group in the central, parietal, 
and occipital lobes. These results are consistent with the findings of 
Liu et  al. (2021), Zhang et  al. (2021), Liu et  al. (2022) and other 
experts, such as Ling et al. (2023), suggesting that the reduction in 
nonlinear indicators representing complexity (LE, ApEn, LZC, and 
D2) reflects a decrease in degrees of freedom. This reduction indicates 
a decline in coupled EEG rhythms and the dynamic response of the 
brain to external stimuli (Wu et al., 2011).

In contrast, the LE algorithm showed no statistically significant 
differences among all brain regions in the MCS group after musical 
stimulation, whereas patients in the VS/UWS group exhibited a 
significant increase in frontal and mesial temporal cortex complexities 
(p < 0.05). Correlation analysis also indicated an absence of significant 
relationship between the LE changes induced by music stimulation 
and the total CRS-R score in patients with DOC (p > 0.05). This 
differential sensitivity of LE between patient groups may reflect 
inherent limitations in nonlinear analysis: while LE can characterize 
low-dimensional deterministic dynamics, its reliability likely decreases 

for high-dimensional stochastic processes like EEG signals originating 
from large-scale neuronal networks (approximately 10⁵–108) (Ma 
et al., 2021; Hart, 2024). As suggested by Pritchard (Pritchard et al., 
1995) and other scholars, EEG signals are chaotic high-dimensional 
nonlinear systems. In patients with MCS, preserved thalamocortical 
connectivity might maintain high-dimensional EEG activity that 
exceeds LE’s detection capacity during complex musical processing, 
potentially accounting for the lack of significant LE changes. 
Conversely, in patients with VS/UWS—particularly those with HIE—
may demonstrate reduced-dimensional dynamics due to 
thalamocortical disruption, potentially allowing LE to track residual 
neural oscillations more effectively. Based on these observations, 
we  hypothesize that VS/UWS patients might have lower 
dimensionality of EEG signals compared to MCS patients in 
association with their poor state of consciousness, suggesting that LE 
suggesting could be  more sensitive to signal changes in VS/UWS 
patients during music assessment. These interpretations, while 
theoretically framed, remain speculative and warrant further 
validation to establish their clinical relevance.

In recent years, ApEn and LZC values have been widely used by 
scholars worldwide to assess the state of consciousness of patients with 
DOC (Zhang et al., 2021; Qu et al., 2024). The results of this study 
suggest that both ApEn and LZC nonlinear analysis methods 
accurately reveal the specific cortical excitatory effects of musical 
stimulation on patients in the VS/UWS and MCS groups and that the 
MCS group showed a better ability to process music than the VS/UWS 
group. In addition, the differences in ApEn and LZC responses to 
musical stimulation significantly correlated with the total CRS-R 
scores, with LZC showing a slightly higher correlation than ApEn. 
Therefore, the present study concluded that both ApEn and LZC are 
valuable tools for applying nonlinear dynamics to explore brain 
function. Liu et al. (2023) found that permutation LZC had a better 
ability to distinguish between the VS/UWS and MCS states than the 
ApEn values. This may be because ApEn reflects complexity through 
changes in the EEG signal amplitude, which relies on the data length 
and amplitude information, making it more susceptible to noise 
artifacts. LZC, the other hand, reveals the degree of randomness in the 
EEG signal sequence. Unlike ApEn, which measures the 
unpredictability of information content in a time series, LZC 
determines the minimum information required to reconstruct the 
original signal. It is computationally fast and resistant to interference 
(Liang et al., 2020). This algorithmic difference explains the higher 
correlation between the LZC and total CRS-R scores compared with 
ApEn. However, unlike the results of the present study, Wu et al. (2011) 
found that music stimulation did not significantly elicit excitability in 

TABLE 2  (Continued)

Nonlinear 
parameters

VS/UWS group (n = 8) MCS group (n = 29) Healthy subject group (n = 22)

Resting 
state

Preferred 
music

Paired
Cohen’s 

d

Resting 
state

Preferred 
music

Paired
Cohen’s 

d

Resting 
state

Preferred 
music

Paired 
Cohen’s 

d

Posterior 

temporal

3.30 ± 0.50 3.34 ± 0.50 0.23 3.59 ± 0.63 3.64 ± 0.57 0.15 3.87 ± 0.56bb 3.86 ± 0.53ee 0.06

