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Visual working memory (VWM) is a limited-capacity system where working 

memory items compete for retrieval. Some items are maintained in the working 

memory in the "region of direct access," which holds information readily 

available for processing, while other items are in a passive or activated long-

term memory state and require cognitive control. Moreover, their recognition 

requires moving from the most active template in VWM to another one with the 

shift of attention. Stimulus properties based on similarity can link items together, 

which can facilitate their retrieval due to prioritization. To investigate the neural 

dynamics of differential processing of repeated versus not-repeated items in 

working memory, we designed a modified Sternberg task for testing recognition 

in a VWM-based EEG study where human participants respond to a probe for 

an item’s presence or absence in the representation of an encoded memory 

array containing repeated and not repeated items. Significantly slower response 

times and comparatively poor accuracy for recognizing not-repeated items 

suggest that they are not prioritized. We identified specific differences in spectral 

perturbations for sensor clusters in the power of different frequency bands as the 

neural correlate of probe matching for not-repeated vs. repeated conditions, 

reflecting biased access to VWM items. For not-repeated item probe matching, 

delay in beta desynchronization suggests poor memory-guided action selection 

behavior. An increase in frontal theta and parietal alpha power demonstrated 

a demand for stronger cognitive control for retrieving items for not-repeated 

probe matching by shielding them from distracting repeated items. In summary, 

our study provides crucial empirical evidence of facilitation and prioritization 

of repeated items over non-repeated items and explains the probable role 

of different EEG rhythms in facilitated recognition of repeated items over 

goal-relevant, not-repeated items in VWM. 
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visual working memory (VWM), repeated items, not-repeated items, prioritization, 
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1 Introduction 

Working memory refers to our innate cognitive ability to 
temporarily hold and manipulate relevant information “in mind.” 
Two key features of working memory are its flexibility and its 
starkly limited capacity to maintain only a limited number of items 
(Adam and Serences, 2019). In working memory (WM), items are 
held as mental representations that compete for retrieval, especially 
during probe comparison tasks. This competition for retrieval 
can impact how well we remember these items. For example, in 
a working memory recognition task, non-target items similar to the 
target create competition and interference. This competition can 
aect the speed and accuracy of retrieval (Olivers et al., 2011). In 
such tasks, an attentional template of the probe is created and is 
compared with dierent WM representations one after the other in 
a serial manner and requires attention to bring one representation 
at a time into an active state in working memory. This process 
continues till the item matching is completed. As per embedded 
processing models of working memory (Cowan, 1999; Oberauer, 
2002), the items in WM are maintained in focus of attention as in 
the active state, while less relevant items are in the activated region 
of long-term memory and are considered to be in a passive state 
(Larocque et al., 2014; Peters et al., 2009; Li et al., 2020, 2021; Zhang 
et al., 2022). These states determine how easily accessible these WM 
representations are during a memory retrieval task. 

Prioritization and facilitation of items ease out this competition 
for retrieval. Items in the form of memorized arrays might lead 
to enhanced facilitation of WM representations due to perceptual 
features like their size or hue (Constant and Liesefeld, 2021). This 
can be due to dierent mechanisms, which are mainly bottom-up. 
Regarding multi-item WM retrieval, shared inter-item properties 
like similarity or repetition of items (Ren et al., 2023; Hamblin-
Frohman et al., 2023; Lin and Luck, 2009) can be facilitated. 
These inter-item properties can lead to repetition facilitation, where 
these items are bound together in the form of chunks, leading to 
enhancement in retrieval (Chekaf et al., 2016; Thalmann et al., 
2019). 

However, this item association is not always facilitatory and 
can lead to repetition inhibition, as this pattern of similarity or 
repetition needs to be detected and should not have any lag or 
be presented very distant from each other (Crowder, 1968; Lee, 
1976). This way, WM items do not undergo Gestalt perception 
(Peterson and Berryhill, 2013). The failure to detect repetition leads 
to even inhibition as shown in the Ranschburg eect in short-
term memory (Greene, 1991). However, if the pattern is detected, 
the items bound are chunked, and associative-linked memory 
items are automatically activated (Oberauer and Lange, 2009). The 
representation of identical items might lead to a lower activation 
threshold for their probe matching compared to non-facilitated 
items (Ren et al., 2023). Hence, these mechanisms are important 
to answer the question whether repetition of items in a working 
memory array can lead to better recognition and facilitation of their 
representations in a probe comparison task, and leads to conflict for 
non-facilitated items that are not repeated. 

In line with the above, one testable hypothesis could be that 
repeated items (Rep) might be facilitated and interfere with probe 
matching for not-repeated items (NRep) in VWM, impacting 
their retrieval during working memory performance. Moreover, 

the competition for facilitated retrieval might depend on the 
role of attention in inhibiting irrelevant representations and 
response preparation in VWM. The probe matching for VWM 
representations must be reflected in the EEG data based on the 
alteration in brain oscillations and may shed crucial insight into 
their possible neural correlates for prioritization, facilitation, or 
hindrance in the VWM recognition task. 

