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Introduction: Cerebral palsy (CP) often leads to impairments in movement and 

posture, limiting functional mobility. Robotic-assisted gait training (RAGT) using 

powered exoskeletons has emerged as a novel approach to enhance gait in 

individuals with CP. However, evidence regarding its effectiveness, particularly 

in unassisted gait performance, remains limited and inconclusive. 

Methods: This study involved 44 ambulatory youth with bilateral hypertonic 

CP (GMFCS levels I–III), who underwent an intensive RAGT program using the 

EksoGT exoskeleton. The intervention consisted of 28 sessions (90 min each) 

over 8 weeks, with a 2 weeks mid-point break. Gait assessments were conducted 

before (T1) and after (T2) therapy using 3D motion analysis and the 6-minute 

walk test (6MWT). Primary outcomes included spatiotemporal parameters, gait 

symmetry, gait deviation index (GDI), and walking endurance. 

Results: Following the exoskeleton training, participants demonstrated a 

statistically significant improvement in gait efficiency, with 6MWT distances 

increasing from 375 to 418 m (p < 0.01). However, no significant changes were 

observed in gait symmetry, spatiotemporal parameters, or GDI scores, indicating 

no measurable effect on unassisted gait mechanics. 

Conclusion: Intensive exoskeleton therapy significantly improved walking 

endurance but did not alter gait symmetry or kinematics in independently 

ambulatory youth with hypertonic CP. These - findings suggest that while 

exoskeleton assisted training enhances functional endurance, its impact on gait 

pattern may be limited. Further research should explore its broader benefits on 

quality of life, participation, and psychosocial outcomes. 

KEYWORDS 
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1 Introduction 

Children with cerebral palsy (CP), resulting from a non-progressive brain lesion, 
present with permanent disorders of movement and posture that lead to functional 
disability (Rosenbaum et al., 2007). The combination of multiple impairments contributes 
to abnormal muscle activity and movement patterns, which can be categorized as either 
positive motor signs (e.g., hypertonia and involuntary movements) or negative motor signs 
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(e.g., muscle weakness and impaired control) (Sanger et al., 2006). 
These motor deficits collectively limit functional performance. 

Among the available interventions, task-specific functional 
therapy has been identified as the most eective approach for 
enhancing gross motor function in children with CP. This method 
emphasizes active participation in daily life activities that involve 
purposeful movement execution to improve coordination and 
motor performance (Christy et al., 2012; Graham et al., 2016). 
Active engagement, both physical and cognitive, is essential for 
therapeutic success. In contrast, passive interventions such as 
manual manipulation by a therapist or mechanical assistance using 
devices like exoskeletons have shown limited eÿcacy, potentially 
due to reduced engagement of both the patient and their nervous 
system (Graham et al., 2016). 

Robotic-assisted gait training (RAGT) has emerged as a widely 
used rehabilitation modality to improve gait in individuals with 
neurological impairments. Various forms of RAGT, including 
driven gait orthoses and powered lower limb exoskeletons, aim 
to enhance voluntary movement control by adapting joint motion 
(e.g., at the ankle or knee), measuring human-machine interaction 
forces, supporting leg movement, providing body weight support, 
and maintaining gait trajectories. These systems have demonstrated 
benefits in children with CP (Banz et al., 2008; Brütsch et al., 2010; 
Jamwal et al., 2020). However, despite promising results, the overall 
evidence remains limited due to the lack of standardized outcome 
measures. Furthermore, the comparative eÿcacy of RAGT versus 
conventional therapy remains under debate (Bunge et al., 2021; 
Cortés-Pérez et al., 2022). 

According to the World Health Organization’s International 
Classification of Functioning, Disability and Health (ICF), 
promoting independence in daily activities is a key therapeutic 
goal (Gormley, 2001; Gómez-Salgado et al., 2018). While powered 
exoskeletons, one of the most widely used RAGT devices, involve 
some degree of passive assistance, they enable overground walking 
that closely resembles natural daily activity and require less hands-
on input from the therapist. This allows for more cognitively 
engaging practice, potentially enhancing therapeutic outcomes 
(Fasoli et al., 2012). 

The aim of this study was to evaluate the eect of powered 
lower limb exoskeleton use on gait parameters in children 
with spastic CP. Specifically, the study investigated short-term 
changes in spatiotemporal gait parameters, gait kinematics, 
and gait asymmetry. 