VS/UWS, Vegetative state/unresponsive wakefulness syndrome; MCS, Minimally conscious state; LE, Lyapunov Exponent, ApEn, Approximate Entropy, LZC, Lempel–Ziv Complexity; D2, 
Correlation Dimension D2. The ratio of the VS/UWS group to the MCS group in resting state, Bold ap < 0.05. The ratio of VS/UWS group to healthy participants in resting state, Bold bp < 0.05. 
The ratio of the MCS group to the healthy participant group in resting state, Bold cp < 0.05. The ratio of the VS/UWS to MCS group in preferred music, Bold dp < 0.05. The ratio of the VS/UWS 
group to healthy participants in preferred music, Bold ep < 0.05. The ratio of the MCS group to the healthy participant group in preferred music, Bold fp < 0.05. The ratio of the VS/UWS group 
in resting state and preferred music, Bold hp < 0.05. The ratio of the MCS group between resting state and preferred music, Bold ip < 0.05. The ratio of the healthy participant group between 
resting state and preferred music, Bold gp < 0.05.
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the cerebral cortex of patients with VS/UWS and MCS (p > 0.05) using 
ApEn and LZC nonlinear analysis methods. This discrepancy may 
be due to differences in the patient groups or the type of music selected. 
Compared with the popular music selected by Wu et al., the selection 
of preferred music in this study may have properties such as self-
referentiality and connections to past emotional experiences, which 
are more capable of evoking a wide range of responses in the cerebral 
cortex of patients (Heine et al., 2015; Heine et al., 2017).

D2 is often interpreted as a measure of the complexity (or 
flexibility) of information processing related to alertness and 
mental activation levels and is a sensitive parameter in the nonlinear 
analysis of EEG (Carlino et al., 2012). In this study, D2 was used for 
the first time to assess the DOC. The difference in D2 evoked by 
auditory stimuli correlated well with the CRS-R scores (R = 0.32, 
p = 0.02). D2 revealed the effect of musical stimulation on brain 
area complexity, which was similar to the results observed for ApEn 
and LZC. Kargarnovin et al. (2023) found that the nonlinear kinetic 

parameters of healthy participants’ EEG were lower during musical 
stimulation (rock and light music) than during the resting state. 
This contradicts the results of the present study, in which healthy 
participants showed increased levels of ApEn, LE, and D2 upon 
stimulation with their preferred music. We hypothesize that this 
discrepancy could be due to the type of music involving participants’ 
past emotional experiences, which may better stimulate cortical 
excitability. Additionally, the inclusion of a heterogeneous group of 
participants (with different occupations and cultural backgrounds) 
could result in varied sensitivities to music, leading to differing 
outcomes. In the present study, the median D2 mean value of each 
brain region in the quiet state was 3 for both VS/UWS and MCS 
patients, which was lower than the D2 values of the healthy 
participants in the quiet state observed in the above study. The 
reduced consciousness in patients with DOC manifests as slower 
and more regularized cortical alertness and information processing, 
possibly accounting for their lower D2 values. Molnár et al. (1997) 

FIGURE 1

Four Nonlinear Dynamics in Three Population Groups. Statistical comparison of nonlinear measures (LE, ApEn, LZC, D2) between resting state and 
music stimulation conditions in healthy controls and patients with VS/UWS or MCS was performed using paired-samples t-tests: *p < 0.05, **p < 0.01. 
VS/UWS, Vegetative state/unresponsive wakefulness syndrome; MCS, Minimally conscious state; LE, Lyapunov Exponent; ApEn, Approximate Entropy; 
LZC, Lempel-Ziv Complexity; D2, Correlation Dimension D2.
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explored a patient with stroke using point-correlation dimension 
and found a low-dimensional region in the parietal region of his 
loss area, consistent with a relative decrease in EEG activity in the 
fast γ-band of CT scans, indicating that a nonlinear approach based 
on chaos theory can improve the sensitivity of electrophysiological 
methods for detecting cortical dysfunction.

Notably, language-based assessment and treatment are often 
insufficient to restore consciousness and cognitive abilities in patients 
with DOC because of the prevalence of language deficits in this 
population (Hu et al., 2021). Music, among various auditory stimuli, 

has unique self-referential properties, emotional valence, and affective 
qualities that can bypass language barriers (Li et al., 2020). Therefore, 
music therapy has been used as an initial treatment to help patients 
with DOC regain consciousness (Park and Davis, 2016; Li et al., 2020). 
The present study assessed the cerebral cortex response to musical 
stimuli in VS/UWS, MCS (MCS- and MCS+), and healthy participants 
using four nonlinear metrics. Although the results varied, the overall 
trend indicated a higher cortical complexity after auditory stimulation 
in healthy participants than in patients with MCS and VS/UWS. This 
suggests that using preferred musical stimuli as an experimental 

TABLE 3  Differences on different nonlinear dynamics between MCS− and MCS+ after preferred music.