The probe matching window is important because it allows 
researchers to isolate the neural activity associated with matching 
a new input (the probe) with stored information in visual working 
memory (VWM). Dierent frequency bands, like alpha, theta, 
and beta, reflect dierent cognitive processes involved in this 
matching, including allocation of attention, memory maintenance, 
and conflict in decision making. The changes in frequency bands 
during the probe matching window provide critical insights 
into how attention is allocated to the matching probe, which 
is required for matching the attentional template to maintained 
VWM representations. During VWM, the dynamics of neural beta 
(13–30 Hz), especially in the central electrode, are associated with 
memory-guided behavior as it can aect motor preparation, as 
shown by previous studies (Boettcher et al., 2021; Nasrawi et al., 
2023; Nasrawi and van Ede, 2022; Schneider et al., 2017). Such 
motor preparation signals index the access to items to be prioritized 
within VWM (Ding et al., 2024). Extant literature further suggests 
that the Alpha frequency band plays a crucial role in sensory 
information-specific attention requirements. Interestingly, changes 
in the relative priority of stored representations and maintenance 
are reflected in the modulation of posterior alpha power oscillations 
(8–14 Hz) as reflected in alpha lateralization for the selection of 
task-relevant information for the internal selection of information 
maintained within VWM (van Ede et al., 2017). Increase in 
alpha power is related to active inhibition of task irrelevant items 
(Benedek et al., 2014). 

Complex behavioral tasks require a higher need for cognitive 
eort and conflict monitoring (Cavanagh and Frank, 2014; 
Cavanagh and Shackman, 2015; Cavanagh et al., 2012). In line 
with this, previous studies have reported Theta power (4–7 Hz) 
oscillatory changes related to top-down control over items (Sauseng 
et al., 2010; Sauseng and Liesefeld, 2020). More specifically, it 
has been shown that the frontal theta controls the endogenous 
attentional selection mechanisms of task-relevant items (Johnson 
et al., 2017; Sauseng et al., 2010). Alteration in the power of 
Fronto-medial theta can resolve the conflict in probe matching for 
irrelevant items in the probe conditions. 

In this study, to capture the bias in probe matching for repeated 
vs. not-repeated items in the VWM task and its neural correlates, 
we have conducted an EEG study that utilizes a memory array 
facilitating the encoding of items of both the repeated and not-
repeated categories. The encoding of items of both categories with 
an equal chance of the appearance of a relevant probe. This is 
to gain empirical evidence for how WM representation of certain 
WM items is prioritized and behaviorally influences facilitation 
for repeated or not-repeated items as captured by individual 
response time and accuracy for responding to relevant probes. 
Next, we investigate their neural correlates using EEG to test our 
hypothesis that band-specific spectral power dierences in theta 
and alpha across two conditions (repeated and not-repeated) reveal 
attentional facilitation of certain items, which lead to conflict in 
probe matching for those items which are not facilitated during 
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memory retrieval and can be associated with underlying causes for 
task-specific behavioral dierences elicited by the participants. 

2 Materials and methods 

2.1 Participants 

Data from an earlier conducted pilot study (N = 7) 
where following were the group means of two conditions 
MRep = 669.76 ms (SD = 202.16 ms) and MNrep = 741.78 ms 
(SD = 262.15). These data gave an observed eect size of d = 0.68 
as calculated via G∗Power’s eect size calculator (Faul et al., 
2007). With α = 0.05 and desired power = 0.80 (two-tailed 
test) for t-test family indicated that a minimum of sample size 
of 20 participant would be needed. Multiple relevant studies 
including (Ren et al., 2023; Hamblin-Frohman et al., 2023; Lin 
and Luck, 2009) on prioritization in working memory task due 
to similarity and identicality have a sample size of at least 
22. Twenty-five participants (12 females; M(age) = 25.04 years, 
SD = 2.52 years, range: 21–32 years) were recruited for the 
study. All participants had a university degree or higher, were 
right-handed, reported normal or corrected-to-normal vision, 
and declared no history of neurological or psychiatric disorders. 
Two participants’ data were not included in the analyses as 
one did not follow the proper instructions, and the other 
performed below the chance level in behavioral analysis of 
accuracy. Following this, data from a total of 23 participants 
(11 females; M(age) = 24.82 years, SD = 2.12 years, range: 
21–28 years) were included in the present study for further 
analysis. 

2.2 Ethics statement 

The study was carried out following the ethical guidelines 
and prior approval of the Institutional Human Ethics 
Committee (IHEC). Written informed consent was obtained 
from all participants before the commencement of the 
experiment, and they were remunerated for the time of 
their participation. 

2.3 Stimuli and trials 

The working memory task for the study was designed 
and presented using Presentation R  software (Version 23.0, 
Neurobehavioral Systems, Inc., Berkeley, CA) and displayed on a 
22-inch LED monitor screen (60 Hz; 1920 × 1080 pixels) at a 
viewing distance of approximately 75 cm. 

In both the main experiment and practice trials, visual working 
memory was tested using a probe-matching task (Figure 1). 
Participants were subjected to 280 trials in 6 blocks, with each 
block lasting 7–8 min and a break of around 2 min. Participants 
responded in a two-alternate forced-choice (2-AFC) manner using 
the left and right arrow keys of the keyboard for “No” and “Yes,” 
respectively. 