2 Materials and methods 

2.1 Participants 

A total of 44 subjects diagnosed with hypertonic CP were 
recruited for the study and underwent exoskeleton-assisted gait 
training (20 females, 24 males; mean age: 17.61 ± 3.95 years). 
The study group consisted of ambulatory individuals with bilateral 
lower limb involvement. All participants were able to walk 
independently or with assistive devices and were classified within 
levels I to III of the Gross Motor Function Classification System 
(GMFCS): Level I (n = 5), Level II (n = 31), and Level III (n = 8). 

Inclusion criteria were as follows: (1) diagnosis of bilateral 
hypertonic CP, (2) no orthopedic surgery within the past year, (3) 
no botulinum toxin injections within the last 6 months, (4) ability 
to follow verbal instructions, and (5) a primary therapeutic goal 
of improving gait function. Exclusion criteria included: (1) the 
presence of pain, (2) fixed contractures that prevented participation 
in training, and (3) leg length discrepancy greater than 0.5 cm. 

Gait training sessions were conducted at the outpatient clinic 
of a local rehabilitation hospital. All assessments were performed at 
the Motion Analysis Laboratory of a local orthopedic hospital. The 
study was approved by the appropriate Institutional Review Board. 
Written informed consent was obtained from all participants aged 
18 years or older and from parents or legal guardians for those 
under 18 years of age. 

2.2 Protocol 

Each participant underwent a total of 28 therapy sessions of 
exoskeleton training over a period of 8 consecutive weeks, with 
a 2 weeks break at the midpoint. Each session lasted 90 min and 
included the following components: 

1. Warm-up: Strength and balance exercises to prepare 
for gait training. 

2. Therapy session: 40 min of walking practice using the 
exoskeleton device. 

3. Cool-down: Stretching exercises to conclude the session. 

Exoskeleton training was conducted using the EksoGT powered 
exoskeleton (Ekso Bionics Holdings, Inc., San Rafael, CA, 
United States). The device is designed for users with a body weight 
of up to 100 kg, a height range of 1.58–1.88 m, and a maximum 
hip width of 45.7 cm. The system weighs 27 kg and includes two 
lithium-ion batteries (2 Ah, 48.1 VDC) capable of producing a peak 
current of 30 A, allowing full-load operation for up to 60 min. 

The EksoGT supports active hip flexion from −20◦ to 135◦ 

and passive hip abduction from −2◦ to 4◦ . Knee flexion is motor-
assisted within a 0◦–135◦ range, while the ankle allows passive 
plantarflexion from −10◦ to 10◦ . Foot stiness can be adjusted on 
a scale of 1 (flexible) to 4 (rigid). The device enables a walking 
speed of approximately 2 km/h, with adjustable step lengths (20.3– 
45.7 cm), step widths (0.0–7.6 cm), and swing phase durations (0.8– 
2.5 s). Before the first therapy session, each participant received a 
30–60 min adaptation period to become familiar with walking in 
the exoskeleton. 

Gait performance was assessed twice for each subject: prior 
to the intervention (T1) and immediately after completing the 
28 therapy sessions (T2). Assessments included instrumental gait 
analysis and the six-minute walk test (6MWT) (Enright, 2003). 
The 6MWT was used to evaluate gait endurance. During the test, 
participants walked at their maximum achievable speed along a 
15 m straight course for 6 min. The course was marked on a flat 
surface using cones, with each meter clearly labeled. An examiner 
recorded the distance covered using a stopwatch, and the total 
distance was calculated by summing the number of completed laps 
and any additional meters from the final, incomplete lap. 

Kinematic data were collected using an 8-camera motion 
capture system (six Bonita 3 and two Vero 2.2; Vicon Motion 
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Systems Ltd., Oxford, United Kingdom) at a sampling rate of 
120 Hz. Reflective markers were placed according to the standard 
Lower Body Plug-in-Gait protocol. All participants walked barefoot 
along a 10 m walkway at a self-selected speed during data collection. 

2.3 Outcome measure 

The primary outcome measures included the following gait 
spatiotemporal parameters: step time (s), step length (m), step 
width (m), stride time (s), stride length (m), walking speed (m/s), 
cadence (steps/min), single support (% of gait cycle), double 
support (% of gait cycle), and foot-o (% of gait cycle). In addition, 
the gait symmetry index (SI) was calculated for each of these 
parameters. Further outcome measures included the Gait Deviation 
Index (GDI) and the total distance covered in the 6MWT. 