Nonlinear 
parameters

Resting state Preferred music

MCS− (n = 17) MCS+ (n = 12) MCS− (n = 17) MCS+ (n = 12)

LE

Prefrontal pole 7.96 ± 1.52 10.09 ± 4.19 7.74 ± 1.20 10.10 ± 4.78

Frontal 8.11 ± 1.89 10.03 ± 4.95 7.89 ± 1.41 10.27 ± 6.05

Center 7.36 ± 1.13a 10.10 ± 5.39 7.29 ± 1.05 9.71 ± 5.42

Parietal 8.10 ± 2.04a 11.76 ± 5.20 7.93 ± 1.66b 11.23 ± 5.93

Occipital 7.69 ± 1.80a 10.17 ± 2.99 7.53 ± 1.41b 10.05 ± 4.16

Anterior temporal 7.98 ± 1.51 9.45 ± 4.23 7.88 ± 1.35 9.46 ± 4.16

Middle temporal 7.57 ± 1.60 8.74 ± 3.36 7.56 ± 1.33 8.53 ± 3.04

Posterior temporal 7.59 ± 1.85 9.38 ± 3.49 7.42 ± 1.31 10.30 ± 6.03

ApEn

Prefrontal pole 0.70 ± 0.10 0.76 ± 0.15 0.74 ± 0.09 0.79 ± 0.14

Frontal 0.77 ± 0.14 0.80 ± 0.21 0.82 ± 0.15 0.84 ± 0.20

Center 0.74 ± 0.17 0.79 ± 0.18 0.80 ± 0.18 0.82 ± 0.16

Parietal 0.72 ± 0.18 0.81 ± 0.14 0.77 ± 0.16 0.83 ± 0.13

Occipital 0.71 ± 0.14a 0.85 ± 0.18 0.75 ± 0.15 0.86 ± 0.15

Anterior temporal 0.77 ± 0.19 0.77 ± 0.17 0.83 ± 0.17 0.81 ± 0.14

Middle temporal 0.77 ± 0.19 0.78 ± 0.21 0.82 ± 0.18 0.83 ± 0.13

Posterior temporal 0.72 ± 0.17 0.78 ± 0.20 0.78 ± 0.16 0.84 ± 0.13

LZC

Prefrontal pole 0.36 ± 0.05a 0.44 ± 0.94 0.38 ± 0.06b 0.46 ± 0.11

Frontal 0.41 ± 0.11 0.50 ± 0.18 0.44 ± 0.10b 0.53 ± 0.13

Center 0.38 ± 0.09a 0.47 ± 0.13 0.41 ± 0.12 0.49 ± 0.11

Parietal 0.38 ± 0.11a 0.50 ± 0.12 0.41 ± 0.11b 0.52 ± 0.13

Occipital 0.37 ± 0.10a 0.51 ± 0.14 0.39 ± 0.11b 0.51 ± 0.15

Anterior temporal 0.40 ± 0.12 0.43 ± 0.13 0.44 ± 0.12 0.46 ± 0.13

Middle temporal 0.39 ± 0.10 0.47 ± 0.16 0.43 ± 0.12 0.49 ± 0.15

Posterior temporal 0.38 ± 0.10a 0.48 ± 0.15 0.40 ± 0.11b 0.49 ± 0.13

D2

Prefrontal pole 3.31 ± 0.37 3.61 ± 0.53 3.47 ± 0.39 3.68 ± 0.51

Frontal 3.55 ± 0.50 3.67 ± 0.75 3.67 ± 0.52 3.83 ± 0.75

Center 3.44 ± 0.49 3.68 ± 0.64 3.66 ± 0.59 3.74 ± 0.62

Parietal 3.40 ± 0.54 3.77 ± 0.54 3.57 ± 0.58 3.73 ± 0.58

Occipital 3.38 ± 0.50a 3.97 ± 0.73 3.53 ± 0.55 3.85 ± 0.72

Anterior temporal 3.51 ± 0.60 3.64 ± 0.74 3.70 ± 0.60 3.70 ± 0.57

Middle temporal 3.51 ± 0.61 3.78 ± 0.82 3.70 ± 0.64 3.91 ± 0.77

Posterior temporal 3.47 ± 0.57 3.75 ± 0.69 3.61 ± 0.60 3.68 ± 0.54

VS/UWS, Vegetative state/unresponsive wakefulness syndrome; MCS, Minimally conscious state; LE, Lyapunov Exponent; ApEn, Approximate Entropy; LZC, Lempel–Ziv Complexity; D2, 
Correlation Dimension D2. Statistical ratios: The ratio of MCS- to MCS+ in resting state, Bold ap < 0.05. The ratio of MCS- to MCS+ in preferred music, Bold bp < 0.05.
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paradigm has the potential to assess the state of consciousness in 
diagnosing patients with DOC. Additionally, the study’s finding that 
music stimulation increases cortical excitability in patients with DOC 
implies that those who exhibit nonlinear kinetic changes due to music 
stimulation should receive active therapeutic interventions, including 
pharmacological and neurophysiological treatments (Hu et al., 2021; 
Wu et al., 2024).

Four key limitations of this study merit discussion. First, while 
CRS-R behavioral assessment remains the diagnostic standard for 
DOC, motor/language impairments and consciousness fluctuations 
contribute to significant misdiagnosis risks. Although our protocol 
included triple assessments performed by an experienced 
neurophysiologist, this approach may still miss covert consciousness 
in patients with MCS. Future studies should implement repeated dual-