2.3.1 Memory array 
The memory array comprises of stimuli set where nine number 

digits were shown in each memory array, out of which three items 
were repeated twice and arranged in a jumbled fashion, along 
with three items that were not repeated; in total, nine items were 
presented in each memory array arranged in a circular fashion 
around fixation cross. These nine items are displayed with two 
to three items randomly shued between each quadrant to avoid 
encoding bias. Our rationale was to fully utilize the working 
memory capacity of 7 plus or minus 2 (Miller, 1956) and facilitate 
the formation of chunks (Cowan, 2010). Furthermore, sets of 
numbers used in a particular array were controlled to prevent 
the formation of commonly used chunks (e.g., numerical order, 
odd or even set, etc.). Numbers were shown within the foveal 
area (dva < 2.5 degrees), and each item subtends an angle of 
0.76 degrees. Hence, all memory arrays were presented as stimulus 
images during the trials and were pseudo-randomized. Memory 
arrays were shown for 2000 msec on average. 

2.3.2 Trial structure 
After presenting a black fixation cross for 1500 ± 500 msec, 

a memory array appeared for 2000 msec, which participants were 
instructed to remember. After the presentation of the memory 
array, a delay screen appears for 2000 ± 500 msec with a cross in 
the centre, followed by the onset of the probe on which participants 
had to respond whether the probe item was present in the memory 
array or not by using the left and right arrow keys. A black fixation 
cross was presented on a dark gray background throughout the 
trial. Participants were instructed to give responses as fast and 
accurately as possible. Response time and accuracy were estimated 
from behavioral data. The inter-trial interval (ITI) appears as a 
black screen after a response window of 1600 msec. Out of the total 
280 trials, 140 were “No” trials in which participants had to respond 
to a probe for which item was not present in the memory array. The 
remaining 140 “Yes” trials were for probes having a corresponding 
item in the memory arrays. Out of all the “Yes” trials, half had a 
probe for Rep items, and the other half had a probe for NRep items. 

2.4 Behavioral analysis 

Next, the response time and accuracy in the memory task were 
quantified for each participant. For response time and accuracy 
analysis, we used data from all the “Yes” trials of the Repeated (Rep) 
and Not-Repeated (NRep) categories, where response time and 
accuracy were calculated for the response window starting from 
probe onset till button press for Yes or No for probe matching. Data 
from two subjects were not included in the analysis, as one subject 
had poor accuracy (38%), whereas the other participant did not 
follow the instructions well. Outlier trials were removed using the 
Inter-Quartile range (IQR) method, where any data point less than 
1.5 times the IQR below the quartile (Q1) or greater than 1.5 times 
the IQR above the quartile (Q3) is removed. Only trials with correct 
responses for probe matching in Rep and NRep conditions were 
used for response time analysis. After removing the outlier trials, 
response accuracy was analyzed. Two-tailed Wilcoxon signed-rank 
test was used to compare for significant dierences in response time 
and response accuracy for Rep and NRep conditions. Eect size was 
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FIGURE 1 

Trial structure for the probe matching task. Each trial begins with the presentation of one of the pseudorandomized memory arrays comprising of 
total 9 digits out of which three are repeated twice while remaining three are not repeated. After this a delay period occurs, followed by probe 
matching task. 50% times probe matches item in memory array, with equal number of trials with probe of repeated items (Rep) and not repeated 
items (NRep) while 50% times probe is for item not present in the memory array. 

quantified using r (the value of the z-statistic returned by the test, 
divided by the square root of the sample size). The “No trials” were 
introduced to balance the probe probability for Rep and NRep trials 
and to avoid the guessing for “Yes trials.” They were not comparable 
to our study conditions and were excluded in the further analyses. 

2.5 Data acquisition and analysis 

2.5.1 EEG data 
EEG recordings were obtained from 64 Ag/AgCl active 

electrodes (Brain Products GmbH, Gilching, Germany) using a 
Brain Vision Recorder. The 64-channel EEG signals were recorded 
using the International 10% electrode placement system and 
checked before and after the experiment. Reference electrodes were 
Cz, grounded to AFz. Channel impedances were kept at <25 k. 
Data were acquired continuously with sampling rate of 1 kHz. 

2.5.2 Pre-processing for EEG signals 
Analysis was conducted on twenty-two participants’ EEG data 

using MATLAB R  and the EEGLAB toolbox (Delorme and Makeig, 
2004). Data of one participant was discarded at this step due to 
very noisy recordings (with asymmetric variations of very large 
amplitudes due to a skull implant that the participant informed 
later). EEG data were down-sampled to 256 Hz, and High-pass 
(0.5 Hz) and low-pass filters (45 Hz, respectively) were applied 
before the data were re-referenced to the linked mastoid (TP9 and 
TP10). Noisy channels were removed after visualization of spectral 
power over those channels and removal of bad temporal segments. 
Next, we applied the Infomax independent component analysis 
(ICA) algorithm to detect artifactual ICAs (eye blinks, ocular, 
muscular, and electrocardiograph artifacts), and subsequently, 

these components were removed manually after visual inspection. 
Epochs of 0–1600 msec were extracted from the probe display 
onset till the end of the response window. They were sorted for 
the Rep and NRep two probe conditions and used for the Event-
related spectral perturbation (ERSP) analysis. ERSP was computed 
using the newtimef function of the EEGLAB toolbox. The data 
was decomposed in a time-frequency domain across a frequency 
range from 3 to 30 Hz using a complex Morlet wavelet. The pre-
probe duration (−1000 to 0 ms) was used as a baseline for baseline 
subtraction. 