Gait symmetry was calculated based on the spatiotemporal 
parameters using the following formula: (Robinson et al., 1987) 

SI = 
2(XR − XL) 

XR + XL 
× 100% 

where: 
XR : right leg parameter 

XL : left leg parameter 

An SI value of 0 indicates perfect symmetry; negative values 
indicate asymmetry favoring the left side, while positive values 
indicate asymmetry favoring the right. 

Changes in GDI values were categorized as improvement when 
GDI ≥ 5, deterioration when GDI ≤ −5, and no change when 
−5 < GDI < 5 (Schwartz et al., 2016; Rajagopal et al., 2018). 

2.4 Statistical analysis 

The normality of data distribution was assessed using the 
Shapiro-Wilk test. For variables that were normally distributed 
and exhibited homogeneity of variance, paired t-tests were used to 
evaluate changes over time. For non-normally distributed variables 
or those with heterogeneous variance, the Wilcoxon signed-rank 
test was applied. Dierences in the Gait Deviation Index (GDI) 
were analyzed using the Fisher-Freeman-Halton test. All statistical 
analyses were conducted using the Statistical software (Version 14; 
TIBCO Software Inc., Palo Alto, CA, United States). A p-value of 
< 0.05 was considered statistically significant. 

3 Results 

3.1 Six-minute walk test (6MWT) 

Analysis of the eect of exoskeleton therapy on gait 
eÿciency in patients with CP demonstrated a statistically 
significant improvement in the distance covered during the 6MWT 
(T1 = 375 m; T2 = 418 m; p < 0.01; normally distributed; Figure 1). 

FIGURE 1 

Changes in six-minute walk test (6MWT) distance before (T1) and 
after (T2) robotic-assisted gait training (RAGT). 

3.2 Gait symmetry 

No statistically significant changes in gait symmetry were 
observed following exoskeleton therapy (Table 1). 

3.3 Spatiotemporal gait parameters 

Analysis of spatiotemporal gait parameters revealed no 
statistically significant changes after the intervention (Table 2). 

3.4 Gait Deviation Index (GDI) 

No statistically significant changes in gait kinematics, as 
measured by the Gait Deviation Index, were found following 
exoskeleton therapy (Table 3). 

4 Discussions 

The aim of this study was to evaluate the eectiveness 
of intensive exoskeleton-assisted therapy on gait in ambulatory 
individuals with hypertonic CP. Our findings indicate that, while 
this form of exoskeleton training significantly improved gait 
eÿciency, as measured by the six-minute walk test (6MWT), it 
did not result in statistically significant changes in gait symmetry, 
spatiotemporal parameters, or kinematic patterns. 

The literature on the eÿcacy of exoskeleton therapy in 
individuals with CP remains limited and highly variable in terms 
of methodology, participant characteristics, and outcome measures 
(Bunge et al., 2021; Hunt et al., 2022). Previous studies reviewed 
in this study have been conducted with heterogeneous samples 
diering in age, diagnosis, functional level, sample size, and therapy 
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TABLE 1 Gait symmetry index before (T1) and after (T2) the exoskeleton therapy. 

T1 T2 P-value 

Collected 
variables 

(Mean ± SD) (Median) (IQR) (Mean ± SD) (Median) (IQR) 

Symmetry Index 

(%) 
Walking speed −0.2 ± 2.1 0.0 2.1 −0.2 ± 4.4 0.0 3.7 0.54 

Stride time 0.0 ± 1.3 0.0 1.6 0.4 ± 2.1 0.4 1.8 0.32 

Step time 3.3 ± 14.4 3.4 11.8 4.3 ± 14.6 4.0 13.1 0.97 

Double support* 4.7 ± 23.3 0.6 26.4 3.9 ± 22.6 0.6 26.4 0.70 

Single support −1.0 ± 11.8 −1.8 13.6 −1.1 ± 11.7 −2.4 11.9 1.00 

Foot o −0.2 ± 7.2 −0.9 5.2 −0.3 ± 5.7 −0.2 7.2 0.73 

Stride length −0.1 ± 2.0 0.0 2.3 1.2 ± 8.3 0.4 2.9 0.16 

Step length 2.5 ± 16.3 3.2 13.3 3.5 ± 14.5 4.3 14.3 0.86 

Step width −1.0 ± 8.5 0.0 0.0 −0.7 ± 9.3 0.0 0.0 0.68 

GDI* −1.3 ± 15.0 0.3 20.9 −2.2 ± 13.7 −1.9 15.7 0.60 

The p-value indicates the statistical significance of dierences between T1 and T2. *, normally distributed variables; SD, standard deviation; IQR, interquartile range; GDI, Gait Deviation Index. 