examiner evaluations to improve diagnostic accuracy. Second, the 
subgroup analysis was limited by small and unbalanced sample sizes 
(MCS-: n = 17 vs. MCS+: n = 12), particularly for the clinically rare 
MCS + group. Despite including all available cases, statistical power 
may be  inadequate. Multicenter studies are needed for validation. 
Third, the use of patient-preferred music enhances stimulus 
personalization through autobiographical relevance, yet presents 
methodological limitations: (1) predominant use of popular music 
(>85%) limits genre-specific analysis; (2) uncontrolled musical 

parameters and lack of no-music controls constrain mechanistic 
interpretations. Future studies should: (i) compare music genres 
systematically, and (ii) implement controlled paradigms with 
psychoacoustically-matched stimuli and multi-condition baselines 
(silent/non-musical/neutral-music) to isolate music-specific neural 
responses. Fourth, the age range of participants was broad (18–80 years 
old). Due to the small sample size, we  could not perform age 
stratification as suggested by Ezaki et  al. (2018) (18–30 years old, 
30–60 years old, 60–80 years old). Future studies should expand sample 
sizes to examine age-specific effects (18–30, 30–60, 60–80 years) on 
EEG nonlinear parameters across quiet and music conditions in DOC 
patients versus controls.

5 Conclusion

This study, utilizing nonlinear kinetic parameters of chaos 
theory, demonstrated that preferred music could increase cerebral 
cortex complexity in patients with DOC. This finding provides 
clinicians with valuable insights for selecting auditory stimulation 
modalities. The nonlinear parameters (ApEn, LZC, and D2) showed 
significant correlations with CRS-R scores and may serve as 
auxiliary indicators for consciousness assessment, while LE 

FIGURE 2

Correlation analysis. Scatter plots showing Pearson correlations between consciousness levels (CRS-R scores) and EEG complexity measures in DOC 
patients. Each panel displays: (A) Lyapunov exponent (LE: R = -0.16, p = 0.23); (B) Approximate entropy (ApEn: R = 0.44, p < 0.01); (C) Correlation 
dimension (D2: R = 0.53, p < 0.01); (D) Lempel-Ziv complexity (LZC: R = 0.32, p = 0.02). VS/UWS, Vegetative state/unresponsive wakefulness syndrome; 
MCS, Minimally conscious state.
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exhibited potential in capturing low-dimensional signal changes in 
VS/UWS patients during musical stimulation. These results suggest 
that combining these four parameters could offer a more 
comprehensive evaluation framework for DOC states. Future 
studies should: (1) employ multimodal neurophysiological tools to 
validate these nonlinear measures, and (2) establish their clinical 
utility through longitudinal intervention studies. While current 
findings demonstrate correlational relationships between nonlinear 
parameters and clinical assessments, the interpretation of specific 
neural mechanisms requires caution. In conclusion, the application 
of EEG nonlinear kinetic parameters in DOC is still in its 
exploratory phase. While some information remains challenging to 
interpret, nonlinear kinetic analysis technology holds promise for 
enhancing clinical practices by identifying effective interventions 
and providing a deeper understanding of brain function in patients 
with DOC.
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