2.6 Spectral analysis 

The pre-processed EEG data was decomposed in a time-
frequency domain across a frequency range from 3 to 30 Hz using 
function newtimef in EEGLAB and is computed by convolving 
three-cycle complex Morlet wavelets. These analyses were based 
on 200-time points from −1000 to 1600 msec, centered on 
the appearance of the probe till the end of the response time 
window, for the epoch corresponding to probe absence/presence, 
the number of cycles in the wavelet increased linearly from 2 (at 
3 Hz) to 18 (at 30 Hz). The wavelet used to measure the amount 
and phase of the data in each successive, overlapping time window 
begin with a 3-cycle wavelet (with a Hanning-tapered window 
applied) and ‘0.8’ is the number of cycles in the wavelets used for 
higher frequencies will continue to expand slowly, reaching 20% (1 
minus 0.8) of the number of cycles in the equivalent FFT window 
at its highest frequency. The resulting temporal window ranged 
from approximately 666 ms at 3 Hz to 600 ms at 30 Hz. Power 
values (in dB) were baseline-corrected by subtracting the mean 
power in the time window before the presentation of the probe 
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(−1000 to 0 msec) from the power in the post-probe onset window. 
This pre- probe window was chosen for better temporal accuracy 
and contextual matching to avoid unneccessary fluctuations and 
capturing the relevant brain states. The ERSP was obtained by 
averaging the normalized representations across epochs, separately 
for the two probe conditions Rep and NRep. Epochs were baseline 
corrected by removing the temporal mean of the EEG signal on 
an epoch-by-epoch basis. Only trials where participants responded 
correctly to the probe were included in these analyses to observe the 
dierence between probe matching for Rep and NRep categories. 

2.7 Electrode selection 

To explore the beta band ERSP dynamics at (13–20 Hz) we 
focused our analyses on C3 electrode which was contralateral to the 
tight hand required for correctly responding to presence of “Yes” 
trials irrespective of spatial position of relevant item in the stimuli 
array. The amount of beta desynchronization and temporal lag in 
beta power is a well-established neural marker of manual action 
planning (Baker, 2007; Ding et al., 2024; McFarland et al., 2000; 
Neuper et al., 2006; Van Wijk et al., 2009). To study role of frontal 
medial theta band oscillations (Ferreira et al., 2019; Onton et al., 
2005; Sauseng et al., 2010) between 4 and 8 Hz following electrodes 
were selected F1, F2, Fz, FCz, FC1, FC2, C1, and C2. Frontal-
midline electrodes have been shown to involve theta oscillations 
with relation to probe evaluation and response conflict (Cavanagh 
and Frank, 2014; Sauseng et al., 2005). 

2.8 Statistical analyses of ERSP power 
changes 

In the time-frequency analysis, we used the cluster-based 
permutation statistics to test for statistically significant dierences 
in ERSP power for two probe-matching conditions (Rep and 
NRep) using EEGLAB’s toolbox’s statcond function along with 
false discovery rate (FDR) correction for multiple comparisons to 
estimate time-frequency clusters that were significantly dierent 
(with p < 0.05) between Rep and NRep conditions for the period 
around probe appearance till the end of the trial at 1600 msec 
(Maris and Oostenveld, 2007). Here, the null distribution is created 
by repeatedly shuing the condition labels and recalculating the 
test statistic under the assumption of no true dierence between 
conditions. The null distribution generated was used to compare 
the observed data clusters, which were considered significant if 
their dierence exceeded the 95th percentile of the null distribution 
(p < 0.05, two-tailed). In addition, we visualized scalp maps for 
which ERSP values were averaged for dierent frequency bands for 
Rep and NRep conditions. The time period and frequency range 
for sensor analysis were decided based on identified significant 
clusters using time-frequency analyses and generated plots. We 
used cluster-based permutation statistics with 2000 iterations to 
identify sensors with statistically significant dierences in ERSP 
power for the two conditions for all of our analyses using statcond 
function in the EEGLAB toolbox. Two-tailed paired t-tests with 
a false positive (alpha) threshold of 0.05 were used to identify 
significant clusters, along with permutation statistics, and to 

evaluate the sensors exhibiting statistically significant dierences 
in ERSP power. Statistically significant clusters exceeded the 95th 
percentile of this null distribution. The details of all the specific 
individual analyses are further elaborated in the results section. 
Statistical analysis was carried out separately for alpha (8–12 Hz), 
theta (4–7 Hz), and beta (13–30 Hz) frequency ranges. 

2.9 Correlational analysis between 
response times (RTs) and peak 
desynchronization time 

We performed a trial-wise correlation analysis between 
response time (RT) and the latency of peak beta desynchronization 
in the post-probe window to examine the relationship between 
neural timing and behavioral responses. Time–frequency data were 
extracted for the beta band (13–20 Hz) at the C3 electrode, and 
peak desynchronization latency was defined as the time point 
with minimum beta power within each trial, reflecting maximal 
suppression. Trials were grouped according to experimental 
conditions, Rep and NRep. RTs were obtained from their event 
markers in EEG data. Trials were excluded if they exhibited 
extreme RTs (<150 ms or >1000 ms) as beta desynchronization 
never happens before 200 ms or after 1000 msec (Kilavik et al., 
2013; Makeig, 1993; Pfurtscheller and Da Silva, 1999). Trials 
with RT or desynchronization time outside the 2.5th–97.5th 
percentile range were excluded as Outliers. We used Spearman’s 
rank correlation to assess the monotonic relationship between RT 
and desynchronization timing for the two conditions separately, 
due to deviation from norma distribution of the raw values. 
The correlation was calculated across trials using a two-tailed 
significance threshold of α = 0.05. 