TABLE 2 Spatiotemporal parameters before (T1) and after (T2) the exoskeleton therapy. 

T1 T2 P-value 

Collected variables (Mean ± SD) (Median) (IQR) (Mean ± SD) (Median) (IQR) 

Cadence (step/min) 98.89 ± 17.10 102.48 16.49 98.79 ± 15.48 101.77 16.50 0.44 

Walking speed* (m/s) 0.79 ± 0.27 0.83 0.33 0.80 ± 0.28 0.80 0.47 0.59 

Stride time (s) 1.26 ± 0.28 1.17 0.21 1.26 ± 0.28 1.18 0.25 0.27 

Step time (s) 0.60 ± 0.14 0.64 0.13 0.60 ± 0.15 0.55 0.13 0.21 

Double support (% of GC) 22.83 ± 12.76 17.98 13.03 22.78 ± 10.97 18.30 13.63 0.59 

Single support (% of GC) 43.28 ± 9.33 49.58 13.45 43.78 ± 8.91 49.85 15.15 0.36 

Foot o (% of GC) 66.11 ± 5.17 64.58 5.08 66.56 ± 3.90 66.33 4.22 0.18 

Stride length* (m) 0.95 ± 0.25 0.96 0.39 0.96 ± 0.28 0.97 0.43 0.34 

Step length* (m) 0.45 ± 0.12 0.46 0.19 0.46 ± 0.13 0.45 0.18 0.19 

Step width* (m) 0.20 ± 0.06 0.19 0.08 0.20 ± 0.06 0.19 0.07 0.89 

The p-value indicates the statistical significance of dierences between T1 and T2. *, normally distributed variables; SD, standard deviation; IQR, interquartile range; GDI, Gait Deviation Index. 

duration. Some findings are based on a single session with a 
single participant, making it diÿcult to generalize conclusions. 
To our knowledge, this study represents one of the largest and 
most homogeneous cohorts to date. We evaluated 44 youths 
with bilateral hypertonic CP, all ambulatory without third-party 
assistance (GMFCS levels I–III), and all received the same long-
term, intensive exoskeletal training protocol without additional 
therapeutic interventions. Gait outcomes were assessed using 
objective, instrumented measures. 

Importantly, our study cohort consisted of adolescents and 
young adults (mean age: 18 years), a population in which functional 
development and gait patterns are generally considered stable. This 
minimizes the confounding influence of natural developmental 
changes on gait, which is a significant concern in studies involving 
younger children. Previous research has included participants 
ranging from 5 to 31 years of age, making it diÿcult to isolate 
the eects of exoskeleton due to age-related variability in gait 
(Sutherland, 1997; Ganley and Powers, 2005). 

The evidence regarding the eect of exoskeleton on 
spatiotemporal gait parameters is inconsistent. Some studies 

report significant improvements, while others find no measurable 
changes (Bayón et al., 2016; Lerner et al., 2017a; Mataki et al., 
2018; Matsuda et al., 2018; Ueno et al., 2019; Nakagawa et al., 
2020; Thurston et al., 2021). Additionally, certain studies evaluated 
gait parameters while participants were wearing the exoskeleton, 
which can introduce bias. Improvements in parameters such as 
walking speed, cadence, and step length have been observed in 
some of these studies, while others report no change, or even a 
decline (Robinson et al., 1987; Mileti et al., 2016; Lerner et al., 
2017d, 2017a, 2017c; Orekhov et al., 2020). Improvements in gait 
symmetry and lower limb kinematics during assisted walking have 
also been documented. However, it is important to recognize that 
gait patterns induced by powered exoskeletons may not be retained 
once the device is removed, thus limiting the interpretation of such 
immediate eects as true functional gains. 

