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Editorial on the Research Topic

Transcranial electrical stimulation (tACS, tDCS, tRNS) in basic and clinical

neuroscience: current progress and future directions

Transcranial electrical stimulation (tES) as a non-invasive brain stimulation technique

has been used to study brain physiology for many years now (Nitsche and Paulus,

2000; Antal et al., 2017). Within this period, rapid advancement in understanding its

mechanisms of action (Liu et al., 2018; Jackson et al., 2016; Yavari et al., 2018) and

optimization of neuromodulatory effects have taken place (Agboada et al., 2019, 2020;

Mosayebi Samani et al., 2019a,b; Wischnewski et al., 2019), with evidence from healthy

and clinical populations (Alizadehgoradel et al., 2024; Ney et al., 2021; Vicario and Nitsche,

2013). The tES methods, including transcranial direct current, alternating current, and

random noise stimulation (tDCS, tACS, and tRNS), operate via the application of weak

currents through electrodes on the scalp with the aim of influencing brain physiology

(Antal et al., 2017). So far, tDCS and tACS have been employed to enhance performance

in cognitive and behavioral tasks (Fröhlich et al., 2015; Reinhart et al., 2017), as well

as treat neuropsychiatric disorders such as depression, Alzheimer’s, Parkinson’s, stroke,

schizophrenia, and many more in clinical trials (Lefaucheur et al., 2017; Elyamany et al.,

2021). While progress has been significant, challenges remain, including inter-subject

variability, sub-optimal stimulation parameters, and lack of long-term effects (Bland and

Sale, 2019; Ammann et al., 2017; Strube et al., 2016; Wiethoff et al., 2014). This Research

Topic focused on tES progress and how it may shape future behavioral and cognitive

applications as well as therapeutic use.
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FIGURE 1

A diagrammatic representation of tES experimentation in the future.

Mechanisms of tES: current progress

The basic physiological mechanisms of tES have been

established in animal (Ranieri et al., 2012; Rahman et al., 2013;

Krause et al., 2019; Wischnewski et al., 2024), human (Nitsche

et al., 2005; Mosayebi-Samani et al., 2023; Woods et al., 2016),

and computational models (Bikson et al., 2015; Bonaiuto and

Bestmann, 2015). However, the exact mechanisms by which these

effects lead to behavioral modulation are still lacking. In this

Research Topic, four potential mechanisms of tACS-induced after-

effects were discussed by Agboada et al.: spike-timing, spike-phase

coupling, homeostatic, and state-dependent plasticity. Further, the

tACS study by Carrasco-Gómez et al. reported stimulation-induced

plasticity that agrees with the theories discussed by Agboada

et al.. Three papers - Chen et al., Muccio et al., and Wu et al.,

reported plasticity induced by tDCS. However, as revealed by Wu

et al., the different mechanisms by which different tES techniques

operate mean their combinations might not always result in the

desired after-effects.

At the center of future tES studies is the continuous

investigation of the mechanistic processes underlying observed

after-effects. When optimizing tES at the individual and

group levels, domain-specific aims must inform safety and

tolerability considerations (Figure 1).

Clinical applications and the future of
tES

In this Research Topic, Chen et al. explored the rehabilitative

effects of tDCS and exergames on smartphone addiction combined

with electroencephalography. TDCS improved executive control

and decision-making abilities and increased P300 amplitudes in the

frontal, central, and parietal cortical regions. These changes were

stable over a 4-week follow-up period. Similarly, using functional

neuroimaging to test the simultaneous and cumulative effects

of tDCS in multiple sclerosis patients, Muccio et al. found that

tDCS acutely enhanced metabolic activity, which persisted post-

stimulation. At follow-up after 20 sessions of home-based tDCS

with an adaptive cognitive task, the authors reported sustained

after-effects of the stimulation. These studies emphasize the

importance of neurophysiological evidence of tES effects, which

offers mechanistic details about the stimulation efficacy. Currently,

only a handful of clinical trials have measured neurophysiological

and clinical measurement outcomes. Clinical studies with tES

should therefore utilize a multi-modal paradigm to correlate brain

and behavioral/clinical changes. Furthermore, in a pre-registered

clinical trial, Xue et al. presented a protocol for assessing the effects

of tDCS in patients with post-operative delirium after elective

hip fracture surgery. They plan to recruit 160 patients over the

age of 65 years. Using functional near-infrared spectroscopy for

evaluating brain metabolic changes before and after tDCS, the

authors will explore the efficacy of the stimulation in lowering

post-operative delirium.

The future of tES lies in the optimization of stimulation

parameters at the individual and group levels through different

experimental and computational approaches (Zrenner and

Ziemann, 2024). One potential individualized approach to

modulate alpha oscillations applied by Carrasco-Gómez et al.

used MEG to optimize tACS frequency. Also, for clinical use,

tES must induce long-term after-effects (Agboada et al.). This

is particularly relevant since the relatively low side-effects of

tES compared to pharmacological alternatives could enforce its

long-term therapeutic application (Matsumoto and Ugawa, 2017).

This means reporting adverse side-effects and tES tolerability by

each study to collect relevant information on how stimulation

interacts with specific domains (Bikson et al., 2016). For example,

Bjekić et al. compared the subjective rating of tES side-effects

among healthy participants. Almost all participants (more than

95%) reported less discomfort across all tES conditions; however,

when compared with sham, tACS showed slightly lower levels of

discomfort than tDCS and oscillatory tDCS.

This Research Topic’s collection offers a snapshot of the

progress in understanding and optimizing tES in both basic and

clinical neuroscience. By exploring the mechanisms of action,

safety, tolerability, and clinical applications, this Research Topic

highlights the potential of tES to modulate brain activity and

improve outcomes in cognitive, behavioral, and neurological

domains. The insights presented here, ranging from behavioral

experiments in healthy human subjects to clinical studies provide a

comprehensive framework for advancing scientific knowledge and

translating it into practical strategies for therapeutic interventions.

As we continue to refine tES protocols, personalize stimulation

parameters, and investigate long-term after-effects, the research

presented in this topic is essential for shaping the future of tES

research and its clinical application.
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