In addition, eect sizes for the dierence in Response times 
(RTs) and in beta desynchronization latency between the two 
experimental conditions (Rep vs. NRep) were calculated for 
the C3 electrode using Cohen’s d for paired samples. This 
provided a standardized measure of the magnitude of condition-
related changes. 

2.10 Data and code accessibility 

All the behavioral and EEG data acquired from the participants 
and the analysis carried out during this study are available from the 
corresponding authors upon reasonable request. The pre-processed 
EEG data and codes/scripts used for all the analyses conducted in 
this paper will be made freely available to download from https:// 
github.com/dynamicdip/. 

3 Results 

3.1 Behavioral response 

We only used data for trials with correct responses for probe 
matching in Rep and NRep conditions in the response time 
analysis. The violin plots (Figure 2A) (generated using ggplot2 
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(Wickham, 2011) in R software) for both conditions depict that 
the response times for probe matching follow Rep < NRep. 
The Response time distribution of the Rep condition is skewed 
and visually asymmetric. Hence, we employed a non-parametric 
two-tailed Wilcoxon signed-rank test to compute the statistical 
significance of dierences between the medians of response times 
(RTs) of any two categories. Eect size was quantified using r (the 
value of the z-statistic returned by the test, divided by the square 
root of the sample size). We rejected the null hypothesis as we found 
using the Wilcoxon Signed-Rank test that there is a statistically 
significant dierence between Rep and NRep with Rep having lower 
RT values (Median = 677.5, n = 25) than NRep (Median = 741.1, 
n = 25), (Z = 4.3589, p < 0.001, r = 0.87). 

For response accuracy analysis, mean percentage accuracy 
(MPA) was calculated and plotted (Figure 2B) with distinguishable 
dierences in distribution and median values of response accuracy 
using the two-tailed Wilcoxon Signed-Rank test. Eect size was 
quantified using r (the value of the z-statistic returned by the test, 
divided by the square root of the sample size). This Wilcoxon 
Signed-Rank test showed that response accuracy was significantly 
higher for the matching probe for Rep items (median = 100, n = 25) 
in comparison to that for NRep items (Median = 80, n = 25) with 
Z = −4.3589, p < 0.001, r = −0.87. 

3.2 Event-related spectral perturbations 
in Rep versus NRep probe conditions 

Next, we characterized whether the neural dynamics might 
reflect changes in spectral perturbations in dierent frequency 
bands due to these dierences in response time and accuracy for 
the two probe-matching conditions. 

In Figure 3A, ERSP with data for both Rep and NRep 
conditions collapsed into one plot to visualize the grand average 
ERSP across all the electrodes for values for frequencies ranging 
from 3 to 30 Hz and for the temporal duration of −100 to 1100 msec 
post-probe presentation for ERSP plots, where 0 msec represents 
the onset of the probe across all subjects. This was done to avoid 
circularity in Time of interest (TOI) selection for analysis; instead, 
peak values of dierent EEG oscillatory rhythms are utilized based 
on data visualization. No statistical tests were performed at this 
level. Alpha was most prominently desynchronized between 400 
and 800 msec at 9–12 Hz. Also, event-related desynchronization 
was visible in the beta band between 13 and 21 Hz around the 
temporal window of 300–650 msec. The synchronization of the 
theta band is visible in the range of 4–7 Hz around the temporal 
window of 100–500 msec. 

3.3 Topographical difference in 
parieto-occipital alpha power 

Attention typically plays an important role in VWM retrieval; 
hence, we were interested in studying the role of the alpha 
band oscillations in mediating internal attention and suppressing 
irrelevant representation in WM during probe matching. Event-
related alpha desynchronization was observed as depicted in 
Figures 3B, C. Furthermore, Figure 3C shows relatively increased 

alpha power in the right parieto-occipital area for NRep in 
comparison to Rep conditions as displayed in Figure 3B. 
The topoplots generated (Figures 3B–D) using cluster-based 
permutation statistics in the relevant temporal response window 
of 400–800 msec after probe onset and in the range of 9–12 Hz 
frequency revealed significant involvement of parieto-occipital 
electrodes namely PO8, P4, and P8, showing enhanced power 
change in NRep compared to Rep conditions. We observed one 
negative cluster consisting of right parietal sensors, namely PO8, 
P4, and P8 [t(21) = −2.97, p < 0.001], with t-value peaking at −3.35 
for PO8. 

3.4 ERSP difference in beta power for 
Rep vs. NRep probes 

Next, we investigated beta band (13–20 Hz) desynchronization 
in C3, i.e., contralateral, which may be responsible for the response 
by the right hand with “Yes” for valid probe-matching, which 
indexes the prioritization of item in retrieval by enhancing the 
motor preparation for appropriate response selection in VWM 
for two conditions. 