Despite the absence of significant changes in kinematic data 
following therapy, we conducted a detailed analysis of the direction 
of change in the Gait Deviation Index (GDI). The results showed 
that GDI improved in nine subjects, declined in seven, and 
remained unchanged in the majority (28 subjects). Further analysis 
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TABLE 3 Number of participants showing changes in Gait 
Deviation Index (GDI). 

T2 vs. T1 [n (% of 
group)] 

P-value 

Improvement 9 (20.45%) 0.30 

No changes 28 (63.64%) 

Deterioration 7 (15.91%) 

indicated that GMFCS level was not a distinguishing factor for 
improvement or deterioration, among those who improved, six 
were classified as GMFCS level II and 1 as level III. 

In contrast to studies assessing gait while wearing the device, 
we focused on evaluating unassisted, barefoot gait before and after 
a full course of therapy (28 sessions). Our results did not reveal 
any significant changes in spatiotemporal parameters, symmetry, 
or kinematics, suggesting that 28-session exoskeleton training in 
8 weeks may not induce lasting modifications in gait pattern among 
independently ambulatory youth with CP. 

Despite the lack of significant changes in gait mechanics, we 
observed a meaningful improvement in gait eÿciency, as reflected 
in the increased distance covered during the 6MWT. This suggests 
a potential training eect resulting from sustained walking with 
resistance. Given the 27 kg weight of the exoskeleton and the 
intensity of each session (40 min of active walking), it is plausible 
that this form of therapy contributed to improved muscular 
endurance and walking capacity. Prior studies have suggested that 
the weight of the device could impose a metabolic burden (Rossi 
et al., 2013; Russell Esposito et al., 2018); however, our findings 
align with literature indicating that resistance or strength-based 
training can improve function in individuals with CP and support 
the notion that exoskeleton use may provide a similar benefit. 

Most existing studies, including ours, have focused on 
ambulatory individuals with CP classified as GMFCS levels I– 
III (Lerner et al., 2016, 2017d, 2017b, 2017a, 2017c, 2018, 2019; 
Takahashi et al., 2018; Orekhov et al., 2020; Chen et al., 2021; Fang 
et al., 2022). A limited number of studies have examined the eects 
of exoskeleton in non-ambulatory individuals, i.e., GMFCS level IV 
(Smania et al., 2012; Nakagawa et al., 2019, 2020; Ueno et al., 2019). 
However, interpreting gait-related outcomes in non-ambulatory 
populations may be problematic, as these individuals are not 
accustomed to autonomous locomotion. In such cases, the value of 
exoskeleton therapy may lie more in enhancing participation and 
quality of life rather than altering gait patterns. While theoretical 
frameworks suggest that exoskeleton could facilitate community 
participation and mobility, empirical evidence supporting this 
claim is currently lacking (Bunge et al., 2021). 

4.1 Limitations 

A key limitation of this study is its exclusive focus on 
gait-related outcomes. Although gait is a critical component of 
functional mobility, the potential benefits of exoskeleton therapy 
may extend beyond biomechanics to include psychosocial domains 
such as participation, self-eÿcacy, and quality of life. These aspects 
were not assessed in the present study and should be a focus 

for future research to comprehensively evaluate the impact of 
exoskeleton in individuals with CP. 

While the current study demonstrated the benefits of 
an intensive program, future research may be strengthened 
by incorporating longitudinal follow-up, control groups, and 
multidimensional outcome measures to better establish the 
therapeutic potential of robotic gait interventions. 

Regarding the statistical analysis used to interpret our results, 
although appropriate analyses have been applied, additional 
methods, such as eect size metrics and predictive modeling, could 
further provide more comprehensive insights and strengthen the 
interpretation of the therapy program’s eectiveness. 

5 Conclusion 

This study demonstrates that an intensive exoskeleton program 
can significantly improve gait eÿciency in ambulatory youth with 
hypertonic CP. Despite this improvement in gait endurance, no 
statistically significant changes were observed in gait symmetry, 
spatiotemporal parameters, or kinematic profiles. These findings 
suggest that while the powered exoskeleton may eectively enhance 
functional walking capacity, it does not appear to meaningfully alter 
unassisted gait patterns in the short term. Future research should 
investigate the broader impact of exoskeleton therapy, including 
its eects on quality of life, social participation, and psychological 
wellbeing, to better understand its full therapeutic potential. 
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