Figures 4A–C display ERSP plots for the C3 electrode averaged 
over frequency from 13 to 20 Hz separately for each condition from 
−100 to 1100 msec around probe onset. Cluster-based permutation 
analysis revealed a significant (negative) cluster in beta band (13– 
20 Hz) between 200 and 400 ms post-probe presentation over C3 
electrodes with [t(21) = −176.91, p = 0.018] peaking at 350 ms 
and 16.5 Hz, showing faster desynchronization in beta band for 
Rep condition compared to NRep condition. NRep condition 
(Figure 4B) indicates relatively delayed desynchronization of the 
beta band for the NRep compared to the Rep condition. In the 
Figure 4D, condition-wise modulations are visualized in the beta 
band, from the ERSP power which was averaged across subjects was 
extracted for the electrode C3 in the 13–20 Hz range to obtain line 
plots. Mean ERSP beta power for the two conditions were plotted 
with time (–300 to post-stimulus) on the x-axis and power (in 
dB) on the y-axis. Peak desynchronization time with most negative 
ERSP power was identified for Rep and NRep. Both the conditions 
showed a clear desynchronization following the probe onset at 
electrode C3. Rep condition reached peak desynchronization at 
406 ms at –2.26 dB (in red dashed line), whereas NRep showed a 
slightly delayed desynchronization at 480 ms at –2.33 dB (in blue 
dashed line). Shaded areas around each line indicates ± 1 standard 
error of the mean (SEM) across participants. No statistical test was 
applied here. Then we did Spearman’s correlation analyses, which 
revealed a significant but very weak positive correlation between the 
latency of peak beta desynchronization and RT for NRep. whereas 
Rep showed no significant correlation. For Rep, Spearman r = 0.05, 
p = 0.1910 (N = 578 trials) while for NRep condition, Spearman’s 
r = 0.14, p = 0.002 (N = 452 trials). In Figure 4E, scatter plots with 
regression lines shows significant correlation for NRep but not for 
Rep condition. The 95% confidence interval for the fitted regression 
line is shown with shaded area. The dierence in Response times 
(RTs) and peak beta desynchronization latency between the Rep 
and NRep conditions yielded a Cohen’s d of −0.94 and −0.18, 
respectively, corresponding to a large eect size for RTs but a very 
weak eect size for peak betra desynchronization latency. 
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FIGURE 2 

Behavioral results. (A) Each violin plot shows responses time distribution for each condition (NRep Vs Rep). Each dot represents average response 
time for one participant. (B) Mean percentage accuracy distribution for each condition (NRep Vs Rep) where each dot represents average accuracy 
(in percentage) for one participant. ***p < 0.001. 

3.5 ERSP differences frontal-medial theta 
band oscillations 

Next, we investigated the frontal-medial electrodes involving 
multiple sensors F1, F2, Fz, FCz, FC1, FC2, C1, and C2. To examine 
the dierence in theta power for the two probe conditions. Using 
cluster-based permutation, we found significant negative cluster 
at around 5–7 Hz and 600–900 msec even after FDR correction 
with [t(21) = −561.22, p = 0.022] peaking at 800 ms and 6.5 Hz, 
reflecting significantly higher theta power with a threshold of 
0.05 for retrieving items using the probe for NRep category in 
ERSP plot (Figures 5A–C). The topographical distribution of ERSP 
(Figures 5D–F) over fronto-medial electrodes involving multiple 
sensors F1, F2, Fz, FCz, FC1, FC2, C1, and C2. The selection of 
these sensors was motivated by the previous studies (Ferreira et al., 
2019). In particular, C1 and C2 electrodes were used for analysis in 
place of Cz, as it was used as the reference electrode. The cluster 
of these sensors was depicted in Figures 5D–F, where permutation-
based analysis was done for 5 to 7 Hz and a period of 600–900 msec 
after probe onset. Multiple sensors, namely Fz, FC1, FC2, C1, C2, 
F1, and FCz, showed significant negative clusters in average ERSP 
power with t(21) = −16.04, p < 0.02, with t-value peaking at −2.66 
for FC1, showing an increase in average ERSP power for the NRep 
condition over the Rep condition. 

4 Discussion 

The present study investigated the dierence in probe 
comparison in a VWM task across two conditions, Rep and 
NRep. Here, the dierence in behavior was empirically studied 
in terms of response time and accuracy for matching the 
relevant probe. Probes were matched with the maintained 
WM representations, where the probe acts as an attentional 
template to match with the relevant representation one at a 
time until its match is found (Woodman et al., 2007). The 

most facilitated representations are in direct access (Oberauer, 
2002), while other representations are brought into focus 
of attention sequentially. Subsequently, using ERSP analysis, 
we investigated how spectral perturbations of dierent brain 
oscillations dier in probe matching for the two probe conditions, 
Rep and NRep. Dierent brain oscillations provide further 
evidence for this bias in processing dierent items in the WM 
task. 

Behavioral results showed that Rep items probes match faster 
and more accurately to relevant representations in comparison to 
the NRep probes. Our results provide evidences for the facilitation 
of Rep representations in probe matching, comparable to that 
of visual similarity in the working memory paradigm (Hamblin-
Frohman et al., 2023), but by using the repetition of numbers as 
a linking feature between items (Oberauer and Lange, 2009). Our 
experimental results demonstrate that the default prioritization 
of representations of Rep items is a feasible scenario in response 
selection, as they are facilitated during maintenance and when they 
are retrieved for valid probe matching (van Moorselaar et al., 2014). 

Contrary to the bottom-up saliency view (Theeuwes, 1992; 
Wolfe, 1994), which suggests that non-redundant dissimilar items 
should have gained prioritized access in VWM, as also seen in the 
Ranschburg eect (Crowder, 1968), we found that repeated items 
were facilitated during VWM retrieval, reflecting an enhanced 
and stable representation of repeated items in VWM (Ren et al., 
2023). One probable reason for such attentional facilitation is 
the chunking strategy for repeated items (Thalmann et al., 2019), 
leading to the prioritization of repeated items over the not-repeated 
items as fewer slots are required, also resulting in freeing up space 
to accommodate more items (Chekaf et al., 2016). In the imagined 
visual space, the chunks of repeated items take up less space for 
number of items. This finding further implies that probe matching 
for repeated items requires less eort as their representation were 
in an active state for direct access (Chekaf et al., 2016). This further 
suggests the internal representation of attentionally prioritized 
Rep items might conflict with valid probe matching for NRep 
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FIGURE 3 

(A) Grand average Event related spectral perturbation across all the electrodes of including trials of both the conditions across all the subjects in 
different EEG bands from 3 to 30 Hz (Zero on x-axis represents time from probe onset). (B–D) Scalp maps for all the electrodes averaged over 
frequency from 9 to 13 Hz separately for each condition for 400–800 ms. Rep (left), NRep (middle) with less desynchronized alpha power and (D) 
show a plot of FDR-corrected clusters with the threshold of 0.05 reflected on the vertical bar after cluster-based permutation showing a significant 
difference (red dotted) in PO8, P4 and P8 for ERSP-based topographies of two conditions for right parietal electrodes. 

items, which require flexible allocation of attention to NRep items 
(Emrich et al., 2017). 

Our ERSP results further revealed the role of dierent 
frequency bands in dierential response selection, attentional 
demands, and conflict in decision making, which are required 
for probe matching of Rep and NRep probes in VWM. Beta 
power is mostly attributed to its role in sensory-motor function 
involving motor response selection, where it has been found to 
index the prioritization of items in VWM (Ding et al., 2024). 
Here, we predicted that the attentional template for Rep items’ 
representations is prioritized in the maintained WM, which 
facilitates WM recognition during valid probe matching. In this 

study, we find that the Beta band (13–20 Hz) in the C3 electrode 
is desynchronized early at around 200 ms, shortly after probe 
presentation for repeated items and is significantly dierent in 
ERSP power for Rep vs. NRep conditions, which facilitates the right 
hand’s key press for valid probe matching and might be associated 
with faster and clearer motor preparation for response selection 
as also suggested by shorter response time and high accuracy for 
Rep over NRep in the behavioral results possibly due to repetition 
of items, also related to facilitation of identical objects in VWM 
(Ren et al., 2023). Delayed beta desynchronization was observed 
for the NRep condition in the line plot compared to Rep which 
suggests that when the attentional template tries to match NRep 
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FIGURE 4 

Beta power change for the two conditions. (A–C) display ERSP plots for C3 electrode averaged over frequency from 13 to 20 Hz separately for each 
condition from –100 to 1100 msec (Zero on x-axis represents time from probe onset). Rep (left), NRep (middle), and plot of FDR corrected clusters 
with the threshold of 0.05 after cluster-based permutation (right) showing significant difference in ERSP of two conditions. NRep condition shows 
positive cluster with delayed desynchronization of beta band here in comparison to Rep. (D) Mean ERSP time series (13–20 Hz) at electrode C3 for 
both conditions (N = 22). Rep and NRep show beta desynchronization following probe onset (0 ms). Vertical dashed lines indicate peak 
desynchronization time points for each condition. Rep condition reached peak desynchronization at 406 ms at –2.26 dB (in red dashed line), 
whereas NRep showed a slightly delayed desynchronization at 480 ms at –2.33 dB (in blue dashed line). (E) Scatterplot showing trial-wise 
correlation between peak beta desynchronization latency (ms) and response time (ms) at C3 electrode for conditions Rep and NRep. Regression 
lines are shown. A significant positive correlation was observed only for NRep condition (Spearman’s r = 0.14; p < 0.01). The 95% confidence interval 
for the fitted regression line is shown with shaded area. 
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FIGURE 5 

Increased Frontal–medial theta (FMT) power for responding for NRep items in comparison to Rep items. (A–C) shows ERSP plots with positive 
clusters averaged over frequency from 4 to 7 Hz separately for each condition for a period of –100 to 1100 msec for frontal-medial electrodes 
namely involving multiple sensors F1, F2, Fz, FCz, FC1, FC2, C1, and C2 (Zero on x-axis represents time from probe onset) Rep (left), NRep (middle), 
and plot of FDR corrected clusters with threshold of 0.05 reflected on the vertical bar after cluster-based permutation (right) showing significant 
difference in theta power ERSP of two conditions. (D–F) Scalp maps for Fronto-medial electrodes averaged over frequency from 5 to 7 Hz 
separately for each condition for 600–900 msec. Rep (Left), NRep (middle), and significant FDR corrected clusters in frontal region (red dotted) Fz, 
FC1, FC2, C1, C2, F1and FCz with the threshold of 0.05 after cluster-based permutation (right) showing significant difference in ERSP based 
topography of two conditions with increase theta power for NRep. 

category, there is a conflict and delay for probe matching. The 
delayed prioritization in NRep compared to the Rep condition is 
probably due to the default prioritization of Rep representations. 
In the Correlational analysis, late peak beta suppression for NRep 
was weakly associated with longer RTs, suggesting that the timing 
of beta desynchronization may reflect the neural readiness for 
motor execution for response. Although the eect size was very 
small (r = 0.14), such magnitudes are typical for trial wise EEG-
behavior correlations, as several other neural processes take place 
alongside. In order to understand the factors behind this bias in 
directing attention to probe relevant representations, we studied 
other ERSP power of other frequency bands. Parieto-occipital alpha 
has been shown to act as a marker for attention when selecting 
task-relevant information in the WM paradigms (Ichihara-Takeda 
et al., 2015; Klimesch, 1999). Active inhibition of non-relevant 
but distracting repeated item’s representations requires attentional 
suppression during probe matching for not-repeated condition 
(Carlisle, 2019). This is reflected in the relative increase in alpha 
power and comparatively reduced alpha desynchronization for 
parieto-occipital electrodes when matching probe for NRep items 
compared to Rep. This indicated less eÿcient active inhibition of 
items of Rep that need to be inhibited during NRep as shown in 
previous findings (Benedek et al., 2014; Erickson et al., 2019). 

Comparatively increased fronto-medial theta power for 
responding to probe matching for NRep items implies the role of 
cognitive eort for valid selection and to resolve the conflict arising 
from matching the relevant probe. This is in line with conflict in 
WM retrieval and cognitive eort literature, (Botvinick et al., 2001; 
Jacobs et al., 2006; Onton et al., 2005; Zuure et al., 2020) where the 
increase in power of the theta band resolves the conflict arising 
when the attentional template of a valid NRep probe matches with 
facilitated Rep representations. Increased theta power during NRep 
items probe matching appears due to interference by repeated 
item representations, similar to frontal-medial theta power eects 
of cognitive interference (modulated by distractor strength) as 
suggested by Nigbur et al. (2011), Magosso and Borra (2024). 
Previous research from de Vries et al. (2018), Riddle et al. (2020) 
supports the crucial causal role of theta in prioritizing task-relevant 
information and potentially suppressing information that is no 
longer relevant for successfully guiding behavior. For Rep, Theta 
power is comparatively lower due to the repetition enhancement-
like eect, as the default prioritization of repeated items reduces 
the eort to retrieve. However, for NRep the frontal medial theta 
power is higher due to cognitive control demands. Here, we fixed 
the number of items so that varying working memory capacity 
does not aect the theta power. In contrast to our expectation, 
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the dierence in ERSP power for parieto-occipital alpha band 
temporally precedes the frontal-medial theta power change, which 
means that eÿcient probe matching requires alpha for template 
matching, which then is supported by frontal-medial theta for 
avoiding distraction from irrelevant matching. This relatively 
enhanced frontal medial theta power for NRep than Rep reflects on 
its probable role in resolving the conflict in probe matching due to 
irrelevant items in the probe conditions (Cohen and Donner, 2013; 
Kaiser et al., 2022). 

In summary, our study provides evidence for facilitation and 
prioritization of repeated items as seen in the behavior for probe 
matching, where shorter response time and higher accuracy for 
Rep items creates conflict in processing passively maintained 
representations of NRep items. This explains that items in VWM 
are retrieved in an order where prioritized representations are 
facilitated due to certain perceptual features like repetition, and 
followed by not-repeated items, which are less facilitated. As 
repeated items are facilitated, the response time for their selection 
in the presence of a probe requires the least motor preparations 
with faster action planning, as can be seen in faster beta band 
desynchronization. The probe matching for NRep items showed 
delayed desynchronization of beta at the C3 electrode, which is 
characteristic of slow response preparation. However, for not-
repeated items attention need to shift from the representation of 
repeated items in presence of relevant probe along with attentional 
suppression of facilitated repeated items’ representations. The 
increase in parieto-occipital alpha power for NRep contributes to 
the active inhibition of irrelevant but default-prioritized Rep items 
during probe matching. Stronger cognitive control is required to 
maintain the NRep representation, whereas Rep representations 
distract while generating the relevant motor response. However, 
the cognitive control demands of probe matching for Rep is less, 
as it is facilitated due to repetition. Increase in Fronto-Medial theta 
power suggests a link to resolving the conflict of matching the 
probe for NRep items over Rep items. These evidences provide 
an explanation for prioritization and facilitation of the inter-
item feature of repetition interfering with the items that are not 
facilitated, even if they are relevant. Taken together, our study 
provides crucial empirical evidence of facilitation and prioritization 
of repeated items over non-repeated items and elucidates how 
dierent EEG rhythms might facilitate recognition of repeated 
items over goal-relevant, not-repeated items in VWM. 
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